chapter 6 onsite treatment methods 1. septic tanks 2 ...onsite.tennessee.edu/epa decentralized...

111
CHAPTER 6 ONSITE TREATMENTMETHODS 6.1 Introduction This chapter presents information on the component of an onsite system that provides "treatment" of the wastewater, as opposed to its "disposal ' (disposal options for treated wastewater are covered in Chapter 7). Treatment options included in this discussion are: 1. Septic tanks 2. Intermittent sand filters 3. Aerobic treatment units 4. Disinfection units 5. Nutrient removal systems 6. Wastewater segregation and recycle systems Detailed design, O&M, performance, and construction data are provided for the first four components above. A more general description of nutrient removal is provided as these systems are not yet in general use, and often involve in-house changes in product use and plumbing. A brief mention of wastewater segregation and recycle options is included, since these also function as treatment options. Options providing a combined treatment/disposal function, i.e., soil absorption systems, are discussed in Chapter 7. 6.1.1 Purpose The purpose of the treatment component is to transform the raw household wastewater into an effluent suited to the disposal component, such that the wastewater can be disposed of in conformance with public health and environmental regulations. For example, in a subsurface soil absorption system, the pretreatment unit (e.g., septic tank) should remove nearly all settleable solids and floatable grease and scum so that a reasonably clear liquid is discharged into the soil absorption field. This allows the field to operate more efficiently. Likewise, for a surface discharge system, the treatment unit should produce an effluent that will meet applicable surface discharge standards. 97

Upload: duongdan

Post on 09-Nov-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

CHAPTER 6

ONSITE TREATMENT METHODS

6.1 Introduction

This chapter presents information on the component of an onsite system that provides "treatment" of the wastewater, as opposed to its "disposal ' (disposal options for treated wastewater are covered in Chapter 7). Treatment options included in this discussion are:

1. Septic tanks 2. Intermittent sand filters 3. Aerobic treatment units 4. Disinfection units 5. Nutrient removal systems 6. Wastewater segregation and recycle systems

Detailed design, O&M, performance, and construction data are provided for the first four components above. A more general description of nutrient removal is provided as these systems are not yet in general use, and often involve in-house changes in product use and plumbing. A brief mention of wastewater segregation and recycle options is included, since these also function as treatment options.

Options providing a combined treatment/disposal function, i.e., soil absorption systems, are discussed in Chapter 7.

6.1.1 Purpose

The purpose of the treatment component is to transform the raw household wastewater into an effluent suited to the disposal component, such that the wastewater can be disposed of in conformance with public health and environmental regulations. For example, in a subsurface soil absorption system, the pretreatment unit (e.g., septic tank) should remove nearly all settleable solids and floatable grease and scum so that a reasonably clear liquid is discharged into the soil absorption field. This allows the field to operate more efficiently. Likewise, for a surface discharge system, the treatment unit should produce an effluent that will meet applicable surface discharge standards.

97

86

6upiea~3 yuea [WIJOU pue ‘23odluoD pue LJp [ly ~&fel a6pnls ayl ‘astz3 WaJ~Xa au2 UI ‘Jn330 Ue3 Sa6JelQS kp Kln3S aA~SSC33Xa ‘aL44eq aalan Jl(J MO[Jq doJp 02 JJ/fel UIWS Jql 40 [CViJ 1 Jya SJSfle3 J6PyeJl t+lPa 4k ‘J~A~MOY fJoa3e4 JOU~UI e ~JJJ~~SUOD UJIJO Sb syuez) 3i’ldas ur0J.J a6reyeal l sti~a~srCs Lesodskp JJQO JO ‘suoo6eL ‘SpunouI [kos ‘slua~slCs uoi$dJOSqQ LAOS o?. 40 pasodshp aq IJPD pknbil ~J.LJ.LJC!L~ l MoL4ano ~13s asube6e S$DJ?OJd S LLJ PI.02 ‘SJJ? ‘SJLJ#?q JO Jstl JJdOJd l JJife[ ulnx 6ulaeoL4 ay3 Molaq lsnf aJna3nJ$s $aLJno ue y6noJyJ MOLJ 02 pJ~0l Le sh pLnbk[ pJk4bJeL3 KLLPk&Ied Jljl *doa aya o$ SJS$J (saseaJ6 pue sae4 6ukpn Lwi) Le,LJJ$euI c)~~.LJMz)~~~L 40 ~13s Q l a$eLnuin33e pue yue2 ayq 40 wo~~oq Jy$ 03 a [y+as a6pn 1s pJsoduIo3Jp AL LeQJed pue sp[ LOS a Lqea [t)aas o Lesod -S .Lp PUP ~UJllQeJJ$ JJtQJQ JO4 J6JE’yXhp 03 pknb& 1 paiJ.LJe 13 Jya MO1 LP 03 pUe ‘Spc LOS JJOaS 03 ‘JaaaetU 3pJe6JO 40 UO&a6~p paaLtUi[ Jp[AOJd 03 ‘pknbb 1 aya ~0~4 spl LOS aaeJedas 03 ‘JUIO~ e WOJ4 JJaL’MJaSPM JA&JDJJ 02 pJaNIJ$SUO3 pUe pJu6bSJp SJlXadJ3aJ aI.jbkaJJaPM ‘PJiJtlq JdQ SyUP2 3iadJS

l ~apolu kLltue4-a LGuLs aya UIOJ~ JCl44kp /fJy$ JJJYM pJSSflX& 3Je SMOU JJ6Jel JO4 SylK+ fSJUIOtj /CLyIe4 -a ~6u ks Jo4 syuea uo sJaaua3 uogssnx kp ayl l wueuaauLew pue UOlaeJadO we ‘SJJflpJDOJd uO~~3nJ~SuO3 ‘u6iSJp ‘EKWeUIJO4JJd ‘SUO~$L’JJp~SUO3 6uk -a!s sak ‘YUPa 3kadas Jya uo uo~aeuIJo4u~ pJl.LeaJp Si3p~AOJd uo!aDJs sly1

l maeMaaseM aluoy 40 Lesods up 02 JO CJd auawaeaJa ~04 syuea 3Cadas asn KJquno3 skya u c paaznJasuo3 6u yq saluoy MJU aya 40 %sz anoqe ‘LLauaJJn3 ‘saaeas paacun aya ui MO Lade aui3luaeaJa JaaeMaaseM aa isuo pasn lC[~p kt4 asow Jya si yuea DgdJs J~L

uoba3npoJauI 1.2.9

ww 3badas 1.9

IJ~ ~JJJAOD s .L s LenpbsaJ 40 Lesodsip Leuid l L pue g sJaadey3 ui auau -oduroD LenpiACpu!. y3ea Japun L,Leaap ug passnx~p s!. 6ui~pue~ SlPnp~sa~

tuJas/Cs 1 LPJ~AO 40 aJed pJ~3al6au uJa40 pue aueaJodurk KJ~A P si s LenpksaJ JSJqa JO lesodsgp pue LPAOLUJ~ l dnplknq s[enpbsaJ 40 adrC1. JKIOS ~U~DUJ -pJdxJ anoy$kM UOkaeJJdO snonuy.Io3 40 a Lqede3 s L SSJ3OJd ~uJuQeJx+ ON

66

waask Lesods cp auawaeaJa JaeJk?das k? aa JJaehIifeJ6 p~oyasnoy Jya 6u i6Jeyx ip Lq pJr\OJdUI!. SeM auawak?J~a (JaaeMaaseM zpl.Loa) JJqeMy3elq Jya 40 huJy1~44J Jya ‘ yuea zhadas aye 40 aurnlo~ aya 6u bseaJ3u .L anoya .LM aeya pun04 3~ l JJ$I?MyDe[q pUe JJaPMhJ6 6u gea.q syuea 3badas KIOJ~ symnl44a 40 La i Lenb aya pa bpnas (1) sapueJfi

l d ieaoa ~/SUJ 02 anoqe 40 La k lenb auan [44a ue 6u ip IAOJd ‘%s~: anoqe ae ‘c# iis s k LeAOUlJJ SnJOydSOyd l ~/6u1 sz-02 anoqe 40 auJnL44a ue 6u k3npoJd 308 02 o,! ICLLe:, LdLa Sk LPAOUIJJ JseJJ6 pue L Lo *SW ~Ue6JOOJ3pU 6u LsneD-Jseas ip JAOUIJJ 0) uodn pJ&LJJ Jq aouue3 syuea 3kadJs J~U ks pa6uey3 Qaueak4 iu6 cs aou aJe Juan L44J aya u .L suokaeJaua3uo3 LeLJaa3eq 6s~ LnsaJ paaelnqea wa oa uwawe UI *Aa LLenb auant44a yuea 3kadas sazkJewtuns 1-g a Lqel

