chapter 6 finite differences - engineering...

18
Chapter 6 Finite Differences 6.1 Introduction For a function = , finite differences refer to changes in values of (dependent variable) for any finite (equal or unequal) variation in (independent variable). In this chapter, we shall study various differencing techniques for equal deviations in values of and associated differencing operators; also their applications will be extended for finding missing values of a data and series summation. 6.2 Shift or Increment Operator () Shift (Increment) operator denoted by ‘’ operates on () as = + Or = + , where ‘’ is the step height for equi-spaced data points. Clearly effect of the shift operator is to shift the function value to the next higher value + or + Also 2 = () = + = +2 ∮ = + Moreover −1 = − , where −1 is the inverse shift operator. 6.3 Differencing Operators If 0 , 1 , 2 , 
 be the values of for corresponding values of 0 , 1 , 2 , 
 , then the differences of are defined by ( 1 − 0 ) , ( 2 − 1 ) , 
 ,( − −1 ) , and are denoted by different operators discussed in this section. 6.3.1 Forward Difference Operator ∆ Forward difference operator ‘∆’ operates on as ∆ = +1 − Or ∆ = + − , where is the height of differencing. ∮ ∆ 0 = 1 − 0 ∆ 1 = 2 − 1 ⋼ ∆ = +1 − Also ∆ 2 0 = ∆ 1 − ∆ 0 = 2 − 1 − 1 − 0 = 2 − 2 1 + 0 ⋼ ∆ 0 = − 1 −1 + 2 −2 −⋯ + −1 −1 −1 1 + −1 0 Generalizing ∆ = + − 1 +−1 + 2 +−2 −⋯ + −1 Here ∆ is the order forward difference; Table 6.1 shows the forward differences of various orders.

Upload: others

Post on 12-Apr-2020

126 views

Category:

Documents


8 download

TRANSCRIPT

Chapter 6

Finite Differences

6.1 Introduction

For a function 𝑩 = 𝑓 đ‘„ , finite differences refer to

changes in values of 𝑩 (dependent variable) for any

finite (equal or unequal) variation in đ‘„ (independent

variable).

In this chapter, we shall study various differencing

techniques for equal deviations in values of đ‘„ and

associated differencing operators; also their

applications will be extended for finding missing

values of a data and series summation.

6.2 Shift or Increment Operator (𝑬)

Shift (Increment) operator denoted by ‘𝐾’ operates on 𝑓(đ‘„) as 𝐾𝑓 đ‘„ = 𝑓 đ‘„ + 𝑕

Or đžđ‘Šđ‘„ = đ‘Šđ‘„+𝑕 , where ‘𝑕’ is the step height for equi-spaced data points.

Clearly effect of the shift operator 𝐾 is to shift the function value to the next

higher value 𝑓 đ‘„ + 𝑕 or đ‘Šđ‘„+𝑕

Also 𝐾2𝑓 đ‘„ = 𝐾 𝐾𝑓(đ‘„) = 𝐾𝑓 đ‘„ + 𝑕 = 𝑓 đ‘„ + 2𝑕

∎ 𝐾𝑛𝑓 đ‘„ = 𝑓 đ‘„ + 𝑛𝑕

Moreover 𝐾−1𝑓 đ‘„ = 𝑓 đ‘„ − 𝑕 , where 𝐾−1 is the inverse shift operator.

6.3 Differencing Operators

If 𝑩0, 𝑩1, 𝑩2 , 
𝑩𝑛 be the values of 𝑩 for corresponding values of đ‘„0, đ‘„1, đ‘„2 ,

â€Šđ‘„đ‘› , then the differences of 𝑩 are defined by (𝑩1 − 𝑩0), (𝑩2 − 𝑩1), 
 , (𝑩𝑛 − 𝑩𝑛−1) , and are denoted by different operators discussed in this section.

6.3.1 Forward Difference Operator ∆

Forward difference operator ‘∆’ operates on đ‘Šđ‘„ as âˆ†đ‘Šđ‘„ = đ‘Šđ‘„+1− đ‘Šđ‘„

Or ∆𝑓 đ‘„ = 𝑓 đ‘„ + 𝑕 − 𝑓 đ‘„ , where 𝑕 is the height of differencing.

∮ ∆𝑩0 = 𝑩1− 𝑩0

∆𝑩1 = 𝑩2− 𝑩1

⋼

∆𝑩𝑛 = 𝑩𝑛+1− 𝑩𝑛

Also ∆2𝑩0 = ∆𝑩1− ∆𝑩0 = 𝑩2− 𝑩1 − 𝑩1− 𝑩0 = 𝑩2 − 2𝑩1 + 𝑩0

⋼

∆𝑛𝑩0 = 𝑩𝑛 − đ‘›đ¶1𝑩𝑛−1 + đ‘›đ¶2𝑩𝑛−2 −⋯+ −1 𝑛−1 đ‘›đ¶đ‘›âˆ’1𝑩1 + −1 𝑛𝑩0

Generalizing ∆𝑛𝑩𝑟 = 𝑩𝑛+𝑟 − đ‘›đ¶1𝑩𝑛+𝑟−1 + đ‘›đ¶2𝑩𝑛+𝑟−2 −⋯+ −1 𝑟𝑩𝑟

Here ∆𝑛 is the 𝑛𝑡𝑕 order forward difference; Table 6.1 shows the forward

differences of various orders.

Table 6.1 Forward Differences

𝒙 𝒚 ∆ ∆𝟐 ∆𝟑 ∆𝟒 ∆𝟓 𝒙𝒐 𝑩𝑜

∆𝑩𝑜 𝒙𝟏 𝑩1 ∆2𝑩𝑜

∆𝑩1 ∆3𝑩𝑜 𝒙𝟐 y2 ∆2𝑩1 ∆4𝑩0

∆𝑩2 ∆3𝑩1 ∆5𝑩0 𝒙𝟑 𝑩3 ∆2𝑩2 ∆4𝑩1

∆𝑩3 ∆3𝑩2 𝒙𝟒 𝑩4 ∆2𝑩3

∆𝑩4 𝒙𝟓 𝑩5

The arrow indicates the direction of differences from top to bottom. Differences in

each column notate difference of two adjoining consecutive entries of the previous

column.

Relation between ∆ and 𝑬

∆ and 𝐾 are connected by the relation ∆ ≡ 𝐾 − 1

Proof: we know that ∆𝑩𝑛 = 𝑩𝑛+1− 𝑩𝑛

= 𝐾𝑩𝑛− 𝑩𝑛

⇒ ∆𝑩𝑛 = 𝐾 − 1 𝑩𝑛

⇒ ∆ ≡ 𝐾 − 1 or 𝐾 ≡ 1 + ∆

Properties of operator ‘∆’

âˆ†đ¶ = 0 , đ¶ being a constant

âˆ†đ¶ 𝑓(đ‘„) = đ¶đ‘“(đ‘„)

∆[𝑎𝑓 đ‘„ ± 𝑏𝑔(đ‘„)] = 𝑎 ∆𝑓 đ‘„ ± 𝑏 ∆𝑔(đ‘„)

∆ 𝑓 đ‘„ 𝑔 đ‘„ = 𝑓 đ‘„ + 𝑕 ∆ 𝑔 đ‘„ + 𝑔 đ‘„ ∆𝑓 đ‘„ , 𝑓 & 𝑔 may be interchanged

∆ 𝑓 đ‘„

𝑔 đ‘„ =

𝑔 đ‘„ ∆𝑓 đ‘„ −𝑓(đ‘„)∆𝑔 đ‘„

𝑔 đ‘„+𝑕 𝑔 đ‘„

Result 1: The 𝒏𝒕𝒉 differences of a polynomial of degree 'n' are constant and all

higher order differences are zero.

