chapter 4: trigonometry thru 4-3 notes.pdfthe radian measure formula can be used to measure arc...

18
Chapter 4: Trigonometry Section 4-1: Radian and Degree Measure INTRODUCTION An angle is determined by rotating a ray about its endpoint. The starting position of the ray is the _________________ of the angle, and the position after rotation is the _________________, as shown. The endpoint of the ray is the _________ of the angle. This perception of an angle fits a coordinate system in which the ________ is the vertex and the initial side coincides with the positive x-axis. Such an angle is in standard position, as shown. Positive angles are generated by _______________________ and negative angles by _________________, as shown. In this figure, note that angles α and β have the same initial and terminal sides. Such angles are coterminal. 1

Upload: others

Post on 09-May-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

Chapter 4: Trigonometry

Section 4-1: Radian and Degree Measure

INTRODUCTION An angle is determined by rotating a ray about its

endpoint. The starting position of the ray is the

_________________ of the angle, and the position after

rotation is the _________________, as shown. The

endpoint of the ray is the _________ of the angle. This perception of an

angle fits a coordinate system in which the ________ is the vertex and the

initial side coincides with the positive x-axis. Such an angle is in standard

position, as shown.

Positive angles are generated by

_______________________ and negative angles by

_________________, as shown.

In this figure, note that angles α

and β have the same initial and

terminal sides. Such angles are

coterminal.

1

Page 2: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

In your own words:

Coterminal:

Standard position:

RADIANS

The measure of an angle is determined by the amount of rotation from the

initial side to the terminal side. One way to measure angles is in _________;

the other way is in radians. This type of measure is especially useful in

calculus. One revolution around a circle, ______ degrees, equals 2π radians.

Thus,

1/2 revolution = radians

1/4 revolution = radians

1/6 revolution = radians

Other common angles are shown below:

2

Page 3: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

Label the following coordinate system with

Quadrants I, II, III, and IV. Then, determine

which angle intervals, in radians, fall in each

quadrant. Also label the axes in radians.

FINDING COTERMINAL ANGLES

To find coterminal angles, add or subtract 2π from the angle.

For example: 0 and _________ are coterminal angles.

�6 and _________ are coterminal angles.

Example 1: Sketching and Finding Coterminal Angles

a. Find two coterminal angles for 13π/6 and sketch them.

b. Find a positive and a negative coterminal angle for 3π/4 and sketch

them.

c. Find two positive coterminal angles for -2π/3 and sketch them.

3

Page 4: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

COMPLEMENTARY AND SUPPLEMENTARY ANGLES

Remember from Geometry that complementary angles have a sum of _____,

which is ______ radians and supplementary angles have a sum of ______,

which is ______ radians.

Example #2: Complementary and Supplementary Angles

If possible, find the complement and supplement of a) 2�/5 and b) 4π/5.

DEGREE MEASURE

Another way to measure angles is in terms of

degrees. 1˚ is equivalent to 1/360 of a complete

revolution about the vertex. Thus, a full

revolution corresponds to 360˚, a half revolution

to 180˚, and a quarter revolution to 90˚. Because

2π radians corresponds to one complete

revolution, degrees and radians are related by the equations

360˚ = ___ rad and ____ = π rad

4

Page 5: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

CONVERSIONS BETWEEN DEGREES AND RADIANS

1) To convert degrees to radians, multiply degrees by �  ��� 180˚

2) To convert radians to degrees, multiply radians by 180˚�  ���

Example #3: Converting from Degrees to Radians

a) 135˚

b) 540˚

c) -270˚

Example #4: Converting from Radians to Degrees

a) -�2 rad =

b) 9� 2 rad =

c) 2 rad =

5

Page 6: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

APPLICATIONS

The radian measure formula can be used to measure arc length along a

circle. For a circle of radius r, a central angle θ intercepts an arc of length s

given by

s = r θ

where θ is measured in radians.

Example #5: Finding Arc Length

A circle has a radius of 4 inches. Find the length of the arc intercepted by a

central angle of 240˚.