J3UIXlJO4JJd b’z.9

l saweasuwJ ~3 6u !aenuaaxa he 40 Jxasqe JyJ IJi 03 PJJJype Jq p LnOyS JeLQ SJWeC)S@ UO~~k?Jed~s paqsa66ns JJKjeJ4 sapo:, 6u kp Linq Lezol pue aleas hew ‘SUO La &uO3 L!JIS JyY+ UO JJ~6ap aeJJ6 e 02 puadap pue tfJeJa!qJe rCLa6Jet JJe asaya anq ‘StN$Sh Lwodskp yuea 3iadas lUOJ4 SJUlOy pule sJ;Lddns JJaPM 6uiz)zJaoJd JO4 PJdOLJAJp UJJq Jhey SJWeaS~p uokaeJedJs UlflUIyJ~Ul 40 JJqWlU v l ICLddns JJ$eM ~Lqeaod Jya 6u yeJJ yug 3!adi3s Jya ~0~4 saua6e 6u LsneD-Jseaskp 40 ys IJ /Cut? J3npJJ 02 SJU !L JEQeM pUe ’ LLJM JJaPM ‘JUlOy UlOJ4 SJ3Ue~S~p pai 43ads pJaeDO[ Jq yuea z+adas Jya C)eya JJknbJJ /few SJ&NJ6e AJOaeLn6aJ Le301

l Lenuw skya ui JaaeL passnx cp se ~LeAotuJ~ qua LJanu ~04 uo cabppe LeyayD oa alqeualue 0s Le aJe syuea 3iadas

l ~UJlll~eJJ~ JJyaJn4 JO4 suooljel JO SJJaLC4 03 JO 6 Lesodyp pue y.kwaeaJa ~04 spaq 13 Jo spunotu oq pa6JeyXbp Jq ue3 auJnL44J yuea 3kadas ‘uo iaelo3Jad ~04 a tqea ins aou aJe s lt.0~ JJJyM SPJJB UI ’ L COS Jya y6noJqa UMOp SJaPlO3JJd JJaeMJaSPM JlQ JJJ~M p La .LJ UOladJOSqe 1~0s e 01 pJ6JeqX kp s .L wan 144~ yuea 3kadas csJ3ueasu k ~SOUI UI *s$yJn lpsods cp JO/PUP auJuQsJJ~ 6u LqsiLod /cs PJMO~LO~ Jq asncu AJYl l UJaS/fS JZ) !SUO Ue 40 auJuodwo2 $SJ k4 JyT$ /fLLPWJOU aJlp Syuea z+adJs

l SauJUOdtUo3 lesodsip pue JuJmeJJa auanbasqns pue yuea aye JO Gu~peol~JAo Jsne3 ue3 ~DL~M yea Jya o~.u! UO~~PJ~L~~U~ sk ‘a@~aJJ~eM ?OU Sk >1Uea JyZ) 4.r ‘tuJLqOJd JJy$Ouv ‘(1) a! JA~UIJJ qou L~LM sa3L~X?Jd

l eaep 40 uo~y~q&Jas~p LewJou-6oL e 40 slseq aya uo paaeLm[eg q

l SaSJa 40 SJi.rJS 9 ‘SyUk?a 01 UlOJ4 SanlPA J6WJAP JyC) UlOJ4 pJaPlfl3le~ p

-- -- --

-- -- --

1s --

9E

-- -- --

66 SZT-6

53

LP 81 IS 9s 8PI OLZ-8 OK-8t -- Zi8P-Et7 569-01

6E q= TO'I eW 6P

OS 09E- LL

ooz

-- -- --

--

mm

--

-- -- --

ZS’l 08L-SZ

LZE

OS ‘EZ 'Is PI7 OS'I 081-O& S8E'OL se 9sz-t9 08t7-L

OZT qOPZ Otrz: e8ET 811

(9) '4Jil (Ci) '4Jd (t~) 'JJti (El '4Jtl (I) '4JU J3JnOS

S3INUS INVl 'tX+dX StlOIWA WO&l VlVa lN3llAEl JO AtlVWWnS

saldueS 40 *ON L/SUI ‘J6ue)j

1/6u1 ‘Ut?JW ua6oJaiN tea01

sa[dweS 40 'ON 1/6u1 ‘J~UP~

L/SUI ‘ueaw sp ! 10s PJpUJdSnS

SaLdurzs 40 'ON ~/6w ‘ a6uq

z v-l L/~U.I 'ueaw

a03

saldwq 40 ‘ON 1/6u1 'a6ue)j

L/~UJ ‘UPJW Saoa

l sase6 ap.~4lns uafjo~prfy pue Jueyaalu pJaelnwn33e 40 ade3sa Jya JO4 MO LLP 03 SUObS IAOJd 6u )qllJA ‘t,

l auant44a aya uk ums JO a6pnls 40 J6JetQs ip Jya $UJAJJd 03 a3eds JbQJOaS a6pnls Z)uJ .LDC44ns ‘E

•y.mn~44a aya uk ums JO a6pnls 40 J6JeI@SLp JQ aUJAJJd 03 SJ3kAJp aJlT+nO pue lJ[UI ‘2

'(8) uo~aelnum33e ums pue yadap a6pnls umw~xeui ae awka uo!auaaaJ ptnL4 by-pz e ~04 auab3144ns awloh pknbbi l I

:ap 1AOJd $snuJ yuea aya ‘5 by?. ys 1 Ldwome 01 l sp ilos J LqPJLaaJS Lie JSOUlle 40 LeAOUlJJ JJnSUJ 02 pJU6 LSJp Jq ~SnUl yUea Jyl

l SJpO3 LP3Ol Q)M J3UepJO33e U i pJU6iSJp ~lll?UlJOU JJP PUP ‘UO~aPL LPaSU i JO4 t$X’aJ ,, ‘4 LJys JL# JJO,, paSPy3Jnd Al LPllSrl JJe SJlllOy LLye4-a[6u is JO4 Syuea 3gdas

LeJJUJg ~‘Cj’Z’g

u6yq g*z*g

l auJnl44J aya u k J6JeIgSip Sp LlOS qaiM WJ LqOJd 03 peal &LenZ)UJAJ 11~~ sp~los paae~nwme ano dumd oa aJnl!ej l 6u idCd 60 1~ ue3 was& aya oau i ( l qa ‘sJade!p ‘sap4 ‘SJUOq ‘SlJMoa Jaded) saasen lllJLqOJd 6ubqsnld l JXWJo4JJd J gedwi L 1 .Ln J3ueuJau !etIJ pue uo iaemdo JJdoJdur) ‘rC[SnO LAqO *sad !.d J6JeyX kp 03 AJaUJ a6pnlS JO Wl3S JaOUIOJd h?Ul SJ3 !AJp aJLan0 JO SJlJJeq Jood ‘uo !a we UI l ~.IJ ~3 k44a 6u .LLaaas 6u CJ kedt.ui KLsno ~JJS ‘yea a$) ui ~3~~LnqJna JaeaJD ue3 sal44eq 40 auJurJ3eld pue u6isap JJdoJduII

l UO~$SJIj~p pideJ 03 Jnp aasdn JO sa6Jns 40 spo~JJd~ 6u .LJnp sadid a6Jeyx .~p oau I JaAo-KJJe3 sp btos asu ke6e uO~&qOJd JJJaJq Jp LAOJd /fJlja JSne3Jq ‘LabDedeD LPaOa JUGS Jya 40 SyUQa ~UJuQJedUIO3-J L6u bS UOya JJJC)Jq 3eyMJUIOS UIJO4JJd Syue~$ ~UJuQJFd~O3- g \nUI ‘JJAJMOH l JWetUJO4JJd a LqeadJXe JA ~6 LL !M yuea Zg.IJtU~JedtUO3-J 16~ is v

l ALJadoJd aeo 14 JO a[aaas aou Kelu SpkLOs pUe 1.JOyS 003 JUIO3Jq &lU JUl!.C) UOiaUJaJJ ‘pJpE?OlJJAO iflL&!3;LneJp~q Sk wa e 41 ‘SJ3 k33eJd JDUeUJaU iEUl pue UO !.aeJJdO pUe ‘JJnaeJJdUlJa ‘S~UJuJ~JPduIO3 40 J JqUll-lU ‘SZgUJtUJ6UPJJe aalan pue aa 1U.L ‘6u~peo~ 3 .L LneJpAq ’ I(J~JtuoJ6 Jpn L3u .L a3ueuIJo~Jad yulea 3 Ladas 6u kam44e sJoa3ed

201

(un-01) l uk-p e 40 peaasuk JJ~~J aaLan (w-5~) auk-9 e 40 asn ayl l adkd J6JeyDsgp Leu;4 Jya 40 az~s aya J3npJJ (1 pue !J~S~J aa[ano aqa 40 azis aqa aseaJ3ui (1 : JJQ asayl *)aLano aya q6noJqa adez)sa oa ulnas pue SpblOS Jo4 Ka.LunaJoddo aqa 6u&vIpaJ pue LakDoLaA akxa aya 6ui3npaJ 40 Sueatu Jay30 OMa JJe aJay ‘PaJe a3e4Jns aya 6ubseaJw; oa uoiabppe UI

l (8).a6JnS auanL4u~ aqa t110~4 6ukaLns -a~ a3uatnqJna Kq paxklu aJe aeya ur13s pue a6pn~s 40 Uo~aeJedas ~04 awra JJ6UOl e SMOlle Sly1 l saseaJwk eaJe a3e4Jns se pJUJdIUep aJe yuea aya y6noJqa ~014 40 SJ6JnS JSJ~~ l Lak3olaA l[XJ pue JaeJ a6Jeyx .Lp JaMOlS e pue qadap JaaeM ub askJ Jalleuis e saaeaJ3 awLon ~u~M~LJu~ UJAk6 e f&~~ede~ a6eJoas J6JnS saseaJ3u~ eaJe aDe4Jns pknbil paseaJ3ui asne3aq ‘paJJa4aJd aJe qadap JaMoileys pue eaJe a3e4Jns JaaeaJ6 qa!M syuel

l yuea aqa 40 KaLDedeD UOlaUJaJJ abpnls pue A3uab3&44a 3bLneJprCy aqa a3a44e sJaaatueJed asayl l tfai3olaA a!xa pue ‘JaeJ a6JeqXkp 6a6eJoas J6JnS ‘PJJe JDe4JnS UaaMaJq drySUO!ae LJJ aya SC syuea Dkadas 40 aDuewo4Jad pue u6isap aqa us JoaDe4 RJI Jayaouy