Proof: Consider the polynomial 𝑓(đ‘„) of 𝑛𝑡𝑕 degree

𝑓(đ‘„) = 𝑎0đ‘„đ‘› + 𝑎1đ‘„

𝑛−1 + 𝑎2đ‘„đ‘›âˆ’2 + ⋯+ 𝑎𝑛−1đ‘„ + 𝑎𝑛

First differences of the polynomial 𝑓(đ‘„) are calculated as:

∆ 𝑓 đ‘„ = 𝑓 đ‘„ + 𝑕 − 𝑓(đ‘„)

= 𝑎0 (đ‘„ + 𝑕)𝑛 − đ‘„đ‘› + 𝑎1 (đ‘„ + 𝑕)𝑛−1 − đ‘„đ‘›âˆ’1 + ⋯+ 𝑎𝑛−1 đ‘„ + 𝑕 − đ‘„ = 𝑎0𝑛𝑕 đ‘„đ‘›âˆ’1 + 𝑎1

â€Č đ‘„đ‘›âˆ’1 + 𝑎2â€Č đ‘„đ‘›âˆ’2 + ⋯+ 𝑎𝑛−1

â€Č 𝑕 + 𝑎𝑛â€Č

where 𝑎1â€Č , 𝑎2

â€Č ,
 ,𝑎𝑛−1â€Č , 𝑎𝑛

â€Č are new constants

⇒ First difference of a polynomial of degree 𝑛 is a polynomial of degree (𝑛 − 1)

Similarly ∆2𝑓 đ‘„ = ∆ 𝑓 đ‘„ + 𝑕 − ∆ 𝑓 đ‘„

= 𝑎0𝑛(𝑛 − 1)𝑕2 đ‘„đ‘›âˆ’2 + 𝑎1â€Čâ€Č đ‘„đ‘›âˆ’3 + 
+ 𝑎𝑛

â€Čâ€Č

∮ Second difference of a polynomial of degree 𝑛 is a polynomial of degree (𝑛 − 2)

Repeating the above process ∆𝑛𝑓 đ‘„ = 𝑎0𝑛(𝑛 − 1)
2.1𝑕𝑛 đ‘„đ‘›âˆ’đ‘›

⇒ ∆𝑛𝑓 đ‘„ = 𝑎0𝑛! 𝑕𝑛 which is a constant

∮ 𝑛𝑡𝑕 Difference of a polynomial of degree 𝑛 is a polynomial of degree zero.

Thus (𝑛 + 1)𝑡𝑕and higher order differences of a polynomial of 𝑛𝑡𝑕 degree are all

zero.

The converse of above result is also true , i.e. if the 𝑛𝑡𝑕 difference of a

polynomial given at equally spaced points are constant then the function is

a polynomial of degree ‘𝑛’.

6.3.2 Backward Difference Operator 𝛁

Backward difference operator ‘ ∇ ’ operates on 𝑩𝑛 as ∇𝑩𝑛 = 𝑩𝑛− 𝑩𝑛−1

∮ The differences (𝑩1 − 𝑩0) , (𝑩2 − 𝑩1) , 
 , (𝑩𝑛 − 𝑩𝑛−1) when denoted by

∇𝑩1, ∇𝑩2, 
 ,∇𝑩𝑛 are called first backward differences.

Also ∇2𝑩𝑛 = ∇𝑩𝑛 − ∇𝑩𝑛−1 , ∇3𝑩𝑛 = ∇2𝑩𝑛 − ∇2𝑩𝑛−1 denote second and third

backward differences respectively.

Table 6.2 shows the backward differences of various orders.

Table 6.2 Backward Differences

𝒙 𝒚 𝛁 𝛁𝟐 𝛁𝟑 𝛁𝟒 𝛁𝟓 𝒙𝒐 𝑩𝑜

∇𝑩1 𝒙𝟏 𝑩1 ∇2𝑩2

∇𝑩2 ∇3𝑩3 𝒙𝟐 y2 ∇2𝑩3 ∇4𝑩4

∇𝑩3 ∇3𝑩4 ∇5𝑩5 𝒙𝟑 𝑩3 ∇2𝑩4 ∇4𝑩5

∇𝑩4 ∇3𝑩5 𝒙𝟒 𝑩4 ∇2𝑩5

∇𝑩5 𝒙𝟓 𝑩5

The arrow indicates the direction of differences from bottom to top. Differences in

each column notate difference of two adjoining consecutive entries of the previous

column, i.e. ∇𝑩1

= 𝑩1− 𝑩

𝑜, ∇2𝑩

2= ∇𝑩

2− ∇𝑩

1, 
 ,∇5𝑩5 = ∇4𝑩5 − ∇4𝑩4.

Relation between 𝛁 and 𝑬

∇ and 𝐾 are connected by the relation ∇ ≡ 1 − 𝐾−1

Proof: we know that ∇𝑩𝑛 = 𝑩𝑛− 𝑩𝑛−1

= 𝑩𝑛− 𝐾−1𝑩𝑛

⇒ ∇𝑩𝑛 = 1 − 𝐾−1 𝑩𝑛

⇒ ∇ ≡ 1 − 𝐾−1

6.3.3 Central Difference Operator 𝛅

Central difference operator ‘ ή ’ operates on 𝑩𝑛 as ή 𝑩𝑛 = 𝑩𝑛+

1

2

− 𝑩𝑛−

1

2

∮ The differences (𝑩1 − 𝑩0) , (𝑩2 − 𝑩1) , 
 , (𝑩𝑛 − 𝑩𝑛−1) when denoted by

ή𝑩1

2

, ή𝑩3

2

, 
 , ή𝑩𝑛−

1

2

are called first central differences.

Also ή2𝑩𝑛 = ή𝑩𝑛+

1

2

− ή𝑩𝑛−

1

2

, ή3𝑩𝑛 = ή2𝑩𝑛+

1

2

− ή2𝑩𝑛−

1

2

denote second and third

central differences respectively as shown in Table 6.3.

Table 6.3 Central Differences

𝒙 𝒚 𝛅 𝛅𝟐 𝛅𝟑 𝛅𝟒 𝛅𝟓 𝒙𝒐 𝑩𝑜

ή𝑩12

𝒙𝟏 𝑩1 ή2𝑩1

ή𝑩32 ή3𝑩3

2

𝒙𝟐 y2 ή2𝑩2 ή4𝑩

2

ή𝑩52 ή3𝑩5

2

ή5𝑩52

𝒙𝟑 𝑩3 ή2𝑩3 ή4𝑩

3

ή𝑩72 ή3𝑩7

2

𝒙𝟒 𝑩4 ή2𝑩4

ή𝑩92

𝒙𝟓 𝑩5

Central differences in each column notate difference of two adjoining consecutive

entries of the previous column, i.e. ή𝑩1

2

= 𝑩1− 𝑩

𝑜, 
 , ή5𝑩5

2

= ή4𝑩3 − ή4𝑩2.