Consider a circle of radius r. If s is the length of the arc traveled in time t,

the speed of the particle is

Speed = =

Moreover, if θ is the angle (in radian measure) corresponding to the arc

length s, the angular speed of the particle is

Angular speed =

6

Page 7: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

Example #6: Finding the Speed of an Object

The second hand of a clock is 10.2 centimeters long. Find the speed of the

tip of this second hand.

Example #7: Finding Angular Speed

A lawn roller makes 1.2 revolutions per second. Find the angular speed of

the roller in radians per second.

7

Page 8: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

Section 4-2: Trigonometric Functions: The Unit Circle

The Unit Circle: Graph the circle x2 + y2 = 1. Now imagine the real number line is wrapped around this circle, with __________ numbers corresponding to a counterclockwise wrapping and __________ numbers corresponding to a clockwise wrapping. The real number 0 corresponds to the point (1, 0). Moreover, because the unit circle has a circumference of 2π, the real number 2π corresponds to the point ( , ). Why is the x value 1? The Trigonometric Functions: Recall sine, cosine and tangent from right angle trigonometry. In geometry,

Sine = Cosine = Tangent = Three more functions – cosecant, secant and cotangent, respectively – combine with these 3 to make the 6 trigonometric functions. Definitions of Trigonometric Functions Let t be a real number and let (x, y) be the point on the unit circle corresponding to t.

sin t = y csc t = �

�, y ≠ 0

cos t = x sec t = �

�, x ≠ 0

tan t = �

�, x ≠ 0 cot t =

�, y ≠ 0

Note: The functions in the second column are the ____________ of the corresponding functions in the first column.

8

Page 9: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

Recalling right angle trigonometry, why does sin t = y? cos t = x?

tan t = �

�?

In the definitions of trigonometric functions, note that tangent and secant

are not defined when x = 0. Thus, because t =�

� corresponds to

(x, y) = ( , ), it follows that tan (�

�) and sec (

�) are undefined. Similarly,

____________ and ______________ are not defined when y = 0. For instance, because t = 0 corresponds to (x, y) = ( , ), _____ and ______ are undefined. Let’s create the unit circle. Make sure you have a piece of graph paper, a piece of lined paper, 1) Graph the circle from the beginning of this section (x2 + y2 = 1) nearly as large as the paper will allow you.

2) Sketch in all angles for all multiples of 30˚ and 45˚ from 0˚ to 360˚. Label near the origin, inside the circle.

3) Compute all conversions (from degrees to radians – on lined paper) for all multiples of 30˚ and 45˚ from 0˚ to 360˚.

4) Label each angle in radians on graph paper. 5) On lined paper, draw the first triangle in the unit circle (θ = 30˚ or ____ radians). Label the hypotenuse.

6) Compute the opposite side and adjacent side (recall 30˚-60˚-90˚ and 45˚-45˚-90˚ triangles – leave in radical form).

7) Label the point on the unit circle corresponding to the first angle as an ordered pair with the __________ side as the x coordinate and the ____________ side as the y coordinate.

8) Repeat for every angle sketched.

9

Page 10: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

Example #1: Evaluating Trigonometric Functions Evaluate the six trigonometric functions at each real number.

a) t = π6

b) t = 5π4

c) t = 0 d) t =π

10

Page 11: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

Example #2: Evaluating Trigonometric Functions

Evaluate the six trigonometric functions at t =−π3.

Domain and Period of Sine and Cosine The domain of the sine and cosine functions is the set of all real numbers. To

determine the range of these two functions, consider the unit circle. Because

r = 1, it follows that sin t = y and cos t = x. Moreover, because (x, y) is on the

unit circle, you know that −1≤ y≤1 and −1≤ x ≤1, and it follows that the

values of sine and cosine range between -1 and 1.

That is,

−1≤ y≤1 and −1≤ x ≤1

−1≤sint ≤1 −1≤ cost ≤1

Suppose you add 2π to each value of t in the interval 0,2π

, thus

completing a second revolution around the unit circle.

