chapter 4 第四章 unsteady-state (transient) conduction 非稳态导热

39
Chapter 4 第第第 Unsteady-State (Trans ient) Conduction 非非非非非

Upload: ross-wilkins

Post on 28-Dec-2015

313 views

Category:

Documents


14 download

TRANSCRIPT

Page 1: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

Chapter 4 第四章

Unsteady-State (Transient) Conduction

非稳态导热

Page 2: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

4-1 Introduction

1. Basic conception

Unsteady-state (or transient) conduction

Temperature distribution in a system varies with time

Steady-state conduction

Temperature distribution in a system does not varies with time

Page 3: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

2. Example

The shell of steam turbine

Before start tf1=tw1=tw2=tf2

Admission of steam tf1

Inside of the shell

q1=h1(tf1-tw1)

At a particular time

h1A1(tf1-tw1)=h2A2(tw2-tf2)

Steady-state conduction

penetration time 穿透时间:Thermal layer 穿透深度

Page 4: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

3. Problems to be solved

1). Temperature distribution at a given time

thermal stress ( 热应力 )

2). The time to reach a given temperature distribution

or steady-state

quenching ( 淬火过程 )

3). The heat transferred

Page 5: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

3. Infinite plate subjected to sudden cooling of surfaces

Lxx i 20,0at 0, 0,0at 0 x

t

ax

t 12

2

Set1tti

ax

12

2

0,2at 0 Lx

xXx,

2

02 aCead

d

xCxCXdx

Xd sincos0 212

2

Page 6: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

aexCxC2

)sincos( 21

00),0( 11

2

CeC a

02sin02sin),2(2

2 LLeCL a

,2,12

nL

n

1

]2/[

2sin),(

2

n

aLnn L

xneCx

inn

ni nC

L

xnCx

4

2sin)0,(

1

1

]2/[

2sin

14 2

n

aLn

i L

xne

n

Graphical form for calculation

Page 7: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

t

ax

t 12

2

itxt 0,

0,00

xx

tx

ftthx

tLx

,

ftt Set

Math model

Third boundary condition no heat generation,

h=const. Tf =const.

2

2

xa

00, x

00

xx

hx x

Page 8: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

Or

xCxCeCx sincos, 321

2

xBxAex sincos,2

From the first boundary condition

0,0

x

x 0cossin

2

xBxAe

x

Separating variables gives general solution

0 02

B B e xAex cos),(

2

Lx LAheLAe cossin22

LhL cossin

From the second boundary condition

L

Bi

L

hLhL

L

L

tancos

sin

h

LhLBi

/1

/

Page 9: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

There are infinite number solutions to the equationThe final series form of the solution is

xeAx nn

nn cos,2

1

From initial condition

1

0 cos0,n

nn xAx

nnn

ni

nnn

nin LLL

LA

cossin

sin2

cossin

sin2

Lnn

nnn

nn

n

L

i

Lxe

x n

cossin

/cossin2

,

1

22

BiBinn tan

x

BiFofx

,,,

0

FoL

a 2

Page 10: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

4-2 lumped-heat-capacity system

Generally t=f(x,y,z, )

• If internal conduction resistance 0 , uniform in temperature

• Temperature field t=f(x,y,z, ) reduces to t=f(), 0-D problem

• In fact, impossible for internal conduction resistance to be zero,

but if it is small enough , we believe t=f().

• This method is called lumped method or heat conduction with

negligible internal conduction resistance

( 集总参数法 或 忽略物体内部导热热阻的简化分析方法 )

Page 11: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

1. Physical problem

k=const. Uniform T distribution Bi 0 , h=const. Find T=f()

2. Mathematical model

cz

t

y

t

x

ta

t

2

2

2

2

2

2

cd

dt

tthAq

ttV

hA

V

No boundary condition. Convection heat transfer taken as source item

Page 12: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

Then

0at 0

tt

tthAd

dtVc

Vc

tthA

d

dt

tt

0at 0

Vc

hA

d

d

3. Solve

0 0d

cV

hAd

00ln

cV

hA

cV

hA

0

ln

cV

hA

e

0

Then

cVChA

RCRcV

hAthth

thth

11

Page 13: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

BiFocV

hA

ee

00

BiFoAV

a

A

Vh

cV

A

A

hV

cV

hA

22

2

)/(

Characteristic dimension of solid (V/A=s)

)/( AVh

Bi 2/ AV

aFo

4. Heat transfer rate

fehAehAhAtthA cVhABiFo 00

Heat transferred from 0 to

000 00 cV

hAde

hA

cVhAdehAqd cV

hA

cV

hA

cV

hA

cVhAcV

hA

ecVecVecV

11 00

0

0

Page 14: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

5. Biot number

resistance convection

resistance conduction internal

/1

/

h

LhLBi

•Bi L/λ has decisive effect, convection waits for conduction

tw t , become first kind of boundary condition

•Bi 0 L/λ is very little , temperature tends towards uniform

•Bi = some certain value , L/λ and 1/h play an important role

Page 15: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

6. Applicability of lumped-capacity Analysis

1.0)/(

AVh

Bi

Characteristic dimension of solid (V/A=s)