*SpPOl JnOy yead 40 a3J44J JyC$ J3npJJ Syuea $uJuQJPdutO3 -oMa ‘pau6bsap-LLaM 'YUea c+adas aya luOJ4 pJ6Jey3S& JJe SuO~$eJaua3 -uo3 spilos JJq6g ‘SpOyad Mot4 y6iq 6ukJna l rCLaeaJb Xjeh ue3 auroy aqa tuoJ4 sMoL4 LLkep pue KLJnoq ‘LLaaeunaJo4un *(z-g alqel aas) surooJpaq 40 Jaqumu Jya Lq lCla[os sakai3edeD yuea Dkadas paJ!nbaJ 6u~u6~sse Lq poyaatu skya 40 uoisJaA au10s uo ~CLJJ sap03 1~30~ pue aaeas asoiu ‘Leap! aou JL~~M

l (ulooJpaq * Jad 1 00~‘~ oa ot16 1) urooJpaq JJd te6 osb oa 00s 40 LaiDede3 u6ksap yuea Lea03 e uk 6ukaLnsaJ 'UOULUO3 Sb MO14 AL.Lep U6iSJp Jya SJUli$ c oa z 40 awlon yea le3iaaJoaqa y l (MWww/ i of 5 ) ~w/~oowW ie6

051 40 MO14 u6isap LeDkL)aJOJya e 6u&pLi+f ‘UJOOJpaq JJd SUOSJJd OMa 40 Kaksuap 6ui~~a~p tuntu~xetu Lekauaaod e ~31~ paldnos aq ue3 (pDd[ 98~) p3d6 ILL 40 anleA e ‘Joax Laa4es P sv -(I) wdt OLI) pDd6 SP anow sk uo~~nq~Jauo3 JaaeMaaseM abemu aqa aeqa paMoqs t JJadeya ‘UIOOJ -pJq JJd SUOSJJd 40 JJqUUlU J6eJaAe aya pue aluoy JJd StuoOJpJq 40 Jaqwlu aqa uo paseq seM syuea Diadas ~SOUI 40 QkDedeD u6Lsap aya ‘ased aya UI

l uoia3nJasuo3 Japun ticas 6u;plknq e ~04 paaDa\as bugaq si MaasKs yueq Diadas e 4) QJeln~~aJed ‘Jlq.LSPa4 UlOpLJS Sk aeya anq fpo@ad uaA~6 e JO4 SMOLJ JJaeMJaSPM 6~4 -Jaaalu rCq auop si skya ‘LtleapI '/fQp Jad pJXtpOJd JaaeMX+SPM 40 JUltlLOA J6eJJAP Jya JugIIJJaap 02 si awnLOA yuea e 6u~aXlas ui daas asJL4 ayl

eLJJaLJ3 2’9’2’9

J6pn 1s aya Jeya yXiS LJAJL pLnbi[ aAOqe aybkay pue a3Ua6JJNqnS JadoJd aya aneq Jsnlu $a tan0 aql ‘(1-g JJ?I6kj aaS) aJna3nJas LeiDads awes JO ‘aL44eq P ‘aaa e aq ue3 yuea Diadas. e 40 aaLan ayl l J3UettIJOJJad ysea t LeJaho UC Joa Jo few e s .I quaqJedluo3 puo3as Jo asJL4 aya Jayaka ui ~3s pue abpnts uge$aJ oa /CakLLqe s,aJnamJas aaLJno ayl

l alqissod se aa[ul ayz+ uk L6JJUa ymI.I se 6u iaed css bp Aq awa LnqJna pampui saz ybuy s cyl l aDe4Jns p yb 1 L aqa Mo Laq puaaxa p Lnoys aaa aalul aqa 40 6a L Le3kaJah ayl l 6u~x~w Leauaur$Jed~o3Ja?u~ aseaJm! pue suoiaa 1 lb3so aDe4Jns JaaeM A4 1 Ldure ue3 ‘hIJnba.44 JJdoJd aya ae ‘aeqa 6ulddkJp SaUJAJJd pue 'MO14 Le3kaJJA 01 Leauoz~Joy 1uoJ4 Uo~a~sueJa aya UC if6Jaua JaedkSSy sdlaq aaa e ur. snkpw aJahui ayl l Ja Lul aqa 6u Iyzo Lq UIOJJ sp r LOS 6uiaeo 14 sdaay aaL pue ‘atuha y3ea an0 paqsn 14 s .I a! aeqa 0s q6nouJ 1 Leuis aq p lnoqs .aL44eq ayl l Jl4 -4eq Jo aaa AJeakues e Jayaia aq rftqeJa4aJd p Lnoys aa LUG ayl l 6u&a&n3 -JL3-$JOyS aUJAaJd 02 pUe ‘J3JJ~nqJn~ azy~uguI 03 ‘JJ’)eM 6uy~o3u~ alja 40 h6JauJ aya aaed iss ip oa pautiksap aq p Lnoys yuea Dkadas e oa aa Lu k aql

l auan L44a aya uk asol aJe uaya q3kq~ ‘Spl LOS paJtlade3 ~[SnO~AJJd puJdSnSaJ pue 6t.i~ La$as-a[3iaJed qa!M aJa4Jaaui uo~asa6lp 3~qo.iJeue rCq pampoJd SJSe6 ~u!.s~J ayl l E

‘SPklOS paJnadP3 /?LSIIO~AJJd spuadsnsaJ JJa aal -3no aya 40 6al Le3raJah aqa ui JaaeM aya 40 &!3oLah askJ ayl l z

- a3eds Jea 13 aya UC JaaeMaaseM aya ya CM J6pn 1s aya 40 6u~x~u sasne3 yuea auamJedtuo3-al6uLs e ub a3uaLnqJna aa[uk ayl ‘1

:4) Jr030 ue3 suoiaeJaua3uo3 ylayG!H l sp;tos alqeaiaaas 40 suo~aeJwmo3 Leu+y Quo KJJe3 ptnoqs yuea Dkadas e 40 an0 ~014 aql

SJvJa aJ tan0 we aJ iw rs*z*9

l smaask aa isuo qay sJapukJ6 a6eqJe6 40 asn aqa pione 03 eapk ~006 e LLLeJJUa6 sk 11 l AJeJaiqJe Sk JWILOA Skya q6noyaLe ‘pasn JJP SJJpukJ6 abeqJe6 UayM JZlS

yuea aya 03 (1 gbfj) 1~6 052 ppP 03 sl ~UJ&JdxJ uoUIu03 v ‘UMOp X3uanb -aJ4 6ukdurnd aqa daal oa yea Ja6JPl e JO Bukdlund auanbaJ4 a~otu Jayl..La sueatu sg.+l ‘(01) %LE anoqe sb aatzJ uo&aelnum33e ~3s pue a6pnLs ayq ui JSeaJXl~ aya aey7. JaaDkpuC sakpnas (SHdSn) JDLAJJS YaLeaH 3k Lqnd yfl l yueq 3iadJS aya ilk SJaeJ uo~aelnumme Jiaya pue JJaE’MJaSPM aya U!. Spk -LOS JLqPqleO 14 pue Jlq&?J LaaJS JQ YaOq SJSPJJ3Uk SJapu~J6 a6eqJe6 40 JSn

‘($3) %gg 40 uo~a3npaJ e (3as/w tic.0 02 3as/tm gL.0) 3as/a4 ITO. oa 3JS/34 szo*o LuoJ4 Qi30Lan abxa aya a3npaJ 11)~ JJS~J aaLan

SOT

uopan6!~uo~ , ~

P!nb!l

(~EKIwH~SI~ NI saIios a3atudsns 3zIwmIw 01 s3tlnimus mine INQL xidx ivxdu

901

2uaAaJd 02 pap!AoJd SC Leas JadoJd e 41 aDe4Jns punoJ6 aya 01 pua~~xa ue3 ~a03 lena3e ayl l JpeJ6 paqskU!J JqJ MO Laq (Ill3 51) ‘U i g Ueq$ EIJOUI JOU qqfipq e 02 yuea Dk$das Len33e ayl ahoqe puaaxa p Lnoys Ji3~03 a Loyueur aql *sa L44eq ay$ pu byaq 6u Cuea 13 2ktuJad 01 aa Lye aya pue 2a LU c a~ y>oq JJAO pa3eLd K~Lensn aJe sa ~oyue~ l papkAoJd aq plnoys sa[oyueur ‘yue? 3~1 -das ay$ 40 aplsui ayl $Dadsuk 02 sueaw e pue ssaxe ap!AoJd 01 JapJo UI

l aweuo4Jad LleJaAo aAoJdlu!. pue KJessaxu s 1 spb LOS 40 Jno-dlund aJo4aq spokJad 6u ~~JoM Ja6uo 1 02 pea 1 suo~~ cpuo~ asay ‘SP& LOS A$tsuap -MO 1 6t.i~ ~1$as ~04 2s ixa suo~~~puo3 Jatwq ‘snyq ‘pue ‘quauqJeduo3 ~a.4 ay$ saop ueyq i33ua LnqJnl ssa 1 t,Q !M pue a?eJ J~MO 1 e Ae peal 3J LneJp -hj SiL# SJA~JXJJ 3.L JUi!~ JljJ 40 t)SOW l ya~Jedtuo3 T+SJkJ ayl lUOJ4 $Ua -nL44a pakJkJeL3 aye+ S~A!C~~J ~uaur&Jeduio:, puoxs al(l l ssa3oJd i3A~Si36~p ay$ pue JaaeMa3seM ~UIJ~~$LK~ ~0~4 a3uaLnqJna pwnpu~ 02 anp sJn330 sKeMLe pinb!L ayq 41 CM tun3s pue a6pn 1s 40 6u~x~tu was ‘~uaiQJedwo3 3s~ i4 aqt) UI

l ( 1) SyKxtQJedtUO3 ‘S3l3UUO3 02 113 UP 6ubsn pue ‘e&N q6nOJI.Q-MO14 6uLDnpaJ ‘(3SJk4 ayq 40 JZbS ay2 z/l 03 c/l sk ~uauQJedtuo3 puo3as aya ~~uotuwo3) azbs u; lenbaun s$uauQJedtuo~ 6ubyetu rCq paz~ttt~u~u~ aq ue3 6~~x51.~ KJo~eLL~xo l axialnqJnq anJ3 pue uokJellk3so JaJeM :sueatu 0~3 Lq Jnxo ue3 6u .L -x !W l 6u~xp Le3UaIQJedUIO3Ja~U~ 40 uo~~eu~w~la JO uo~~3npaJ ay?. 02 pue ‘UOkae LOSC 3c LneJp/Cq 02 LLa6Je 1 anp aJe uoiJequaQJedt.uo3 40 s$~4auaq ayl

l yuea ~uawpedtuo:, -0143 LeDid,Q e smoys E-g aJn6y l paAOJdtQ 3Je ~PAOLU~J SS pUe a()fJ ‘s~uauQJedtuo3 01~~ paplh&p rC[JadoJd sb yueq e uayfl l syuer+ pa3uamJeduo3 ‘a ~6uls ueqJ JayaeJ ‘a [d 51 Lnlu JOAe4 u6gsap yuea Diadas ui SpUE’J$ ~~ua3ay