Relation between 𝛅 and 𝑬

ή and 𝐾 are connected by the relation ή ≡ 𝐾1

2 − 𝐾− 1

2

Proof: we know that ή 𝑩𝑛 = 𝑩𝑛+

1

2

− 𝑩𝑛−

1

2

= 𝐾1

2𝑩𝑛− 𝐾− 1

2𝑩𝑛

⇒ ή 𝑩𝑛 = 𝐾1

2 − 𝐾− 1

2 𝑩𝑛

∮ ή ≡ 𝐾1

2 − 𝐾− 1

2

Observation: It is only the notation which changes and not the difference.

∮ 𝑩1 − 𝑩𝑜 = ∆𝑩0 = ∇𝑩1 = ή𝑩1

2

6.3.4 Averaging Operator 𝛍

Averaging operator ‘ ÎŒ ’ operates on đ‘Šđ‘„ as ÎŒ đ‘Šđ‘„ =1

2 𝑩

đ‘„+𝑕

2

+ đ‘Šđ‘„âˆ’

𝑕

2

Or ÎŒ 𝑓 đ‘„ = 1

2 𝑓 đ‘„ +

𝑕

2 + 𝑓 đ‘„ −

𝑕

2 , ‘ h ’ is the height of the interval.

Relation between 𝛍 and 𝑬

We know that ÎŒ 𝑩𝑛 =1

2 𝑩

𝑛+𝑕

2

+ 𝑩𝑛−

𝑕

2

=1

2 𝐾

1

2𝑩𝑛+ 𝐾− 1

2𝑩𝑛

⇒ ÎŒ 𝑩𝑛 =1

2 𝐾

1

2 + 𝐾− 1

2 𝑩𝑛

∎ ÎŒ ≡1

2 𝐾

1

2 + 𝐾− 1

2

Result 2: Relation between 𝑬 and đ‘«, where đ‘« ≡𝒅

𝒅𝒙

We know 𝑩 đ‘„ + 𝑕 = 𝑩 đ‘„ + 𝑕 𝑩â€Č đ‘„ +𝑕2

2! 𝑩â€Čâ€Č đ‘„ +. .. By Taylor’s theorem

= 𝑩 đ‘„ + 𝑕 đ·đ‘Š(đ‘„) +𝑕2

2! đ·2𝑩(đ‘„)+. ..

= 1 + đ‘•đ· +𝑕2

2! đ·2 + ⋯ 𝑩(đ‘„)

⇒ 𝐾 𝑩 đ‘„ = đ‘’đ‘•đ·đ‘Š(đ‘„)

∎ 𝐾 = đ‘’đ‘•đ·, đ· ≡𝑑

đ‘‘đ‘„

Result 3: Relation between ∆ and đ‘«, where đ‘« ≡𝒅

𝒅𝒙

We know that ∆ ≡ 𝐾 − 1

⇒ ∆ ≡ đ‘’đ‘•đ· − 1 ∔ 𝐾 = đ‘’đ‘•đ·

Result 4: Relation between đœ” and đ‘«, where đ‘« ≡𝒅

𝒅𝒙

We know that ∇ ≡ 1 − 𝐾−1 = 1 − đ‘’âˆ’đ‘•đ· ∔ 𝐾 = đ‘’đ‘•đ·

Result 5: Relation between ∆ and đœ”

We know that 𝐾 ≡ 1 + ∆ ⋯①

Also 𝐾−1 ≡ 1 − ∇

⇒ 𝐾 ≡1

1−∇ ⋯ ②

⇒ 1 + ∆≡1

1−∇ From ① and ②

⇒ ∆≡1

1−∇− 1

⇒ ∆≡∇

1−∇

Result 6: Relation between 𝛍 , đœč and 𝑬

We have ÎŒ ≡1

2 𝐾

1

2 + 𝐾− 1

2

Also ή ≡ 𝐾1

2 − 𝐾− 1

2

⇒ ΌΎ ≡1

2 𝐾

1

2 + 𝐾− 1

2 𝐾1

2 − 𝐾− 1

2

⇒ ΌΎ ≡1

2 𝐾 − 𝐾− 1

Result 7: Relation between 𝛍 , đœč , ∆ and ∇

We have ΌΎ ≡1

2 𝐾 − 𝐾− 1 =

1

2 1 + ∆) − (1 − ∇

⇒ ΌΎ ≡1

2 ∆ + ∇

Result 8: ∆𝑛𝑩𝑟 = ∇𝑛𝑩𝑛+𝑟

We have ∆𝑛𝑩𝑟 = (𝐾 − 1)𝑛𝑩𝑟 ∔ ∆= 𝐾 − 1

= 𝑩𝑛+𝑟 − đ‘›đ¶1𝑩𝑛+𝑟−1 + đ‘›đ¶2𝑩𝑛+𝑟−2 −⋯+ −1 𝑟𝑩𝑟

= 𝐾𝑛 − đ‘›đ¶1𝐾𝑛−1 + đ‘›đ¶2𝐾

𝑛−2 −⋯+ −1 𝑛 𝑩𝑟

= 𝐾𝑛𝑩𝑟 − đ‘›đ¶1𝐾𝑛−1𝑩𝑟 + đ‘›đ¶2𝐾

𝑛−2𝑩𝑟 −⋯+ −1 𝑛𝑩𝑟

= 𝑩𝑛+𝑟 − đ‘›đ¶1𝑩𝑛+𝑟−1 + đ‘›đ¶2𝑩𝑛+𝑟−2 −⋯+ −1 𝑛𝑩𝑟

Also ∇𝑛𝑩𝑛+𝑟 = (1 − E−1)𝑛𝑩𝑛+𝑟 ∔ ∇ ≡ 1 − 𝐾−1

= 1 − đ‘›đ¶1𝐾−1 + đ‘›đ¶2𝐾

−2 −⋯+ −1 𝑛𝐾−𝑛 𝑩𝑛+𝑟

= 𝑩𝑛+𝑟 − đ‘›đ¶1𝑩𝑛+𝑟−1 + đ‘›đ¶2𝑩𝑛+𝑟−2 −⋯+ −1 𝑛𝑩𝑟

∮ ∆𝑛𝑩𝑟 = ∇𝑛𝑩𝑛+𝑟

Example 1 Evaluate the following:

i. âˆ†đ‘’đ‘„ ii. ∆2đ‘’đ‘„ iii. ∆ 𝑡𝑎𝑛−1đ‘„ iv. ∆ đ‘„+1

đ‘„2−3đ‘„+2 v. ∆𝑓𝑘

2 = 𝑓𝑘 + 𝑓𝑘+1 ∆𝑓𝑘

Solution: i. âˆ†đ‘’đ‘„ = đ‘’đ‘„+𝑕 − đ‘’đ‘„ = đ‘’đ‘„(𝑒𝑕 − 1)

âˆ†đ‘’đ‘„ = đ‘’đ‘„(𝑒 − 1) , if 𝑕 = 1

ii. ∆2đ‘’đ‘„ = ∆(âˆ†đ‘’đ‘„)

= ∆ đ‘’đ‘„ 𝑒𝑕 − 1

= 𝑒𝑕 − 1 âˆ†đ‘’đ‘„

= 𝑒𝑕 − 1 đ‘’đ‘„+𝑕 − đ‘’đ‘„

= 𝑒𝑕 − 1 đ‘’đ‘„(𝑒𝑕 − 1)