) thicknesshalf ( Plate LLA

AL

A

Vs

(radius) Cylinder rs

(radius) Sphere rs

Page 16: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

•Plane wall BiV= Bi Cylinder BiV= Bi/2 Sphere BiV= Bi/3

•M= 1 (for plane wall), ½ (for cylinder) and 1/3 (for sohere)•Reason M= BiV /Bi

MAVh

BiV 1.0)/(

) thicknesshalf ( wallPlane LLA

AL

A

V

22Cylinder

2 R

Rl

lR

A

V

34

3/4Sphere

2

3 R

R

R

A

V

Characteristic dimension of solid (V/A=s)

In our country

Page 17: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

7. Time constantceeΘ cV

hA

0

constant timeis hA

cVc

36.8%

0

5%

cc3

The rate of temperature change

tan1

0

ced

d

c

2/,tan,0 c

1,0,0tan, Θc 02/,0 c c rate

Page 18: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

4-3 Transient heat flow in a semi-infinite solid

1. Physical problem

i

i

ttx

ttx

tt

t

ax

t

,

,0

,0

1

0

2

2

i

i

x

x

ax

,

0,0

,0

12

2

Introduction of a new variable

mCx

2. Mathematical model

0tt

ditermined be to & constants where mC

Page 19: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

d

dm

d

dCxm m

1

d

dC

xxm

2

222

2

2

d

dCd

dCd

d

xxxxmm

Substitute into the eq.

2

2122

d

dac

d

dm m

Page 20: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

To eliminate , set 2m +1=0, that is m = -1/2

Then 02

122

2

d

d

aCd

d

a

xCx

aC m

4 have we

41set

022

2

d

d

d

d

12ln2 C

d

dd

dddd

d

mCx

Page 21: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

20 11

22

, CdeCeCd

d

0,0,0,0 2 Cx From initial condition

0,,0

0

11010

2

2

2

CCdeC

Then

a

xerfde

ax

4

2 4/

00

2

functionerror is 4 a

xerf

2 known when is it fig.2 From

%5error ,9953.0 ,00

TT

Page 22: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

3. Two important parameters:

0,4 ax

xa

xo at ,,

16

2

4. Heat flow

erfx

ttAx

tA ix

0

aettA a

x

i2

12 20

a

ttA i )( 00

da

ttAd i

0

0

0 0

)( ittcA 02

qckq ,

Page 23: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

5. Constant heat flux on semi-infinite solid

Governing eq. and initial condition are the sameBoundary condition

0for 0

0

xx

t

A

a

xerf

A

x

a

x

A

att i

21

4exp

/2 02

0

6. Energy pulse at surface

Instantaneous pulse of energy Q0/A

a

x

acAtt i 4

exp2

0

as allfor 0 xtt i

Page 24: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

4-4 Convection boundary conditions

1.Convection boundary For the semi-infinite-solid problem, the boundary condition

0for )(0

0

x

x x

ttthA

The solution

ah

Xerfahhx

erfXtt

tt

i

i 1exp12

2

uret temperatenvironmen

solid of re temperatuinitial

2/

t

t

axX

i

Page 25: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

2. Important case

1-D solids suddenly subjected to convection environment at T∞

Infinite plate

nnn

nn

n

L

i

Lxe

x n

cossin

/cossin2

,

1

22

x

BiFof ,,

0

,,r

rBiFof

i

0hr

Bi 20r

aFo

Infinite cylinder and sphere

• the nature of series: the first term is the largest, then the 2nd, 3rd …

when Fo is large enough the decrease is rapid.

• when Fo>0.2, the the error of the single-term approximation of the

series is less than <0.1% 。

Page 26: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

111

11

cossin

cossin2

, 221

L

x

ex L

i

The ratio of (x,) to 0 is

L

xxx1

0

cos),0(

,,

It depends on the position and boundary condition, is independent of .

Initial condition has no effect on temperature distribution

Take infinite plate as an example

This region is called regular regime ( 正规热状况 )

or fully developed regime ( 充分发展阶段 )

0

0,

ii

x Fig. 4-13

ii cVTTcVQ 0

Fig. 4-7

Chart solution

Page 27: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

3. Boit number and Fourier number

/hsBi

22 css

aFo

4. Applicability of the Heisler Charts

2.0Fo

Page 28: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

4-5 Multidimensional systems

1. Physical problem: Infinite rectangular bar

2. Mathematical model

cz

t

y

t

x

ta

t

2

2

2

2

2

2

TThy

tLy

y

ty

tthx

tLx

x

tx

tt

y

T

x

Ta

T

i

,

0,0

,

0,0

,0

2

1

2

2

2

2

Page 29: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

Set dimensionless temperature difference

tt

ttΘ

ii

Substitute into eq.