6U~JCQUa UlOJ4 a6pnLs pJq.UQS!p-Se6 2uaAaJd 01 pado[aAap uaaq ahey Sa6pa~ pue saL44eq uoQ33 ~4ap se6 40 sad& snokJeA ‘1-g aJn6Cj UC UMOU,S sv

l salpnqs asaq 49 s3 LnsaJ ayq saz!Jeuws E-g a Lqel l (8) 6u idlund ‘$UanbaJ4 ssal ~04 snyq pue ‘uoiqe Lnlun33e a6pn Ls JaJeaJ6 ~04 sM0 1 Le pue satiJey3skp Spi[OS SaSWJX3p a3ua6Jatuqns JaMOLLeljS $k?l# UMOyS ahelj Sa~pf’QS Jay30 ‘yqdap p!nbiL aya 40 ~09 03 lenba aw36Jatuqns JaL?.no ue spuawo~a~ sa~ia -3e.q )p.Iel DL$dq 40 LenueW ayl y6noyq~v n (2-g aJn6~j JJS) pi3piAOJd s .L sase6 a6pn 1s 40 ~UL$U~A JadoJd pue ‘axe Leq sa3eds Jealf, tunx pue

l UeJ6ekp ~04 1-g aJn6ij aas l yadap pknb&L 40 a6eJlJa3Jad e

It 81 91 II 000'1

8E 81 trZ ZT OSL

mm -- zz ZT 00s

LaAal Plnb!l t=+i p!nb!l m-1 ~knb!l tana1 P!b!l --.-CL rC~.~~edez

MoLaa aAOW MOtaa aAoqv 4u pi eLlOiJeJ$auad eUOka3afOJd eUOiaeJ3aUad eUO&C)DafOJd PF-M

t wi a6eqJeg pue a6eMaS ~U~A~~XQJ quel

a6eMaS 6ui~~a3aa yuel

(21) 313jva 80 331 l~llno JO woiioa (INV d01 -10 NOIlV301

c-9 3lavi

. (8) S33VdS 1lV313 39OIllS ClNV WKIS )INVl 3Ild3S

z-9 3m91zl

801

hei!ues

ueld

i

I a----

1

I I

“t

PCm I

b j- I. ---me

I I

1 i-------J L-,---,----,--------I 1

1NVl 3Ild3S lN3W.LtiVdW03-OMl lV3IdAl

c-9 3tin9u

605

*htJadOJd uo~~XJn4 $0~ t tk~ saJrQ3nJ~s ‘Satan0 pue $atuk asne3aq ‘pauie$ -uieuI qou SC uo;Jbsod taha t e 4.~ paJ LedWl aq ue3 a3uewo4Jad yule1 l yuea aq7 ~04 6uLppaq aaenbape ue ap[AOJd 02 pues ~21~ uo,Ll.eAata JadoJd aq2 02 pat tL4we9 aq P tnoqs 3.~ ‘daap 002 6np s .L uo!JeAezxa aqa 41 - Jln330 aou saop 6ui tJlas $eqa OS 1~0s paqJnas ipun uo paDe td aq p tnoqs yue> aql *mamas asnoq aqq 40 uokaehata 2JaAul aqa saq3aeui pue atuoq aqq tuo~4 MO t4 AqkAeJ6 aqenbape SaplAOJd Jeql qldap e 3e pue apeJ6 tanat e uo pa3etd aq yuea aq3 7eqa sk UoLle t teqsuk 40 WatuaJ gnbaJ ~UeclJoduI~ lsotu aql

saJnpa3oJd uo!aetteqsuI 9.2.9

l te!Jnq Jaq4e 3.L JaAo sahoui KJau iq3euI LAeaq uaqM JO uo~qet teqsuk 6u iJnp aljew+ 40 aweqs aq? sazllulu y s kq1 l qa6uaJls

paseaJ3u k qay yule3 auatta3xa ue 6u I3npoJd MOU aJe sJaJnq3e4nuw awes ‘LoJs iq ~006 e peq IOU aneq syueq asay atiqM l fe3ap pue uo ~~0~1~03 02 y,ieqs LsaJ pue cpa$JodsueJ? /Ctisea ‘Jq6.L t LJ~A aJe syueq SSet6Jaq i4 w wSetd l SSeLliJaq k4 pue aua tKqqalCtod apn t3u .L s te IJaJew Jaqqg

'(E) UOkSOJJO3 03 anp (sJea/C 01 ueqq ssat) a4 kt teuo&JeJado 2Joqs e aAeq syuel. taaqs qeq3 saae3 kpu .L ko~s bq Jsed l ta~a t pinbh t aq3 3e aleJo ;Ja$ap SyueJ ‘6~ I’)eo3 aueas ~S~J-IJ~~S~JJ~CI e a2 kdsap ‘JaAaMoH ‘~UaUQeaJ~ JUeJS ISaJ-UO~SOJJO3 -wo JO 6u !aeoD snouyI$ iq sapnt3u i uo La3aloJd qsns l Ae3ap pUe UOiSOJJO3 IS LSaJ 02 a tqP aq 02 Se OS paaPaJ$ aq lSflitI taa$S aql l syuea 3kadas ~04 pasn uaaq seq Jeq$ teiJa$elu 40 ad& JaqJoue s i taayj

l adkd aa tqno pue aa tuc aq? 02 pue aaaJwo3 02 qloq aJaqpe t tk~ aeq2 punodluo3 6u bpuoq e q3cM sad id a6JeqDs &p pue $a tu .L aq3 punoJe teas 03 uayel aq asnur aJe3 l 6ukaseoD snoukiunl kq 40 sleo3 0~3 qJiM uoble tteqsuk Jaqje ssau2q6CqJaaeM ~04 pat&as sb yueq aq? pue ‘(~13 01 02 8) *ui p 03 & 40 ssauy3kqa e aAeq s tteM aql wab4 w ui uwet tww ifsea Jo4 qse3aJd aJe syuea DLldas awoq-tenp!Akpub t te Ict tenJJ iI\ l aJaJD -uo3 si syuea Diadas ~04 te)Jaqeu.! uok$3nJasuo3 pasn Atuolutuo~ qsour aql

*a toqueiu aq2 aAouiaJ 01 6uiAeq anoq$.M uo!qDadsui MO t te ‘01 3a tlno pue r+a tuc aq2 JaAo paDe td aq ue3 sad!d uoL$Dadsub t tetus ‘uowppe UI l yueq aq2 oquk LJlua tequapL33e pue s~opo 40 adeDsa aq3

*qno-dtund yuea qDea Jaa4e a6eurPp JO) paJ3adsuk aq p Lnoqs s3uiof Kay pue saJn~XiJ3s laL7no pue 7atu aq1 *KL6uipJoXe paasnfpe aq ue3 huanbaJ4 uo!JDadsur ‘u~ouy sl aJeJ uobge LnlunDDe a6pn Ls 3~s LJaaDeJeq:, aql awo *a LqeuoseaJ s i sJeaA g 02 E KJaAa a3uo 40 kuanbaJ4 Jno-dlund e ‘qno palJJe3 Lou aJe swJ6oJd uo !aDadsu k 41 l uo~~eLntw~~e a6pnLs pue UVIX 40 saaeJ aq$ auyuJaqap 01 sJearC z KJaAa ueqa aJow ou 40 sLeAJa>uk ae paqDadsuk aq pLnoqs syuel

‘yue$ aq3 40 6uidlund 3ipOiJad tfq SC shya y.iaAaJd 02 h ALuo au l IaL$no aq1 q6nOJqa adeDsa spy Los aJoui pue ‘440 s LLe4 rfwaiDi44a 2uaaeaJa ‘saseaJ3u~ 6u~JnoX a6pnLs ‘sJn33o s iq$ sy l aseaJDap atul$ uoyaJap pue atunLoA p!nb; L aAiJ3a44a aqa ‘saseaJDuk qadap a6pnLs aqa sv l paJ@aJ UaqM spg Los a6pn Ls aq3 7.no dulnd 01 aJn Lie4 e SaALoAuk swa L -qoJd yuea 3!2das 40 asneD au0 l sJearC 01 ueq2 aJotu ou 3seL 03 palDadxa aq ue3 syueq Laaas ‘sura LqoJd UO~SOJJOD 40 asne3aa ‘SJC!a/f 0s JO4 ISeL p Lnoqs yule3 D!Jse Ld JO 'sse L6Jaqk4 ‘aqa~3uo3 pauley,Jleur pue pau6ksap -LLaM v •a3ueua~u~euI au~~noJ aLaT+i~ AJ~A spaau 'aJo4aJaq3 'pue saJPd 6~~~0t.t.i ou seq 9.~ ?eq$ sk yueq Dkadas aqa 40 sa6eJueApe Jofeur aq?. 40 au0

a3ueuaw~~ pue uo!aeJado L’Z.9

l s L La pue saal Jo4 lsaq aJe uoJ L qse3 pue ‘3 !aseLd ‘aLi Ke L3 pa i4 LJ~ r~ l aLqe7. ins qsow aJe s LekJaaw a L44eq aaaJ3uo3 luels IsaJ-p i3e JO sse L6Jaq )j ‘S Le kJaZ$elU 4OOJd-UO bSOJJO3 pue aLqeJnp 40 apw aq p Lnoqs sMoqLa pue ‘saaa ‘saL44ea •~

l sassaJas paziLesoL anpun Z)UaAaJd 03 sy30~ a6Je L qa&M sea&? ui uo~3eL Lecwi& q?y uayeq aq p Lnoqs aJe3 l g

l JaJeM qa)M 6ui ~1~4 Kq SSaU$q6&GQeM ~04 pac)saq aq iww yule3 w ~uowLLwu4 Jaw l paJiedaJ aq pLnoqs 6uiaeoD aq6i’lJaaQM aqq 02 a6eeluep he cuo~rteLLe~suC 6u@na l g

l stua LqoJd ano-duuld ale!A -a LLe 03 ssa33e /Csea qay eaJe ue uk paDe Ld aq pLnoqs yue2 aql l t

l haua LeyJap;Xe 3UaAaJd 03 apeJ6 MO Laq ALJq6) Ls s .L a Loquew aql c)eqq OS paDe Ld aq p Lnoys que2 aql .&

l La klua’)od JaaeMpunoJ6 q6hq qJ;M seaJe U) pasn aq p Lnoqs SJeLLO3 UO~~e~OLj ‘2