= đ‘’đ‘„ (𝑒𝑕 − 1)2

iii. ∆𝑡𝑎𝑛−1đ‘„ = 𝑡𝑎𝑛−1 đ‘„ + 𝑕 − 𝑡𝑎𝑛−1đ‘„

= 𝑡𝑎𝑛−1 đ‘„+đ‘•âˆ’đ‘„

1+(đ‘„+𝑕)đ‘„

= 𝑡𝑎𝑛−1 𝑕

1+(đ‘„+𝑕)đ‘„

iv. ∆ đ‘„+1

đ‘„2−3đ‘„+2 = ∆

đ‘„+1

đ‘„âˆ’1 (đ‘„âˆ’2)

= ∆ −2

đ‘„âˆ’1+

3

đ‘„âˆ’2 = ∆

−2

đ‘„âˆ’1 + ∆

3

đ‘„âˆ’2

= −2 1

đ‘„+1−1−

1

đ‘„âˆ’1 + 3

1

đ‘„+1−2−

1

đ‘„âˆ’2

= −2 1

đ‘„âˆ’

1

đ‘„âˆ’1 + 3

1

đ‘„âˆ’1−

1

đ‘„âˆ’2

= −(đ‘„+4)

đ‘„ đ‘„âˆ’1 (đ‘„âˆ’2)

v. ∆𝑓𝑘2 = 𝑓𝑘+1

2 − 𝑓𝑘2 = 𝑓𝑘+1 + 𝑓𝑘 𝑓𝑘+1 − 𝑓𝑘 = 𝑓𝑘 + 𝑓𝑘+1 ∆𝑓𝑘

Example 2 Evaluate the following:

i. âˆ†đ‘’đ‘„ log 2đ‘„ ii. ∆ đ‘„2

cos 2đ‘„

Solution: i. Let 𝑓 đ‘„ = đ‘’đ‘„ and 𝑔 đ‘„ = log 2đ‘„

We have ∆ 𝑓 đ‘„ 𝑔 đ‘„ = 𝑓 đ‘„ + 𝑕 ∆ 𝑔 đ‘„ + 𝑔 đ‘„ ∆𝑓 đ‘„

∎ âˆ†đ‘’đ‘„ log 2đ‘„ = đ‘’đ‘„+𝑕∆ log 2đ‘„ + log 2đ‘„ âˆ†đ‘’đ‘„

= đ‘’đ‘„+𝑕 log 2 đ‘„ + 𝑕 − log 2đ‘„ + log 2đ‘„ đ‘’đ‘„+𝑕 − đ‘’đ‘„

= đ‘’đ‘„đ‘’đ‘• log 1 +𝑕

đ‘„ + đ‘’đ‘„ log 2đ‘„ 𝑒𝑕 − 1

= đ‘’đ‘„ 𝑒𝑕 log 1 +𝑕

đ‘„ + log 2đ‘„ 𝑒𝑕 − 1

ii. Let 𝑓 đ‘„ = đ‘„2 and 𝑔 đ‘„ = cos 2đ‘„

We have ∆ 𝑓 đ‘„

𝑔 đ‘„ =

𝑔 đ‘„ ∆𝑓 đ‘„ −𝑓(đ‘„)∆𝑔 đ‘„

𝑔 đ‘„+𝑕 𝑔 đ‘„

=cos 2đ‘„ đ‘„+𝑕 2âˆ’đ‘„2 âˆ’đ‘„2 cos 2 đ‘„+𝑕 −cos 2đ‘„

cos 2 đ‘„+𝑕 cos 2đ‘„

= 𝑕2+2đ‘•đ‘„ cos 2đ‘„+2đ‘„2 sin 2đ‘„+𝑕 sin 𝑕

cos 2 đ‘„+𝑕 cos 2đ‘„

Example 3 Evaluate ∆4 1 − 2đ‘„ 1 − 3đ‘„ 1 − 4đ‘„ 1 − đ‘„ ,where interval of differencing is one.

Solution: ∆4 1 − 2đ‘„ 1 − 3đ‘„ 1 − 4đ‘„ 1 − đ‘„

= ∆4 24đ‘„4 + ⋯+ 1 = 24.4!. 14 = 576

∔ ∆𝑛𝑓 đ‘„ = 𝑎0𝑛! 𝑕𝑛 and ∆4đ‘„đ‘› = 0 when 𝑛 < 4

Example 4 Prove that ∆3𝑩3 = ∇3𝑩6

Solution: ∆3𝑩3 = (𝐾 − 1)3𝑩3 ∔ ∆= 𝐾 − 1

= 𝐾3 − 1 − 3𝐾2 + 3𝐾 𝑩3

= 𝐾3𝑩3 − 𝑩3 − 3𝐾2𝑩3 + 3𝐾𝑩3

= 𝑩6 − 𝑩3 − 3𝑩5 + 3𝑩4

Also ∇3𝑩6 = (1 − E−1)3𝑩6 ∔ ∇ ≡ 1 − 𝐾−1

= 1 − E−3 − 3𝐾−1 + 3𝐾−2 𝑩6

= 𝑩6 − 𝑩3 − 3𝑩5 + 3𝑩4

Example 5 Prove that ∆ + ∇ = ∆

∇–∇

∆

Solution: L.H.S. = ∆ + ∇ = 𝐾 − 1 + 1 − 𝐾−1

= 𝐾 − 𝐾−1

R.H.S. =∆

∇–∇

∆

=𝐾−1

1−𝐾–1−

1−𝐾 –1

𝐾−1

= 𝐾−1 2 − 1− 𝐾 –1

2

1−𝐾 –1 𝐾−1

= 𝐾2+1− 2𝐾 − 1+ 𝐾–2−2𝐾–1

𝐾 + 𝐾–1−2

=𝐾2−𝐾−2−2𝐾+2𝐾–1

𝐾 + 𝐾–1−2

= 𝐾+𝐾–1 𝐾−𝐾 –1 − 2 𝐾− 𝐾–1

𝐾 + 𝐾–1−2

= 𝐾 − 𝐾–1 𝐾 + 𝐾 –1−2

𝐾 + 𝐾–1−2

= 𝐾 − 𝐾−1 = R.H.S.

Example 6 Prove that 𝐾 = 1 +1

2ÎŽ2 + ÎŽ 1 +

1

4ÎŽ2

Solution: R.H.S. = 1 +1

2ÎŽ2 + ÎŽ 1 +

1

4ÎŽ2

= 1 +1

2 𝐾

1

2 − 𝐾− 1

2 2

+ 𝐾1

2 − 𝐾− 1

2 1 +1

4 𝐾

1

2 − 𝐾− 1

2 2

∔ ÎŽ ≡ 𝐾1

2 − 𝐾− 1

2

= 1 +1

2 𝐾 + 𝐾−1 − 2 + 𝐾

1

2 − 𝐾− 1

2 1 +1

4 𝐾 + 𝐾−1 − 2

= 1 +1

2 𝐾 + 𝐾−1 − 2 + 𝐾

1

2 − 𝐾− 1

2 1

4 𝐾 + 𝐾−1 + 2

= 1 +1

2 𝐾 + 𝐾−1 − 2 + 𝐾

1

2 − 𝐾− 1

2 1

4 𝐾

1

2 + 𝐾− 1

2 2

= 1 +1

2 𝐾 + 𝐾−1 − 2 +

1

2 𝐾

1

2 − 𝐾− 1

2 𝐾1

2 + 𝐾− 1

2

=1

2 𝐾 + 𝐾−1 +

1

2 𝐾 − 𝐾−1 = 𝐾 = L.H.S.