This leads to the general result

sin(t+2πn)=sint and cos(t+2πn)= cost .

Functions that behave in such a repetitive (or cyclic) manner are called

periodic.

11

Page 12: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

Definition of Periodic Function: A function f is periodic if there exists a

positive real number c such that

f (t+c)= f (t)

for all t in the domain of f. The smallest number c for which f is periodic is

called the period of f.

Example #3: Using the Period to Evaluate the Sine and Cosine

a) Evaluate sin 13π6

b) Evaluate cos − 7π2

12

Page 13: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

Recall from Section 1.4 that a function f is even if f (−t)= f (t) and is odd if

f (−t)=− f (t).

Even and Odd Trigonometric Functions

The cosine and secant functions are even.

cos(−t)= cos(t) and sec(−t)=sec(t)

The sine, cosecant, tangent, and cotangent functions are odd.

sin(−t)=−sin(t) and csc(−t)=−csc(t)

tan(−t)=−tan(t) and cot(−t)=−cot(t)

Example #4: Using a Calculator Use a calculator to evaluate each expression. a) sin76.4° b) cot1.5

13

Page 14: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

Section 4-3: Right Angle Trigonometry

The Six Trigonometric Functions: Example 1: Evaluating Trigonometric Functions Find the values of the six trigonometric functions of θ as shown.

Example #2: Evaluating Trigonometric Functions of 45˚ Find the values of sin 45˚, cos 45˚, and tan 45˚. Example #3: Evaluating Trigonometric Functions of 60˚ and 30˚ Use the equilateral triangle shown to find the values of sin 60˚, cos 60˚, sin 30˚, and cos 30˚

14

Page 15: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

Sines, Cosines, and Tangents of Special Angles

sin 30˚ = sin �

� =

� cos 30˚ = cos

� =

√�

� tan 30˚ = tan

� =

√�

sin 45˚ = sin �

� =

√�

� cos 45˚ = cos

� =

√�

� tan 45˚ = tan

� = 1

sin 60˚ = sin �

� =

√�

� cos 60˚ = cos

� =

� tan 60˚ = tan

� = √3

Note that sin 30˚ = �

� = cos 60˚. This occurs because 30˚ and 60˚ are

______________ angles, and, in general, confunctions of complementary angles are equal. That is, if θ is an acute angle, the following relationships are true:

sin (90˚ - θ) = cos θ cos (90˚ - θ) = sin θ tan (90˚ - θ) = cot θ cot (90˚ - θ) = tan θ sec (90˚ - θ) = csc θ csc (90˚ - θ) = sec θ

Trigonometric Identities: Fundamental Trigonometric Identities Quotient Identities

tan θ = �

�� cot θ =

��

Pythagorean Identities sin2 θ + cos 2 θ = 1 1 + tan 2 θ = sec 2 θ 1 + cot2θ = csc2θ

15

Page 16: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

Example #4: Applying Trigonometric Identities Let θ be an acute angle such that sin θ = 0.6. Find the values of (a) cos θ and (b) tan θ using trigonometric identities. Example #5: Applying Trigonometric Identities Let θ be an acute angle such that tan θ = 3. Find the values of (a) cot θ and (b) sec θ using trigonometric identities.

16

Page 17: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

Applications Involving Right Triangles: Example #6: Solving a Right Triangle A surveyor is standing 50 feet from the base of a large tree, as shown. The surveyor measures the angle of elevation to the top of the tree as 71.5˚. How tall is the tree?

Example #7: Solving a Right Triangle A person is 200 yards from a river. Rather than walking directly to the river, the person walks 400 yards along a straight path to the river’s edge. Find the acute angle θ between this path and the river’s edge, as illustrated.

17

Page 18: Chapter 4: Trigonometry thru 4-3 Notes.pdfThe radian measure formula can be used to measure arc length along a circle. For a circle of radius r, a central angle θ intercepts an arc

Example #8: Solving a Right Triangle A 12-meter flagpole casts a 9-meter shadow, as shown. Find θ, the angle of elevation of the sun.

18