‘Jfl330 lceul 6uk Laaas yuP1 aJaqM seayle LIOS paqJn1 -s kp uk pasn aq p Lnoqs saJnq3nJJs qa Ly-to pue qa Lui UOJC asea l I

: apn L3u k suo!qeJap csuo3 Jaq30

l pJqqnJ3S JO ‘paySeM ‘pa?Da4uks&p aq you $snlu yueq 3LJdas aq$ ‘padwd uaqM l p

aaL$no put? aaL@ aql 03 weq 40 ys)J aq$ azklukuy 03 se OS 6uk -dlund ~04 pasn aq p Lnoqs ‘ adhd uokwadsub aql Lou ‘a Loqueu aql ‘2

‘JSiti!M JO lSaq3 punoJe pai3 adoJ &a4eS pue ‘Qddns Jbe JadoJd e Inoq$;M yuel aqa 09~~ LenpCA.LpuC ue JaMoL $0~ op “a’! ‘aLq!ssod uogne3aJd KJaAa aye2 ‘aloqueur aq2 6ulsn uaqM l sase6 34x0$ 40 LLn4 aJe syuea aqa se ‘snoJa6uep AJJA aq ue3 syuea Dkadas olui 6ucqtukLa ‘1

:a3ueuaJukeuJ pue ~011 -eJadO yuea Dhadas 03 6uiuieqJad suogPJapbsuo3 40 3s~~ e sh ~UCMO~[O~

l suoiJeJluawoc) spblos q6hq MeJp 03 S~JOZ~S dwd aq3 liaun aui[ aqa 6uhJaMOL pue aui[ DbqseLd JeaL3 e 01 dtund LLews e 6u~33auuo3 apn Lx1 a6pn Ls 6ugJnseaw ~04 spoqaau Jay30

#6uiLaMol aqq 03 6uk6ui~3 SaLDQJed a6pnLs ifq paysin -u gsbp aq UPD JaReL a6pn Is aqa ‘saanuy LeJaAas Jaq4v l sa L3klJed tunx pbohe 02 a3kAap JaLano aqa puiqaq paJaM aq ptnoqs y3gs aql l yuea aqq 40 wdap p!nb 4 L w we af$n Ls 40 Nap au Mow t LCM we1 aw 40 ~02 -209 aqq oc+ paJaM L pue 6uc LaMoa aa!qM ‘q6nOJ qaCM paddeJM y3kls 6uot v

l pauyuJaaap aq up3 a3kAap IaLyIo aql 40 tuo~~oq aqa 03 a3ue3skp aq2 ‘ ~002 aules aq3 q3 .LM l a La4 sk ulnx aqq 40 luolaoq aql ~0~4 axeas CsaJ Lilun pas!eJ SC yskas aqa pue ‘uoiaksod LewozbJoq e o~uc s L Le4 de ~4 pa6u iq aq$ ‘qetu aq2 q6noJqJ pa3~04 s k ~3~2s aql qeu ultvs aqa 40 urol$oq aqq Laa4 03 pasn aq ue3 aeqa a3kAap tfue qaibt JO ‘pa6ubq uaaq seq de14 paaq6iaM e q3iqM 03 y3gs e qa!M paJnsleaiu aq uix lun3s

l paq3eaJ aJe suok7cpuo3 asay aJo4aq aseaJ3ap 01 ?JeJs KeuJ LeAouiaJ sp~los papuadsns 40 kNIa~3~44a aql l aDkAap JaLlno aq?. 40 luo3aoq aq3 40 l uk 8 u C~$LM s! Laha L abpn LS aq3 (2) JO f a3gAap qaLln0 aq2 40 luoqaoq aq3 40 l u 5 E ukqa iM sk JarCP L tun3s aq3 40 uioA3oq aq2 (1) :JaAauaqM paueat3 aq p Lnoqs yuel aql l at44v wwo w 40 ~34ww aql ub paJnseatu aq p Lnoqs Tunis pue a6pn Ls 40 qldap aql ‘ pa?Dadsug s 1 YU~ e uw4 *padlund aq 02 spaau yuea uaAb6 e uaqM rCLa1 yik4ap auluuaqap 02 LeM lc~uo aqa sk suo!Je Lntunxe uws pue a6pn LS 40 uo!qDadsub Lenlxj

l a3ua6JawqnS pue u6isap laL’J.no pue $atuh JadoJd pue ‘sy.AauQJeduIo3 L Le 03 ssaXX! ‘6ukyJaA JadOJd •SuO~~eAa La JadoJd le slk 1s JO s?Jod qa!M s L LeM tfq paleJedas s~uauQJeduIo3 : apn ~3u .L asaql l aAoqe passn%kp syuea auroq LL~~e4-at6u~s se saJnqea4 uljisap sues aq$ aAeq p Lnoqs SMO L4 Leuo~w2ywi~/ Lek3Jawo3 JO4 sylle1 ~uauQJedtuo3-a LdLa Lnw

l LL3UanbaJ4 pasn aou aJe s3uau&ieduIo3 0~2 ueqa aJocu qqkfi syuel l SUJJZ)StfS LeUO~~n~&$SU~ Ja6Je L Jqq JO4 papb AOJd aq p LnOqS S$UaUQJeduIO3 0~2 qalbt syue2 ‘suo~~e1 Leasuk p Loqasnoq L Lexus ~04 alqeJdaD3e aJe syuel ~UJUQJedu!O3-a 16~ ks qljnoql LV l syueA $uawJeduioD-a L6u bs ueqa sl LnsaJ Jallaq aAk6 s~uauQJeduIo3 0~) 40 syue3 Dkadas ‘LLSnO~AaJd paukeldxa sv

‘(JJ$eM -X)SE’M AJpUneL JO4 LeAOlUaJ qlJ1 L pUe ‘sJaqeMa$saM lueJne2saJ ~04 te~0u.i -a,! aseaJ6 c *a* .L) yuez$ Diqdas aq2 02 a6JeqXip 03 Joked palpueq aq 03 paau Jeql SwaLqoJd LebDads IuasaJd rCetu sJaJeMaJseM Le!.3Jawo3 ‘uoi3ippe UI l s6uipeo L yead se 1 LaM se Aep e sJnoq 91-8 ~04 SMO ~4 JaqeMaqseM sno -nuLquoz leaJ$ 03 aLqe aq OS me qsnu suralsrCs Le~~Jaluwo~ ‘ (sJnoq Jno4 yead aq3 ui sJn330 Mot4 pLoqasnoq Leaoq ayl 40 %gp LLaleui~xoJdde ‘*a* C) SMOL~ alqt?bJeA rCLq6iq alpueq $snur sauroq KLyw4-aLbuks ~04 syue$ DiJdas SeaJaqM l aueJneasaJ Jo ‘KJpunet GaJols 6 Looq3s e se q3ns Jasn Leuo~~n~~>su~/Le~3 -Jaw03 e JO ‘SauIoq LeJaAas aAJas ue3 yuez) DCldas e 6sa3ue$su) atuos UI

LeJauag T: l 8*z*g

JaaeMalseM Le b3Jalutuo3 pue atuoH- b3 try ~04 suoL7eJapksuo3 8.z.g

l stua~sh lesodskp aqa pue ‘sla Lqno ‘sJa Lug 6013 ue3 pue ‘ yuec+ aqa ui apeJ6ap 20~1 L[bM rCayl l yIeA D&Jdas e 0~~~ paqsnL4 aq Jahau ptnoqs (s?$nq aqaaJe6!3 ‘sanssi% lel3e4 ‘sJade&p alqe -sodsip ‘s LaMo7. qa6UaJlS-IaM ‘sauoq ‘~3~4 Gu~yoo:, ‘spunoJ6 aa -403 ‘suiydeu KJeJiues ‘ *6*a) pasodluoDap rCLipeaJ qou sLP!Jaqew l L

*an LeA a Lqeuoha -sanb 40 JJe pue uo!cleJado JadOJd ~04 hessasau qou aJe ‘6ug -dtund yuea Diqdas ~04 paau aqt) aJeuhlu& La 01 UI~QLD q3cqM 40 auos ‘suo!qeJedaJd Jay20 *luawfs aqq uueq 3ou op sJaueal3 uieJp pue ‘ slua6Ja3ap ‘ sdeos ‘s3kqsne3 ‘sarCL ‘ saq3ea Lq 40 squnowe KJeu -[pJO ‘JaAaMOH l uoi$sa6ip a6pn Is paseaJDap pue Gukylnq a6pn 1s asneD rCelu spunodtuo3 qDns l syueq D;Jdas ,,uea L3,, 01 papaau aJe saAkJ!ppe le3iutaq3 ON *KeM Japun sl 2~ a3uo uo{~eJado yueq c)sksse JO aAOJdUI) 01 papaau $0~ aJe saA)>kppe LeiDads l g