Example 7 Prove that ∇ = −1

2ÎŽ2 + ÎŽ 1 +

1

4ÎŽ2

Solution: R.H.S. = −1

2ÎŽ2 + ÎŽ 1 +

1

4ÎŽ2

= −1

2 𝐾

1

2 − 𝐾− 1

2 2

+ 𝐾1

2 − 𝐾− 1

2 1 +1

4 𝐾

1

2 − 𝐾− 1

2 2

∔ ÎŽ ≡ 𝐾1

2 − 𝐾− 1

2

= −1

2 𝐾 + 𝐾−1 − 2 + 𝐾

1

2 − 𝐾− 1

2 1 +1

4 𝐾 + 𝐾−1 − 2

= −1

2 𝐾 + 𝐾−1 − 2 + 𝐾

1

2 − 𝐾− 1

2 1

4 𝐾 + 𝐾−1 + 2

= −1

2 𝐾 + 𝐾−1 − 2 + 𝐾

1

2 − 𝐾− 1

2 1

4 𝐾

1

2 + 𝐾− 1

2 2

= −1

2 𝐾 + 𝐾−1 − 2 +

1

2 𝐾

1

2 − 𝐾− 1

2 𝐾1

2 + 𝐾− 1

2

= −1

2 𝐾 + 𝐾−1 − 2 +

1

2 𝐾 − 𝐾−1 = 1 − 𝐾−1 = ∇= L.H.S.

Example 8 Prove that (i) ∆ − ∇ = ÎŽ2 (ii) ÎŒ = 1 +1

4ÎŽ2 = 1 +

∆

2 1 + ∆ −

1

2

Solution: (i) ή2 = 𝐾1

2 − 𝐾− 1

2 2

= 𝐾 + 𝐾−1 − 2 ∔ ÎŽ ≡ 𝐾1

2 − 𝐾− 1

2

= 𝐾 − 1 − 1 − 𝐾−1 = ∆ − ∇

∔ 𝐾 − 1 ≡ ∆ and 1 − 𝐾−1 = ∆

(ii) 1 +1

4ÎŽ2 = 1 +

1

4 𝐾

1

2 − 𝐾− 1

2 2

∔ ÎŽ ≡ 𝐾1

2 − 𝐾− 1

2

= 1 +1

4 𝐾 + 𝐾−1 − 2

= 1

4 𝐾 + 𝐾−1 + 2

= 1

4 𝐾

1

2 + 𝐾− 1

2 2

=1

2 𝐾

1

2 + 𝐾− 1

2 = ÎŒ ∔ ÎŒ ≡1

2 𝐾

1

2 + 𝐾− 1

2

Also 1 +∆

2 1 + ∆ −

1

2 = 1 +𝐾−1

2 1 + 𝐾 − 1 −

1

2

∔ ∆ ≡ 𝐾 − 1

= 𝐾+1

2 𝐾−

1

2

=1

2 𝐾−

1

2 + 𝐾1

2 = Ό

Example 9 Prove that (i) ∆ ≡ 𝐾∇ ≡ ∇E = ή𝐾 12 (ii) Er = ÎŒ +

𝛿

2

2𝑟

Solution: (i) 𝐾∇ = E 1 − 𝐾− 1 = 𝐾 − 1 = ∆ ∔ ∇ ≡ 1 − 𝐾−1

∇E = 1 − 𝐾− 1 𝐾 = 𝐾 − 1 = ∆

ή𝐾 12 = 𝐾

1

2 − 𝐾− 1

2 𝐾 12 = 𝐾 − 1 = ∆ ∔ ÎŽ ≡ 𝐾

1

2 − 𝐾− 1

2

(ii) R.H.S. = ÎŒ +𝛿

2

2𝑟

= 1

2 𝐾

1

2 + 𝐾− 1

2 +1

2 𝐾

1

2 − 𝐾− 1

2

2𝑟

∔ ÎŒ ≡1

2 𝐾

1

2 + 𝐾− 1

2 and ή ≡ 𝐾1

2 − 𝐾− 1

2

= 1

2 2𝐾

1

2

2𝑟

= 𝐾1

2 2𝑟

= Er = L.H.S

Example 10 Prove that (i) đ· ≡ 1

𝑕𝑙𝑜𝑔 𝐾 (iii) đ‘•đ· ≡ 𝑙𝑜𝑔 1 + ∆ ≡ −log(1 − ∇)

(iii) ∇2 ≡ 𝑕2đ·2 − 𝑕3đ·3 +7

12𝑕4đ·4 + ⋯

Solution: (i) We know that 𝐾 ≡ đ‘’đ‘•đ·

⇒ 𝑙𝑜𝑔𝐾 ≡ 𝑙𝑜𝑔 đ‘’đ‘•đ·

⇒ 𝑙𝑜𝑔𝐾 ≡ 𝑕𝑑 𝑙𝑜𝑔 𝑒

⇒ đ· ≡ 1

𝑕𝑙𝑜𝑔 𝐾 ∔ 𝑙𝑜𝑔 𝑒 = 1

(ii) 𝑕 đ· ≡ 𝑙𝑜𝑔𝐾 From relation (i)

≡ log(1 + ∆) ∔ 𝐾 ≡ 1 + ∆

Also 𝑕 đ· ≡ 𝑙𝑜𝑔𝐾 ≡ − log𝐾−1

≡ −log(1 − ∇) ∔ ∇ ≡ 1 − 𝐾−1

(iii) We know that ∇ ≡ 1 − 𝐾−1

⇒ ∇ ≡ 1 −1

𝐾

≡ 1 − đ‘’âˆ’đ‘•đ· ∔ 𝐾 = đ‘’đ‘•đ·

⇒ ∇≡ 1 − 1 − 𝑕𝑑 +𝑕2đ·2

2!−

𝑕3đ·3

3!+ ⋯

⇒ ∇≡ 𝑕𝑑 −𝑕2đ·2

2! +

𝑕3đ·3

3!+ ⋯

∎ ∇2 ≡ 𝑕𝑑 −𝑕2đ·2

2! +

𝑕3đ·3

3!+ ⋯

2

⇒ ∇2 ≡ 𝑕2đ·2 + 𝑕2đ·2

2!

2

+ ⋯− 2 𝑕𝑑 𝑕2đ·2

2! + 2 𝑕𝑑

𝑕3đ·3

3! −⋯

⇒ ∇2 ≡ 𝑕2đ·2 − 𝑕3đ·3 + 𝑕4đ·4

4+

𝑕4đ·4

3 −⋯

⇒ ∇2 ≡ 𝑕2đ·2 − 𝑕3đ·3 +7

12𝑕4đ·4 −⋯

Remark: In order to prove any relation, we can express the operators (∆ ,∇,𝛿) in

terms of fundamental operator 𝐾.

Example 11 Form the forward difference table for the function

𝑓 đ‘„ = đ‘„3 − 2đ‘„2 − 3đ‘„ − 1 for đ‘„ = 0, 1, 2, 3, 4.