0

,,,,

0,,

0,,

0,,

,,

10,,

2

1

2

0

0

1

2

2

2

2

Ly

y

x

Lx

y

yx

hLx

y

yx

x

yx

x

yx

hyL

yx

yxa

t

Page 30: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

If equation

0

,,

0),(

10,

1

111

0

1

1

12

1

Lx

x

x

xt

hLt

x

xt

xtx

ta

t

Has a solution T1(x,), and

0

,,

0,

10,

,,

2

222

0

2

2

22

22

Ly

y

y

xt

hLt

y

yt

yt

y

yta

yt

has a solution of T2(y,)

,,then 21 ytxt

is the solution to the equation

Prove:

performing partial

differentiation of

1

22

1

, tt

tt

yx

x

tt

x

1

2x

tt

x

12

22

2

In a similar way

22

2

12

2

y

tt

y

3. Solution

Page 31: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

000 2121

21

222

22

122

2

121

2

21

22

1

ttx

ta

tt

y

ta

tt

y

tt

x

tta

tt

tt

(x,y,)= t 1(x, ) t2 (y, ) satisfies the governing equation, and

1110,0,,, 21 ytxtyx also satisfies the initial condition.

00,,

,,,

20

12

0

yt

x

xtyt

x

yx

xx

11

,,,,

,,,, 1

22111LxLx x

xtyt

hytLt

x

yx

hyL

00,,

,, 21

112

1

ytx

xt

hLtyt

Lx

By the same way, it can be proved that (x,y,)= t 1(x, ) t2 (y, ) satisfy other two boundary conditions.

Substituting these relations in the governing equation

Page 32: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

By the same way

* Constant 1st and 3rd kinds of boundary conditions

3 solidonintersecti

2 solidonintersecti

1 solidonintersecti

solidcombined

iiii

Page 33: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热
Page 34: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

4. Heat transfer in multidimensional systems

201030102010total0

111Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Page 35: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

4-6 Transient numerical method

Space coordinate x 1N Space increment x

1. Mathematical models

2. Discretization of domain (node, grid)

3. Algebraic equations for all the nodes

4. Initial variable fields

5. Solving the algebraic equation

6. Analysis of the solutionTime coordinate 1I Time increment( 时间步长 )

T(p)n is the temperature of node (n,p)

0t

• Procedure is the same as steady-state

Page 36: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

1-D, λ=const. problem

2

2

x

ta

t

2

)(1

)()(1

)()1( 2

x

ttta

tt pn

pn

pn

pn

pn

2

)1(1

)1()1(1

)()1( 2

x

ttta

tt pn

pn

pn

pn

pn

Implicit finite difference scheme ( 隐示格式 )

)(2

)(1

)(12

)1( 21 p

np

np

np

n tx

att

x

at

Governing equation

Forward difference

backward difference

Explicit finite difference scheme ( 显示格式 )

)1(2

)1(1

)1(12

)( 21

pn

pn

pn

pn t

x

att

x

at

Page 37: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

)(2

)(1

)(12

)1( 21 p

np

np

np

n tx

att

x

at

Explicit formulation

If the time and space increment are chosen so that

22

a

xM

)(1

)(1

)1(

2

1 pn

pn

pn TTT

• If x△ and △ the rate that the solution proceeds the accuracy

• △ depends x△ , If M>2 the coefficient becomes negative,

the condition violates the 2nd law of thermodynamics.

• Stability problem, M<2 stable, M>2 instable

Page 38: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

Boundary

)(,

)1(,)(

,

)(,

)(1,

)(,

)(1,

)(,

)(,1

2)(

22pnm

pnmp

nm

pnm

pnm

pnm

pnm

pnm

pnm

tty

xcttyh

y

ttx

y

ttx

x

tty

)(

,

2)(

1,)(

1,)(

,12)1(

, 4222 pnm

pnm

pnm

pnm

pnm t

xh

a

xtttt

xh

x

at

For uniform grid x= y

)(2

)(12

)1( 2222 pm

pm

pm T

k

xh

a

xTT

k

xh

x

aT

For 1-D problem

case D-2 for the )2/(2

case D-1 for the )1/(22

kxh

kxh

a

x

case D-2 for the )2/(2

case D-1 for the )1/(22

kxh

kxh

a

x

Zero coefficient

To insure convergence

Page 39: Chapter 4 第四章 Unsteady-State (Transient) Conduction 非稳态导热

Set 2x

aFo

Fourier number in the numerical format

TBiFoTFoFoBiFoTT p

Mp

Mp

M 22221 )(1

)()1(

)()(1

)(1

)1( 21 pm

pm

pm

pm TFotTFoT

Infinite plate

Convection boundary node

Interior node

k

xhBi

Biot number in the numerical format

4-6 Thermal resistance and capacity formulation

Self-learning