Lenp LA cpu .I UJOJ(J pue squaudo Lahap Leuo ~~n~b3su~ pue Lek3Jawtuo3 L Lews uoyI4 JaaeMaJseM JeaJl 03 saleyj pa?un aq2 3noq6noJqq pasn aJe sJaJL k4 pues aua$J +Jaqu c rCu elu 6 ALauaJJn3 l A$ i Lenb q6 cq AJaA 40 STyJan L44a aXIpoJd

1 L Y ‘pa33nJ~suo3 pue ‘pa$eJado ‘pau6 ksap /TLJadOJd 4 1 ‘uo CJeJa L k4 pues yJa?qyJayJ L ‘UMOU~ aualuqeaJ3 JaaeMalseM 40 spoq3au.i Jsap Lo aq7 40 au0 *y.JanL44a teu i4 aq? a6JeqX~p pue WaL Lo3 02 pau CeJpJapun sk q3CqM LekJaJw JeLnueJ6 40 paq e 03 JaqeMa$seM 40 uok?eD k Ldde wm ww 4 aw st2 pauk4ap aq Aew uo ge+q L ~4 pues guard yJayI

‘(01) Gukdlund 40 huanbaJ4 aqa azilu!uLlu 02 paJ!sap aq Aelu a6eJols a6pnLs eJ3xa JO auInLoA Leuo~~~ppe ‘pasn aJe SJapU~J6 a6eqJe6 41

(le6) ~0~4 JaqeMa$seM KLlep = b ( p6 ) yuel aq? 40 alun Lon Jau = A

:aJaqM

bSL’0 + SZT“I = A

Jo rMol4 Q4ep w 40 %SL wd (1 09Z’B) Le6 SZT‘~ Je paaeLn3LeD aq ue3 Q&Dede:, yuea aAiaDa44a lunu~~uy aqa c (pdL 008‘9s 02 089‘S) pd6 OOO‘ST Pue OoS“1 uaawaq sMoU JOj 'MO 14 JJJPM -a?seM srCep Z/l-l 03 Lenba AL Leuuou sk yue? aql 40 &bDede:, aqa ‘ (rCep Jad 1 089‘S 03 OP8’Z) KeP Jad Le6 OOS ‘1 pue OS,! UaaMqaq SMO 1J JOj ‘9 Jaadeq3 3 Lnsuo3 ‘suo!leDi Ldde Leuo~~n3~~sui/Le~3Jatuiuo3 ~oj ‘MOLJ ~6~s -ap aqq au!luJalap 03 pawns aq $snur asnoq q3ea UIOJ~ (rCep/deD/L 0~1) rCep /de3/Le6 Sp 40 aleJ uOi?eJaua6 aqq pue uokaeLndod paaDadxa aqa uo paseq) sM0 L4 paaeuriqsa ~0 paJac+alu rCL Lenp~h~pu~ aq> ‘ paJnseaU aq louue3 Mo L4 Lea03 aq3 4 .r ‘SJaqsn L3 6ulsnoq ~oj l syead MOLJ pue SM~ ~4 rCL!ep a6eJaAe uo s6uipea.i aleJn33e uheaqo 01 paJa2aur aq p Lnoqs MO L4 aql sai2 i Lb304 6u LJs ixa qcj y a Lqkssod JaAauaqM l MO L4 papuaqui aqq Jo4 pazis aq asnur saluoq 40 sJa?sn L3 ~04 ~0 SMO L4 Leuo~3n~~~su~/ Lei3Jaurluo3 ~04 syueq Ja6Jel

u6isaa Z*8*Z*g

‘b-9 aJn6bj ui woqs s 5 s~uauQJedwo3 0~3 6u ytuo4 suo~~3as ylea lse3aJd Jno4 40 liun v *squats -&teduroD OM~ pue SLLen-pua aL6uks 6uiAeq $,Lun e olub Jaq~a60~ suoiq3as yue? LeiDads JDauuoD 03 s c ‘suoi3eLLeasui a6JeL JO tunlpatu ~04 ALJe Ln3ka -Jed ‘auaUa6ueJJe uokJDnJ3suoD Jaq$aq v l sakJas ub syueq aJour JO 0~2 6uisn rCq paysi LdMo33e aq ue3 yue3 yJatQJedUIO3-a LdbJ Lnw e 40 lDa44a aql

aloH uogaadsul *e!a ,,ZL

ueld .

r ------- m-w----- ---w--- II--------v

I

0

1 I

I 10

I I

I I I

I 0

I

I

-L--e-- ------I I I -----a- ------- 1

(01) NOIlV3IlddV MO7 39tiVl llOzi 1INl-l 3NO OlNI a3NI8W03 SYNVl 3Ild3S Xlti3N03 a33tiOzlNI3'tl lSV33tid LillOzl

JadoJdwi ue 09 Ict !JeWbJd anp s i 6u ~660 t3 te3 ~60 to ia l (‘tl) suo !qeJado Ja$tM awos UC WatqoJd 6u ~66013 aqa 02 a2rtqi~quo3 OS te &II JaleMaqseM u .L s te!Jaaw 40 At) LaJeA e 40 uo LJdJospe pue ‘uo !.$etn6eo3 ‘uo iJel!d LsaJd aql •SD~~S !JaJDeJeqD sp ktos papuadsns JaqeMalseM uo pue ‘ekpaw Ja$ t i4 aq2 40 La LSOJOd pue az is u Led6 uo auapuadap s b $1 l pues aqa 40 a3e4Jns aql uo JO u LqT !M s te LJaJw p i tos atqeqs 40 uo iqetnwn33e aql Kq pasne3 At tewJou s 4 6u ~660 ~3 teDisrCqd l sJoqDeJ Le346o to iq pue ‘ te3 LwaqD ’ te3 CsKqd rCq pasne3 aq &w 6u ~660 13 -60~3 QtenauaAa rCew JaILi aqq pue ‘LL~J rCew su keJ6 aq$ UaahQaq sa3k$sJaau b aql TeqJ pu i4 02 6u us IJdJns Lou Sk 7.~ ‘Ja~eMa~seM aqq uk ste~Ja~ew a?et.LwLsse pue ‘qJos ‘deJ3ua sJa’)t.LJ a3u.L~

l swJoM p .L tauue 03 12 IJaq3eq au woJ4 ‘Jaqt.L4 aqZj ukq~k~ 6u~qEJadO stahat 3Lqdo.Q 40 a6ueJ peoJq e SC aJay l /CtJadoJd aqeJado 02 tke4 p tnoM ssa3oJd aqa ‘Jaa t ~4 aqq u .Lqa CM q$Mod teDi6otoLq rCq steiJa$k?w paqJos pue paJaqtL4 40 uo!.qet!.wisse aw ww .LM l Jaa t i4 Jqq U LqJ IM 6u kJJn330 SUO C7eWJO4SUeJT& tP3 kwaq30 Cq aql uodn auapuadap SC sJaaeMaJseM 40 yameaJ2 tn4SSa33nS ‘JJAaMOH l s te!Jaaew awos 40 teAowaJ aqq u b atoJ e srCetd os te uo L$dJos te3 Cwaq3 *su CeJ6 ekpaw aqa u iq3 .LM s teiJa2R.u p ktos 40 uo ~~e~uaw~pas pue 6u ~IJ CeJas teDisrCqd ap!AoJd SJaqtij l Kepoq uaAa poo$sJapun ttaM Lou pue xatdwo3 aJe SJaat k4 pues auaaa LwJa$u k Kq pau ,LeJ7.e uoiqe3 ~4 LJnd 40 sws kueq3aw aql

‘(SJJ2L,I4 6u iqe tnDJ CDaJ) Juan t44a JaT t ~4 40 uo ge tnDJ LDaJ stfo tdwa uo IqeJJ t ~4 u L adaDuo ~au rCtaA iletaJ v l ( sJaJtk4 pa!Jnq) punOJ6 aqa ui pa!Jnq aq &UI JO ‘ (sJaq t L4 uado) ssa33e aaJ4 ap LAOJd 03 pau6 bsap aq APUI seal. t cj

*paq aq2 40 aDe4Jns aJ LJua aql poot4 02 se OS 6u isop Icq pau Lelqo ICL tewJou s 4 uo kJnq CJAS .Lp WJ04 yn l sq6no.i~ JO sad id uo klnq ~~2s kp q6nOJqa paq aqa 40 aDe4Jns aql 02 Kt~ua~~~wJa~u b pa Ltdde sk Ja>eMa2seM *a t!J 6u !aDa t to3 pue taAeJ6 papeJ6 Icq u LetJapun pue daap (~13 ~6 03 Tg) l u k gE 03 pz s te,LJaJew JetnueJ6 40 spaq aJe SJalt k4 pues $ua~~~wJa~uI

l sJaaeM a3e4Jns JO puet 07 tesods Lp JO asnaJ 03 Jo LJd (paJLnbJJ se) uok33a4u is .Lp /cs paMotto aq p tnoM pue sassa3oJd auawqeaJ$ 3 CqoJae JO yue2 Dk$das ~0~4 sluant44a qs k tod 03 PJSfl Jq p LllOM IJ 4 ‘tfL teWJON l a3ueuaau LRII pue Uo~~eJado 40 wnwy kw e saJknbaJ la/C ‘quai i44a /ctq6 kq s i ssa3oJd aql l tesods kp pue viaw3eaJ3 JaJeMaaseM aa csuo 03 paqkns ttaM si uoi$eJ3ti4 pues 2ua33iwJa3uI