Hence or otherwise find ∆3𝑓 đ‘„ , also show that ∆4𝑓 đ‘„ = 0

Solution: 𝑓 0 = −1, 𝑓 1 = −5, 𝑓 2 = −7, 𝑓 3 = −1, 𝑓 4 = 19

Constructing the forward difference table:

𝒙 𝒇(𝒙) ∆ ∆𝟐 ∆𝟑 ∆𝟒 𝟎 −1 −4

1 −5 2 −2 6 𝟐 −7 8 0 6 6 𝟑 −1 14 20 𝟒 19

From the table, we see that ∆3𝑓 đ‘„ = 6 and ∆4𝑓 đ‘„ = 0

Note: Using the formula ∆𝑛𝑓 đ‘„ = 𝑎0𝑛! 𝑕𝑛 , ∆3𝑓 đ‘„ = 1.3!. 1𝑛 = 6

Also ∆𝑛+1𝑓 đ‘„ = 0 for a polynomial of degree 𝑛, ∎ ∆4𝑓 đ‘„ = 0

Example 12 If for a polynomial, five observations are recorded as: 𝑩0 = −8,

𝑩1 = −6, 𝑩2 = 22, 𝑩3 = 148, 𝑩4 = 492, find 𝑩5.

Solution: 𝑩5 = 𝐾5𝑩0 = (1 + ∆)5𝑩0 ∔ 𝐾 ≡ 1 + ∆

= 𝑩0 + 5đ¶1∆𝑩0 + 5đ¶2∆2𝑩0 + 5đ¶3∆

3𝑩0 + 5đ¶4∆4𝑩0 + ∆5𝑩0 
①

Constructing the forward difference table:

𝒙 𝒚 ∆ ∆𝟐 ∆𝟑 ∆𝟒 𝒙𝟎 −8

2 𝒙𝟏 −6 26

28 72 𝒙𝟐 22 98 48

126 120 𝒙𝟑 148 218

344 𝒙𝟒 492

From table ∆𝑩0 = 2, ∆2𝑩0 = 26 , ∆3𝑩0 = 72 , ∆3𝑩0 = 48 
 ②

⇒ 𝑩5

= −8 + 5 2 + 10 26 + 10 72 + 5 48 = 1222 using ② in ①

6.4 Missing values of Data Missing data or missing values occur when an observation is missing for a

particular variable in a data sample. Concept of finite differences can help to locate

the requisite value using known concepts of curve fitting.

To determine the equation of a line (equation of degree one), we need at least two

given points. Similarly to trace a parabola (equation of degree two), at least three

points are imperative. Thus we essentially require 𝑛 + 1 known observations to

determine a polynomial of 𝑛𝑡𝑕 degree.

To find missing values of data using finite differences, we presume the degree of

the polynomial by the number of known observations and use the result

∆𝑛+1𝑓 đ‘„ = 0 for a polynomial of degree 𝑛.

Example 13 Use the concept of missing data to find 𝑩5 if 𝑩0 = −8, 𝑩1 = −6,

𝑩2 = 22, 𝑩3 = 148, 𝑩4 = 492

Solution: Constructing the forward difference table taking 𝑩5 as missing value

𝒙 𝒚 ∆ ∆𝟐 ∆𝟑 ∆𝟒 ∆𝟓 𝒙𝒐 −8

2 𝒙𝟏 −6 26

28 72 𝒙𝟐 22 98 48

126 120 𝑩5 − 1222 𝒙𝟑 148 218 𝑩5 − 1174

344 𝑩5 − 1054 𝒙𝟒 492 𝑩5 − 836

𝑩5 − 492 𝒙𝟓 𝑩5

Since 5 observations are known, let us assume that the polynomial represented by

given data is of 4𝑡𝑕 degree. ∮ ∆5𝑩 = 0 ⇒ 𝑩5− 1222 = 0 or 𝑩5 = 1222

Example 14 Find the missing values in the following table

𝒙 𝟎 𝟓 𝟏𝟎 𝟏𝟓 𝟐𝟎 𝟐𝟓

𝒇(𝒙) 6 ? 13 17 22 ?

Solution: Since there are 4 known values of 𝑓 đ‘„ in the given data, let us assume

the polynomial represented by the given data to be of 3𝑟𝑑degree.

Constructing the forward difference table taking missing values as 𝑎 and 𝑏.

𝒙 𝒚 ∆ ∆𝟐 ∆𝟑 ∆𝟒 𝟎 6

𝑎 − 6 𝟓 𝑎 19 − 2𝑎

13 − 𝑎 3𝑎 − 28 𝟏𝟎 13 𝑎 − 9 38 − 4𝑎

4 10 − 𝑎 15 17 1 𝑎 + 𝑏 − 38

5 𝑏 − 28 2𝟎 22 𝑏 − 27

𝑏 − 22

25 𝑏

Since the polynomial represented by the given data is considered to be of

3𝑟𝑑degree, 4𝑡ℎand higher order differences are zero i.e. ∆4𝑩 = 0

∮ 38 − 4𝑎 = 0 and 𝑎 + 𝑏 − 38 = 0 Solving these two equations, we get 𝑎 = 9.5 𝑏 = 28.5

6.5 Finding Differences Using Factorial Notation We can conveniently find the forward differences of a polynomial using factorial

notation.

6.5.1 Factorial Notation of a Polynomial

A product of the form đ‘„ đ‘„ − 1 đ‘„ − 2 
 đ‘„ − 𝑟 + 1 is called a factorial

polynomial and is denoted by đ‘„ 𝑟

∎ đ‘„ = đ‘„

đ‘„ 2 = đ‘„(đ‘„ − 1)

đ‘„ 3 = đ‘„ đ‘„ − 1 (đ‘„ − 2)

⋼

đ‘„ 𝑛 = đ‘„ đ‘„ − 1 đ‘„ − 2 
 đ‘„ − 𝑛 + 1

In case, the interval of differencing is 𝑕, then

đ‘„ 𝑛 = đ‘„ đ‘„ − 𝑕 đ‘„ − 𝑕 
 đ‘„ − 𝑛– 1 𝑕

The results of differencing đ‘„ 𝑟 are analogous to that differentiating đ‘„đ‘Ÿ

∎ ∆ đ‘„ 𝑛 = 𝑛 đ‘„ 𝑛−1

∆2 đ‘„ 𝑛 = 𝑛(𝑛 − 1) đ‘„ 𝑛−2

∆3 đ‘„ 𝑛 = 𝑛 𝑛 − 1 (𝑛 − 2) đ‘„ 𝑛−3

⋼

∆𝑛 đ‘„ 𝑛 = 𝑛 𝑛 − 1 𝑛 − 2 
 3.2.1 = 𝑛!

∆𝑛+1 đ‘„ 𝑛 = 0

Also 1

∆ đ‘„ =

đ‘„ 2

2 ,

1

∆ đ‘„ 2 =

đ‘„ 3

3 and so on

1

∆2 đ‘„ =

1

∆ đ‘„ 2

2 =

đ‘„ 3

6

⋼

Remark:

i. Every polynomial of degree 𝑛 can be expressed as a factorial

polynomial of the same degree and vice-versa.

ii. The coefficient of highest power of đ‘„ and also the constant term

remains unchanged while transforming a polynomial to factorial

notation.

Example15 Express the polynomial 2đ‘„2 + 3đ‘„ + 1 in factorial notation.

Solution: 2đ‘„2 − 3đ‘„ + 1 = 2đ‘„2 − 2đ‘„ + 5đ‘„ + 1

= 2đ‘„ đ‘„ − 1 + 5đ‘„ + 1

= 2 đ‘„ 2 + 5 đ‘„ + 1

Example16 Express the polynomial 2đ‘„3 − đ‘„2 + 3đ‘„ − 4 in factorial notation.

