chapter 41. one dimensional quantum · pdf filechapter 41. one‐dimensional quantum mechanics...

42
Chapter 41. OneDimensional Quantum Mechanics Mechanics Quantum effects are important in nanostructures important in nanostructures such as this tiny sign built by scientists at IBM’s research laboratory by moving xenon atoms around on a metal f surf ace. Chapter Goal: To understand and apply the essential ideas and apply the essential ideas of quantum mechanics.

Upload: lynhi

Post on 25-Feb-2018

258 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Chapter 41. One‐Dimensional Quantum MechanicsMechanics

Quantum effects are important in nanostructuresimportant in nanostructures such as this tiny sign built by scientists at IBM’s research laboratory by moving xenon atoms around on a metal 

fsurface. 

Chapter Goal: To understand and apply the essential ideasand apply the essential ideas of quantum mechanics.

Page 2: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Chapter 41. One‐Dimensional QuantumMechanics

Topics:

S h ödi ’ E ti Th L f P i

Quantum Mechanics

•Schrödinger’s Equation: The Law of Psi  •Solving the Schrödinger Equation  

•A Particle in a Rigid Box: Energies and WaveA Particle in a Rigid Box: Energies and Wave Functions  

•A Particle in a Rigid Box: Interpreting the Solution  •The Correspondence Principle  

•Finite Potential Wells  

•Wave‐Function Shapes  

•The Quantum Harmonic Oscillator  

•More Quantum Models•More Quantum Models  

•Quantum‐Mechanical Tunneling

Page 3: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

The Schrödinger EquationThe Schrödinger EquationConsider an atomic particle with mass m and mechanical energy E in an environment characterized by a potential energy function U(x). The Schrödinger equation for the particle’s wave function isis

Conditions the wave function must obey are1. ψ(x) and ψ’(x) are continuous functions.2. ψ(x) = 0 if x is in a region where it is physically 

impossible for the particle to be.3 ψ(x)→ 0 as x→ +∞ and x→ ∞3. ψ(x) → 0 as x → +∞ and x → −∞.4. ψ(x) is a normalized function.

Page 4: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Solving the Schrödinger EquationSolving the Schrödinger Equation

If a second order differential equation has two independent solutions ψ1(x) and ψ2(x), then a general p ψ1( ) ψ2( ) gsolution of the equation can be written as

where A and B are constants whose values are determined by the boundary conditions.

Page 5: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

There is a more general form of the  Schrodinger equation which includes time dependence and x,y,z coordinates;

We will limit discussion to 1‐D solutions

Must know U(x), the potential energy function the particle experiences as it moves.

Objective is to solve for (x) and the total energy E=KE + U of the particle.

In ‘bound state’ problems where the particle is trapped (localized in space)In  bound state  problems where the particle is trapped (localized in space), the energies will be found to be quantized upon solving the Schrodinger equation.

In ‘unbound states’ where the particle is not trapped, the particle will travel as a traveling wave with an amplitude given by (x)

Page 6: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

E, KE, and PEE, KE, and PE

Page 7: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

E, KE, and PEE, KE, and PE

Page 8: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant
Page 9: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant
Page 10: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant
Page 11: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

The Schrödinger Equation with Constant potentialThe Schrödinger Equation with Constant potential

Page 12: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant
Page 13: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant
Page 14: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant
Page 15: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

A Particle in a Rigid BoxA Particle in a Rigid Box

Page 16: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

A Particle in a Rigid BoxA Particle in a Rigid Box

Consider a particle of mass m confined in a rigid, one‐dimensional box. The boundaries of the box are at x = 0 and x = L. 

1. The particle can move freely between 0 and L at constant speed and thus with constant kineticconstant speed and thus with constant kinetic energy.

2. No matter how much kinetic energy the particle has, its turning points are at x = 0 and x = L.

3. The regions x < 0 and x > L are forbidden. The particle cannot leave the boxcannot leave the box.

A potential‐energy function that describes the particle in this situation is

Page 17: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant
Page 18: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant
Page 19: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant
Page 20: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant
Page 21: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant
Page 22: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant
Page 23: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Zero point energy: even at T=0K, a confined particle will have a non‐zero energy of E1; it is movingenergy of E1; it is moving

Page 24: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

The Correspondence PrincipleThe Correspondence PrincipleWhen wavelength becomes small compared to the size of the box (that is, when either L becomes large or when the energy of the particle becomes large), the particle must behave classically.

For particle in a box:For particle in a box:

Classically:

Page 25: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

The Correspondence PrincipleThe Correspondence PrincipleWhen wavelength becomes small compared to the size of the box (that is, when either L becomes large or when the energy of the particle becomes large), the particle must behave classically.

For particle in a box: Classically:For particle in a box: Classically:

Page 26: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Finite Potential well:Finite Potential well:1 Solve Schrodinger’s equation in the1. Solve Schrodinger s equation in the 

three regions (we already did this!)2. ‘Connect’ the three regions by using the 

following boundary conditions:

1. This will give quantized k’s and E’s2. Normalize wave function

Page 27: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Finite Potential well:Finite Potential well:

Finite number of bound states, energy spacing smaller since wave function more spread out (like bigger L), wave functions extend into classically forbidden region

Page 28: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Classically forbidden region Classically forbidden region –– penetration depthpenetration depth

Page 29: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Finite Potential well example Finite Potential well example –– Quantum well lasersQuantum well lasers

Page 30: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Finite Potential well example Finite Potential well example –– 11‐‐D model of nucleusD model of nucleus

Page 31: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Qualitative wave function shapesQualitative wave function shapesExponential decay if U>E, oscillatory if E>U i.e. positive KE, KE~p2 ~1/2, p y , y p , p / ,Amplitude~1/v~1/Sqrt[KE] (particle moving slower means more likely to be in that place)

Page 32: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

1 Solve Schrodinger’s equation in the

Harmonic OscillatorHarmonic Oscillator1. Solve Schrodinger s equation in the 

three regions (we already did this!)2. ‘Connect’ the three regions by using the 

following boundary conditions:

3. This will give quantized k’s and E’sg q4. Normalize wave function

Page 33: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant
Page 34: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Molecular vibrations Molecular vibrations ‐‐ Harmonic OscillatorHarmonic Oscillator

E = total energy of the two interacting atoms, NOT of a single particleU = potential energy between the two tatoms

The potential U(x) is shown for two atoms. There exist an equilibrium separation.

At low energies, this dip looks like a parabola Harmonic oscillatorparabola  Harmonic oscillator solution.

Allowed (total) vibrational energies:

Page 35: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Particle in a capacitorParticle in a capacitor

Page 36: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Particle in a capacitorParticle in a capacitor

Page 37: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Covalent Bond: H2+ (single electron)Covalent Bond: H2+ (single electron)

Page 38: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Covalent Bond: H2+ (single electron)Covalent Bond: H2+ (single electron)

Page 39: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Quantum TunnelingQuantum Tunneling

Page 40: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Quantum TunnelingQuantum Tunneling

Page 41: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Quantum TunnelingQuantum Tunneling

Page 42: Chapter 41. One Dimensional Quantum · PDF fileChapter 41. One‐Dimensional Quantum Mechanics ... Quantum Tunneling. Quantum Tunneling. Quantum Tunneling. Quantum Tunneling –Resonant

Quantum Tunneling Quantum Tunneling –– Resonant tunnelingResonant tunneling