*(ET) Jetndod awo3aq oste seq spuod uo C$ezi tiqeas 6u ipeJ6dn ~04 sJaqt.14 pues JuaQ kwJa3L.J c 40 asn aql l sawoq

saJod aqq ULqakM ua6Kxo 40 L~~LLqeL~eAv l JaJ L c4 pues y.ia22 LwJaJu L ue q6nOJqq uo k$e3kJ@nd Ja~eMa~seM 40 aaJ6ap’ aq$ 73a44e JeqJ suoc$ ~puo~ Lev.iawuoJ~Aua 3ueaJodwi C&SOW aqa 40 0~2 aJe aJnaeJadwa3 pue uo kJeJaeat(

l Jaq ~i4 aq2 40 .sDiJs CJa$DeJeqD u6 Lsap aq2 (E) pue ‘JaJL i4 aqa u kqq !M suo~~cpuo3 LeJuawuoJ CAua aq7 (2) ‘Ja$l c4 aqq 01 pa; Ldde JaaeMaqseM 40 Icq k LkqepeJGapo iq pue adL3 aq2 (1) :uodn quapuadap s L JaJ 1 k4 pues qua12 !wJayJi ue Kq pau kelae uo LJezi L iqeqs 40 aaJ6ap aql

l wa>slCs aqa ~0~4 rCeMe sa3Jnos asay ?JaAip 01 saJnseaw a)e !JdoJdde 6u LJ LnbaJ ‘a3uewJo4Jad 02 Le~uaw~J>ap aq Kew swa~sffs JaJ -L!J pJ6JawqnS uo 44ounJ pue LLe4uieJ uuaJ-6uoL aA[ssaDxg l JaqleaM 6~1 -zaaJ4qns 40 SporJad papualxa qay seaJe UC paJknbaJ aJe sJa7.LL4 paJaAo3 l saLqea Ja?eM q6cq JO 13oJpaq MoLleqs Lq paqeJ3ip uaqM punoJ6 ahoqe pa~3nJ~suo3 aq Lew y’iq ‘punoJ6 aqa ui pabJnq (KLalatdwoD JO) LLLe~~Jed uaJ40 aJe sJa3iij l s6u~ LLaMp ~0~4 ssa3oJd aqa 40 uo~3e Los 1 aJ LnbaJ k?W y.Ian L44a yue3 D;ldas 6IJkAka3aJ sJaq Lc4 uado ~0~4 SJOPO q6noqa Le ‘SJaq 1.14 pues ~ua~~yJa~u~ 40 uo!qeDi Ldde aqq blurs L aou p tnoqs sluLeJ$suoD aJLs

l sJaleMLeJ6 paqeJJJaJd qJ;M paAaiq3e aq ue3 sunJ Jaq Lb4 Ja6uOL pue SaJeJ 6ukpeoL Jaq6iq aeqq a3uapkAa awes sk aJay l paLoLdwa LLsnoa6eyJeApe aq LeW sJalL.14 PUPS ~UaZQ~wJalu~ 03 SJaleMh?J6

pa?eaJaaJd 40 uobJeD!.Ldde aql ‘a$ep 02 6uilze~ SC a3uaLJadxa pLai4 ahis -ualxa q6noqa Lv l sunJ JaqLi4 Ja6uOL pue uo~~e~~ Ldde JaqeMaJseM 40 sa?eJ aLqeqdaDDe Jaqfigq UC sa[nsaJ lCL[euuou sassa3oJd Le~~6oLo~q 3bqoJae /cq $uaweaJqaJd Leuocq Lppv .wnwiukw e se paJinbaJ aq p Lnoqs syueq Dkadas l uo~~e~uaw~pas Lq aseaL Je paaeaJaaJd aq pLnoqs sJaqli4 quaJJyJaJu& aql 02 pa! Ldde JaJeMa?seM aql ‘S6uc 1 LaMp 40 sJa?sn L3 pue sawoq at6uks 02 atqeDb tdde s .L ssa3oJd ayl •&~L5qet~eAe pueL Icq paJkw!L si azts s31 l Lesods ip alksuo 03 paIdape 1 LaM sk uo!aeJa Lk4 pues >ua?llwJaJuI

l suo~~~puo3 Le~uawuoJ~Aua JaaLk4 pue ‘elpaw 6ukJaALi4 aql 49 s~L~s~Ja~~eJeq~ ‘uo~~e~~ Ldde JaJeMaaseM 40 aleJ pue poqqaw ‘SD!> -s ~Ja~~eJeq~ JaqeMa$seM uodn Juapuadap s k ws iueqzaw 6u 1660 13 aueukwop au l paq Ja$Lk4 aq3 yK)q6nOJq$ KLsnoaueq Lnwis Jn33o KLay!t 6ul66otD aJod 40 SWJOJ LLV l 6u~66ol3 Jaq ~14 sa~eJaLa?3e Ja?. [.i4 aqa ukq$kM s$ueu -kwe?uoD Ja$eMaaseM paddeJ?ua 40 uo!lksodwoDap 40 aaeJ aq2 ul aseaJ3ap e pue saw! Is LeDkBo LoLq 40 uo;lelnwnDDv l sa3ue Leqw! Le kqoJ3iw 40 sasne3 ICLay! L ISOW aqa aJe saJnJeJadwa2 Jai Lk4 u .L aseaJDap pue ‘ua6Kxo paAtoss[p 40 a3uasqe ‘6urpeoL 3yJe6Jo q6kq ‘Ja~eMa~seM aqq UC sJuauodwo3 3~x01 l Jaq LL4 ay? uLq$hM uokqe tndod LeDtGo toiq aleD!J$uL aq> 40 a3ue Leq

adeqs aqa uo luapuadap s .L s iqa ‘2uaJxa 6uk3,1wi 1 e 01 *Ja$eMaJseM aq2 ui Jaytew 3iue6Jo 40 uob?epixo pue uogdJospe aq? uodn luapuadap si eipaw Je LnueJ6 q6noJql 6ug)eJl Li4uL Ja~eMalseM 40 uo~~e3)Jgnd *sue CaeJn6 k4 -uo3 Je Ln6ue pue ’ Len0 ‘pun0.i apn LCUI~ suieJ6 ebpaw Lenplhbpu!. 40 sadeqs

l sa6e Jaq[ c4 aq3 se UO~J cpuo~ 6u ~660~3 snoi*las e 02 peat /cew Inq ‘pues a@ 40 A$L3edeD uOCJdJOSpe Le.Lapd k aqa aseaJ3ui &UI LeCJac)Pw 3Lue6Jo JO 6auo~saw~L ‘we0 L ‘hL3 Ku\ l %& paa3xa aou p tnoqs JaJ$ew alqntos pi3e Leloq pue ‘~1 ueqq ssal aq ptnoqs JaJaew 3p~e6.40 LeJol .JaleM u .I a Lqn~osu c pue atqemp aq p Lnoqs pa33a Las e4paw au l s6u it beA LeJau kw pue ‘uoqYce3 pa$eA it)3e ‘a$ buaw L k ‘T$auJe6 ‘aa k3eJqlue apn~3uL pasn uaaq aheq leq$ pues ueql Jay30 eLpaw JeLnueJg

l o*p ueql ssa 1 aq p Lnoqs KL Leuuou ekpaw Ja2 1.14 3uaJJy.ua3u~ ~04 (37) wwk44ao~ &4~04wn l ww s.1 XLaJewcxoJdde 01 dn ww sz.0 40 wnw~u~w e ~0~4 a6uPJ sazhs ahkJ3a44a ekpaw JaaLh4 papuawwo3aa l (oz) (sr)(sr)(~1)(or) aJwJwt am w 3wa wv444ao~ rC34~044un pup az4s ah;aDa44a aqa ~04 sanleh paqsa66ns hew l ww El’0 ueqq Jauh4 aq pLnoqs e hpaw aql 40 %I ueqa avow Jou 7eq3 papuawwo3aJ (gT) a3rCoa pue (51) Lpp~ w 4~e3m.4~ l s Le kJac)ew auk4 40 343s ~Ja~3eJeq3 6uogeJn~es he L L,LdeD 40 a3uaqslxa ayq pue AaiDede3 3i LneJpAq MO L aqq 03 anp si sky1 l 6ub66o 13 Jaqti4 rCLJea 03 peal 111~ pue SpaJaJ Lk4 AL Ln4ssa33ns aq Aew qeqq JaJeht -aaseM 40 Kqbauenb aqa s~~w~l eipaw e au!4 001 ‘pauke3le 30~ s .I ~0~3 -&sodwoDap Le316o Lokq a?enbape aJaqn $uiod e 02 JaqLl4 aqq q6noJqa JaaeM -aaseM pab Ldde aqa 40 awla uo!auaaaJ aql sJaMoL asJeo3 002 SC aeql eipaw Je LnueJg l $uan [44a Ja$ ii4 aqc) 40 KJk lenb aql pue ‘Jaqaew aaeLmk$Jed 40 qadap uoiJeJ?auad aq$ ‘uo!.JeJa L 14 40 a>eJ aq$ ‘palla 1 c4 aq lcew leq$ JaJeMaaseM 40 &kauenb aq? saDa44e egpaw YteLnueJ6 aqa 40 azks aAkaDa4 -43 au -4 Las7 .L ueq3 Jauk4 goI seq q3hqh az ls aq3 03 4 Lasai ueq$ Jau k4 $q6)aM Aq %og seq Z$eq% az)s ukeJ6 aq7 40 OkqeJ aqq sh Jua!.3&44aoD Lakw -~04iun ayl l JaLLews aJe aq6iaM Lq f&()1: Jeqa qms ‘s.ia~aw~~~yu ug ‘uCeJ6 aqa 40 az is aq3 Sk az us ahb73a44a aql ,;auai3i44ao3 &~wJo4~un,, pue ,,azis aA&33a44a,, 40 swJa$ UC passaJdxa aJe k)ykAo4~un pue azls eipaw Jaq -L!d l su;eJ6 aqq 40 Q~wJo4 yn pue az)s 40 a3ioq3 JadoJd aqa uodn auap -uadap s b eipaw 6uhJaq Lc4 e se LegaJew Je LnUEJ6 e 40 asn Ln4ssaDDns aql