Solution: 2đ‘„3 − đ‘„2 + 3đ‘„ − 4 = 2 đ‘„ 3 + 𝐮 đ‘„ 2 + đ” đ‘„ − 4

Using remarks i and ii

= 2đ‘„ đ‘„ − 1 đ‘„ − 2 + đŽđ‘„ đ‘„ − 1 + đ”đ‘„ − 4

= 2đ‘„3 + 𝐮 − 6 đ‘„2 + −𝐮 + đ” + 4 đ‘„ − 4

Comparing the coefficients on both sides

A − 6 = −1, −𝐮 + B + 4 = 3

⇒ A = 5, B = 4

∎ 2đ‘„3 − đ‘„2 + 3đ‘„ − 4 = 2 đ‘„ 3 + 5 đ‘„ 2 + 4 đ‘„ − 4

We can also find factorial polynomial using synthetic division as shown:

Coefficients 𝐮 and đ” can be found as remainders under đ‘„2 and đ‘„ columns

đ‘„3 đ‘„2 đ‘„

1 2 –1 3 –4

– 2 1

2 2 1 4 = đ”

– 4

2 5 = A

Example 17 Find ∆3𝑓 đ‘„ for the polynomial 𝑓 đ‘„ = đ‘„3 − 2đ‘„2 − 3đ‘„ − 1

Also show that ∆4𝑓 đ‘„ = 0

Solution: Finding factorial polynomial of 𝑓 đ‘„ as shown:

Let đ‘„3 − 2đ‘„2 − 3đ‘„ − 1 = đ‘„ 3 + 𝐮 đ‘„ 2 + đ” đ‘„ − 1

Coefficients 𝐮 and đ” can be found as remainders under đ‘„2 and đ‘„ columns

đ‘„3 đ‘„2 đ‘„

1 1 –2 –3 –1

– 1 –1

2 1 –1 – 4 = đ”

– 2

1 1 = A

∎ 𝑓 đ‘„ = đ‘„3 − 2đ‘„2 − 3đ‘„ − 1 = đ‘„ 3 + đ‘„ 2 − 4 đ‘„ − 1

∆3𝑓 đ‘„ = ∆3 đ‘„ 3 + đ‘„ 2 − 4 đ‘„ − 1

= 3! + 0 = 6 ∔ ∆𝑛 đ‘„ 𝑛 = 𝑛! and ∆𝑛+1 đ‘„ 𝑛 = 0

Also ∆4𝑓 đ‘„ = ∆4 đ‘„ 3 + đ‘„ 2 − 4 đ‘„ − 1 = 0

Note: Results obtained are same as in Example 11, where we have used

forward difference table to compute the differences.

Example 18: Obtain the function whose first difference is 8đ‘„3 − 3đ‘„2 + 3đ‘„ − 1

Solution: Let 𝑓 đ‘„ be the function whose first difference is 8đ‘„3 − 3đ‘„2 + 3đ‘„ − 1

⇒ ∆𝑓 đ‘„ = 8đ‘„3 − 3đ‘„2 + 3đ‘„ − 1

Let 8đ‘„3 − 3đ‘„2 + 3đ‘„ − 1 = 8 đ‘„ 3 + 𝐮 đ‘„ 2 + đ” đ‘„ − 1

Coefficients 𝐮 and đ” can be found as remainders under đ‘„2 and đ‘„ columns

đ‘„3 đ‘„2 đ‘„

1 8 –3 3 –1

– 8 5

2 8 5 8 = đ”

– 16

8 21 = A

∎ ∆𝑓 đ‘„ = 8đ‘„3 − 3đ‘„2 + 3đ‘„ − 1 = 8 đ‘„ 3 + 21 đ‘„ 2 + 8 đ‘„ − 1

𝑓 đ‘„ = 1

∆ 8 đ‘„ 3 + 21 đ‘„ 2 + 8 đ‘„ − 1

=8 đ‘„ 4

4+

21 đ‘„ 3

3+

8 đ‘„ 2

2− đ‘„ ∔

1

∆ đ‘„ =

đ‘„ 2

2 ,

1

∆ đ‘„ 2 =

đ‘„ 3

3, 


= 2 đ‘„ 4 + 7 đ‘„ 3 + 4 đ‘„ 2 − [đ‘„] = 2đ‘„ đ‘„ − 1 đ‘„ − 2 đ‘„ − 3 + 7đ‘„ đ‘„ − 1 đ‘„ − 2 + 4đ‘„ đ‘„ − 1 − đ‘„

= đ‘„ 2 đ‘„ − 1 đ‘„ − 2 đ‘„ − 3 + 7 đ‘„ − 1 đ‘„ − 2 + 4 đ‘„ − 1 − 1 = đ‘„ 2đ‘„3 − 5đ‘„2 + 5đ‘„ − 3 = 2đ‘„4 − 5đ‘„3 + 5đ‘„2 − 3đ‘„

⇒ 𝑓 đ‘„ = 2đ‘„4 − 5đ‘„3 + 5đ‘„2 − 3đ‘„

6.6 Series Summation Using Finite Differences The method of finite differences may be used to find sum of a given series by

applying the following algorithm:

1. Let the series be represented by 𝑱0, 𝑱1 , 𝑱2 , 𝑱3, 


2. Use the relation 𝑱𝑟 = 𝐾𝑟𝑱0 to introduce the operator 𝐾 in the series.

3. Replace 𝐾 by ∆ by substituting 𝐾 ≡ 1 + ∆ and find the sum the series by

any of the applicable methods like sum of a G.P., exponential or logarithmic

series or by binomial expansion and operate term by term on 𝑱0 to find the

required sum.

Example 19 Prove the following using finite differences:

i. 𝑱0 + 𝑱1đ‘„

1!+ 𝑱2

đ‘„2

2!+ ⋯ = đ‘’đ‘„ 𝑱0 + đ‘„

∆ 𝑱0

1!+ đ‘„2 ∆2 𝑱0

2!+ ⋯

ii. 𝑱0 − 𝑱1 + 𝑱2 − 𝑱3 + ⋯ = 1

2 𝑱0 −

1

4∆ 𝑱0 +

1

8∆2 𝑱0 −⋯

Solution: i. 𝑱0 + 𝑱1đ‘„

1!+ 𝑱2

đ‘„2

2!+ ⋯ = 𝑱0 +

đ‘„

1!𝐾𝑱0 +

đ‘„2

2!𝐾2𝑱0 + ⋯

= 1 +đ‘„đž

1!+

đ‘„2𝐾2

2!𝑱0 + ⋯ 𝑱0

= đ‘’đ‘„đž 𝑱0 = đ‘’đ‘„(1+∆) 𝑱0

= đ‘’đ‘„đ‘’đ‘„âˆ† 𝑱0

= đ‘’đ‘„ 1 +đ‘„âˆ†

1!+

đ‘„2∆2

2!+ ⋯ 𝑱0

= đ‘’đ‘„ 𝑱0 + đ‘„âˆ† 𝑱0

1!+ đ‘„2 ∆2 𝑱0

2!+ ⋯

ii. 𝑱0 − 𝑱1 + 𝑱2 − 𝑱3 + ⋯ = 𝑱0 − 𝐾𝑱0 + 𝐾2𝑱0 − 𝐾3𝑱0 + ⋯

= 1 − 𝐾 + 𝐾2 − 𝐾3 + ⋯ 𝑱0

= 1 + 𝐾 −1 𝑱0

= 2 + ∆ −1 𝑱0

= 2−1 1 +∆

2 −1

𝑱0

=1

2 1 −

∆

2+

∆2

4−⋯ 𝑱0

= 1

2 𝑱0 −

1

4∆ 𝑱0 +

1

8∆2 𝑱0 −⋯

Example 20 Sum the series 12, 22, 32,
, 𝑛2 using finite differences.

Solution: Let the series 12, 22, 32,
, 𝑛2 be represented by 𝑱0, 𝑱1 , 𝑱2 ,
, 𝑱𝑛−1

∮ 𝑆 = 𝑱0 + 𝑱1 + 𝑱2 + ⋯+𝑱𝑛−1

⇒ 𝑆 = 𝑱0 + 𝐾𝑱0 + 𝐾2𝑱0 + ⋯+𝐾𝑛−1𝑱0

= 1 + 𝐾 + 𝐾2 + ⋯+ 𝐾𝑛−1 𝑱0

=1−𝐾𝑛

1−𝐾𝑱0 =

𝐾𝑛−1

𝐾−1𝑱0 ∔ 𝑆𝑛 = 𝑎

1−𝑟𝑛

1−𝑟

⇒ 𝑆 =(1+∆)𝑛−1

(1+∆)−1𝑱0

=1

∆ 1 + 𝑛∆ +

𝑛(𝑛−1)

2!∆2 +

𝑛 𝑛−1 (𝑛−2)

3!∆3 + ⋯ − 1 𝑱0

= 𝑛𝑱0 +𝑛(𝑛−1)

2!∆𝑱0 +

𝑛 𝑛−1 (𝑛−2)

3!∆2𝑱0 + ⋯

Now 𝑱0 = 12 = 1

∆𝑱0 = 𝑱1 − 𝑱0 = 22 − 12 = 3

∆2𝑱0 = ∆𝑱1 − ∆𝑱0 = 𝑱2 − 2𝑱1 + 𝑱0 = 32 − 2( 22) + 12 = 2

∆3𝑱0, ∆4𝑱0 
 are all zero as given series is an expression of degree 2

∮ 𝑆 = 𝑛 + 𝑛(𝑛−1)

2! 3 +

𝑛 𝑛−1 (𝑛−2)

3! 2 + 0

= 𝑛 +3𝑛 𝑛−1

2+

𝑛 𝑛−1 𝑛−2

3

=1

6 6𝑛 + 9𝑛 𝑛 − 1 + 2𝑛 𝑛 − 1 𝑛 − 2

=1

6𝑛 6 + 9𝑛 − 9 + 2𝑛2 − 6𝑛 + 4

=1

6𝑛 2𝑛2 + 3𝑛 + 1 =

1

6𝑛 𝑛 + 1 (2𝑛 + 1)

Example 21 Prove that 𝑱0 + 𝑱1đ‘„ + 𝑱2đ‘„2 + ⋯ =

𝑱0

1âˆ’đ‘„+

đ‘„âˆ†đ‘ą0

(1âˆ’đ‘„)2+

đ‘„2∆𝑱02

(1âˆ’đ‘„)3+ ⋯

and hence evaluate 1.2 + 2.3đ‘„ + 3.4đ‘„2 + 4.5đ‘„3 + ⋯

Solution: 𝑱0 + 𝑱1đ‘„ + 𝑱2đ‘„2 + ⋯ = 𝑱0 + đ‘„đžđ‘ą0 + đ‘„2𝐾

2𝑱0 + ⋯

= 1 + đ‘„đž + đ‘„2𝐾2 + ⋯ 𝑱0

=1

1âˆ’đ‘„đžđ‘ą0 ∔ 𝑆∞ =

𝑎

1−𝑟

=1

1âˆ’đ‘„(1+∆)𝑱0 =

1

(1âˆ’đ‘„)âˆ’đ‘„âˆ†đ‘ą0

=1

1âˆ’đ‘„

1

1âˆ’đ‘„âˆ†

1âˆ’đ‘„ 𝑱0

=1

1âˆ’đ‘„ 1 −

đ‘„âˆ†

1âˆ’đ‘„ −1𝑱0

=1

1âˆ’đ‘„ 1 +

đ‘„âˆ†

1âˆ’đ‘„ +

đ‘„2∆2

(1âˆ’đ‘„)2+ ⋯ 𝑱0

= 𝑱0

1âˆ’đ‘„+

đ‘„âˆ†đ‘ą0

(1âˆ’đ‘„)2+

đ‘„2∆𝑱02

(1âˆ’đ‘„)3+ ⋯ = R.H.S.

Now to evaluate the series 1.2 + 2.3đ‘„ + 3.4đ‘„2 + 4.5đ‘„3 + ⋯

Let 𝑱0 = 1.2 = 2, 𝑱1 = 2.3 = 6, 𝑱2 = 3.4 = 12, 𝑱3 = 4.5 = 20,


Forming forward difference table to calculate the differences

𝒖 ∆ ∆𝟐 ∆𝟑 ∆𝟒 𝒖𝟎 = 𝟏.𝟐 = 𝟐

4 𝒖𝟏 = 𝟐.𝟑 = 𝟔 2

6 0 𝒖𝟐 = 𝟑.𝟒 = 𝟏𝟐 2 0

8 0 𝒖𝟑 = 𝟒.𝟓 = 𝟐𝟎 2

10 𝒖𝟒 = 𝟓.𝟔 = 𝟑𝟎

∎ 1.2 + 2.3đ‘„ + 3.4đ‘„2 + 4.5đ‘„3 + ⋯ = 𝑱0

1âˆ’đ‘„+

đ‘„âˆ†đ‘ą0

(1âˆ’đ‘„)2+

đ‘„2∆𝑱02

(1âˆ’đ‘„)3+ ⋯

=2

1âˆ’đ‘„+

4đ‘„

(1âˆ’đ‘„)2+

2đ‘„2

(1âˆ’đ‘„)3+ 0

=2

(1âˆ’đ‘„)3

Exercise 6A

1. Express 𝑩4 in terms of successive forward differences.

2. Prove that ∆𝑛𝑒3đ‘„+5 = 𝑒3 − 1 𝑛𝑒3đ‘„+5

3. Evaluate ∆2 5đ‘„+12

đ‘„2+5đ‘„+6

4. If 𝑱0 = 3, 𝑱1 = 12, 𝑱2 = 81, 𝑱3 = 2000, 𝑱4 = 100, calculate ∆4𝑱0.

5. Prove that ÎŒ =2+∆

2 1+∆= 1 +

1

4ÎŽ2

6. Find the missing value in the following table

đ‘„ 0 5 10 15 20 25

𝑩 6 10 - 17 - 31

7. Sum the series 13, 23, 33,
, 𝑛3 using finite differences.

Answers

1. 𝑩4 = 𝑩0 + 4∆𝑩0 + 6∆2𝑩0 + 4∆3𝑩0 + ∆4𝑩0

3. –3(đ‘„2+9đ‘„+15)

đ‘„(đ‘„+1)(đ‘„+4)(đ‘„+5)(đ‘„+8)(đ‘„+9)

4. −7459

6. 13.25, 22.5