l Mo[aq paJuasaJd SC salqeb.teA asoya 40 uokssrmkp 4a;Jq v l sJaaLk4 $uaqaguJaqui Aq JaJeMalseM 40 UOi3e3!4!And 40 aaJ6ap ayt) s33a44e OS Le SaLqebJeA u6Lsap ssa3oJd 40 uoi33alas JadOJd

l eqaw pues aq3 u cqr+ LM JaqeMaaseM 40 uo Lqez i L kqels 33 01 a2nqkJ3uo3 2eq3 sJoq3e4 Jay20 pue 6 sws cu eq3aw uo !qdJospe ‘sue ka3eaJ Le3 iwaq3 ‘q?Mo~6 Le,rqoJ3kw 40 a$eJ aq2 sy)a44e /CLqDaJ !.p aJnqeJadwa1 *JacleMaqseM aqq 40 uo g !sodwoDap 3 hqoJae aqq ~04 sMoL te

aqa uk pauh4ap /CLJeal3 uaaq JaL 10~ seq ‘JaAaMoq CaaeJ 6uLpeoL Dkue6Jo ue GuLqskLqeqsa d~qsuo~~eLaJ ~3~~~s v l ~UJ~PaJ$aJd 40 aaJ6ap aqa qJy@, aseaJ3u) SaleJ 6uLpeot a[qeMoLLv l JaaeMa$seM 40 adQ JeLnDkJJed e ~04 uaAl6 uaa4o aJe Kepoa SaaeJ 6u)peoL 3itneJpLq palsa66ns ‘s;qa ~04 Juno33e 01 l (tz)(tT) t-q Jaw4 w ~4 Lwaw We6Jo aims 40 uoilelnwnD3e aqa uodn auapuadap seM sJac+Lb4 pues ~ua~lyJa~u~ 40 a3uew -JOJJad Jqq Z)eqC) pun04 SJO~e6~~SaAll; A\Jea ‘JaAaMOH l aJnaeJaJiL aqa ui palJOdJJ uaJ4o qou aJe saleJ 6uipeoL 3kue6Jg l awil 40 qaljuat paleu6isap e Jan0 paq JalLk4 40 awn~oh gkun Jad paktdde Jaqlew 3kUe6JO aLqnLosu~ pue a[qnLos 40 qunowe aq$ se paui4ap aq Lew a?eJ 6uipeoL 3bUE6JO aql

ST 02 5~00 ~0~4 a6ueJ QLewJou Layi '*Jac)eMaq M 40 adL2 aqa PI%? pues '(P/$$" 9.0 03 E'O) 24/pd6

40 azks aAiaDa44a aq$ uodn puadap pue aJrQeJa$~L aql. Jnoq6noJqq LJPA uoiaeJaLi4 pues ~ua~3~wJa$u~ ~04 SaqeJ 6ukpeot papuawwo~aJ 40 SarILeA l /cep/w3 JO ‘ 34/pd6 se passaJdxa KLLewJou sk 6uCpeot DhLneJprfH 40 qq6uaL pa&?u6ksap e Jaho JaJLk4 pues aql 40 EaJe a3e4Jns aq7 a ,zytii -de pknbk~ 40 awn~o~ aqq se pauL4ap aq rCew aqeJ Gubpeo~ ~.~LneJplCq aql

l JaaLL4 aqq ~noq6noJq~ 6uk660[3 LeuJaJuk 03 anp JaJLi4 e qDns aqeJado 03 JLn3!44kp aq /cew ai Jnq ‘atqeJoAe4 qsow aq? aq 02 hLLeDiY+aJoaqZ) SJeadde auk4 JaAo asJeo3 40 3UJWa6UeJJE Pipaw aql

l WaLqOJd sky2 saziwkukw 0.b ueq2 ssa~ 40 317 e qai~ eipaw 40 asn aql l ws&ueq3aw 6uruleJ3s aJaw e 03 Ja3 -Lk4 aql 40 uokl3e aqq sa3npaJ pue ‘6~1~660~3 Sa~owoJd ‘uol7epkxo S$~W)L 6 Leas JaJeM e se sl3e auoz paqeJn$es sky1 l JaleM qakn paqeJnAes uiewaJ 02 LekJaJew au14 aq? 40 sJaKe[ woJJoq aq2 6ubsneD rCqaJaq2 'ebpaw auk4 aqq 40 Ino JaJeM aq7 MeJp $0~ LLLM e!paw asJeo3 aql '(1~) SaJod Ja6JeL aqa ui JaqeM aqq 40 uoCsaqo3 40 qunowe JaMot aq> 02 anp qeaJ6 se aou sl JaaeMaqseM 40 uo~~3eJ~~e pJeMuMop aqa ‘sJarCe1 asJeo3 ahoqe paDeLd sJaKet e!paw au14 bu!,Aeq paq e UI l slekJalew le3oL uc suob$eiJeA pue Sa3!$3EJd uoi$3nJlsuo3 01 anp uaq40 Jn330 qou saop ekpaw azis aAkl3a44a au0 40 paq snoaua6owoq v l uoiqeJapksuo3 u6ks'ap lueaJodwi ue osLe si paq JaaLi4 aq2 ~noq6noJq~ subeJ6 40 sazis auaJa44kp 40 2uawaDeLd JO $uawa6ueJJe aql

l 3n aqq Kq pazkJa23eJeq3 sh q3LqM ‘subeJ6 aq3 40 uo!.$rlqlJ~s~p azis aqq UO luapuadap aJow Sb 2.L ‘JaAaMOq fuLeJ6 aqa 40

‘U cw OE /fJaAa a3uo 40 huanbaJ4 6u !.sop e rCo Ldwa q3kqM c (bz) s kou it 11 IJ~ swaask JaJ 1.~4 pues 6u~~etn~J~~aJ uk pasn KLLn4ssaDDns sk IdaDuo 6u~sop aLd k>Lnw S4Yl l (&Z) &I Jad a3y puoKaq paseaJ3uk sb 6u !peoL 40 huanbaJ4 aq$ uaqM paseaJ3uk KLqeiDaJdde SC ww gp.0 ueqq JaaeaJ6 azis aAklsa44a ekpaw q’) y SJaZj L i4 40 hua .L3 i44a LeAowaJ 008 aqZj Jeqa papnt3uo3 pue s6u csop a Ld ~1 tnw pa6le6 ilsaAu b sa hpnls ep CJO [j aql l rCep/l 40 huanbaJ4 6uksop e pasn saipnqs JacLJea aq3 40 Jsow l luawa6pn[ u6 isap a LqeJap IsuoD 03 uado SC sJa$t k4 pues qua32 LwJay L 6uksop 40 huanbaJ4 aql

l uo~~nq!J~s~p aLi Lotdwa pue aae4 -Jns pun&i6 aqq MO Laq 3 L,Lnq ua340 aJe LepO$ asn ui sJa7. [b4 qua31 ~WJa~uI l spoq$aw uoQnq~J3slp rCeJdS JO MoJJn4 pue a6pbJ palCoLdwa ALLeULiOu leqr+ salun a3e4Jns aJaM JaleMa>seM LedkDkunw ~04 sJaaLk4 pues LLJel l spo -qlaw uoi3nqiJ3sbp rCeJds pue ‘6ubpoo~4 aDe4Jns ‘uo~~nq~J$s~p aLi3 uceJp ‘uoiaeD!Ldde MoJJn4 pue a6pg aprIlDug pasn uaaq aAeq $eqq spoqaaw 6ulsoa

eelpaw JasJeo3 JO4 sasop JaL mews q7 .LM JalPaJ6 aq p Lnoqs Jnq ‘azks e!paw uodn Auapuadap s .L huanbaJ4 6u ;soa l uo LJnq !J~S kp a$enbape 6u LJnsui KqaJaqq 6JaleM 40 (~13 8) l IJ i c 2seaL ale q7 .LM a3e4Jns Jai L k4 aq3 poo ~4 IC1a.i ,Lqua 03 q6noua a6JeL sasop uk pa itdde s .L JaJeMaqseM ‘sJa’l[ i4 clews ~JI l suo 5% cpuo3 3 LqoJae u ieqqo 03 sa6esop UaaMJaq pap ;AOJd aq 0s Le Jsnw 6u ;$saJ 7uai3 !44n!j au0 ia3as-ssoJ3 Jai L b4 aqa anOq6nOJq7 JaqeMaJseM 40 uo ianq ~Jqs kp wJo4 iun aJnsu c 02 pau6ksap aq asnw waqstfs aql l ssaDoJd aq2 40 aDuewJo4Jad aq3 03 Le3g ~JZI s; SJaq ~44 y,iaqq kwJa2ui 40 6u iso(I l JaJ ~44 pues l.ualJ LwJaqu .L aqq 01 JaqeMaqseM 40 uo !leD !Ldde 40 spoqaaw 02 Ja4aJ sanbyqDa$ 6u pea

huanbaJj pue sanbguqDa1 6uisoa g*~*~*g

l KJessaDau sawo3aq Juawa3e LdaJ e ipaw aJo4aq e;paw aJow 40 LehowaJ aq? akuuad pue 6 (1~) aLaw MOUS ~0 L Le4ukeJ rCq rCLaJaAas se pal3a44e Lou aJe ‘La 1 Lenb Juan L44a aueJsuo3 aJow e a3npoJd 01 pua2 spaq Jadaaa *MO 1 uoi$e L Le$su i 40 aso3 aq3 daay 01 sd Lay spaq JaJ 1 c4 #o L Leqs 40 asn aql ‘(~13 ~01 03 zg) l u!. zp 03 vz ~0~4 a6ueJ Lepol pasn sqldap eipaw asow l aaJbap ~ue~~4~ub~s he 01 uo~~e3~4~Jnd JaaeMaJseM aql aAOJdWL qou P LP q’ldap paq Lewww l PJq au 40 (~3 OE 03 ~1) w zt 03 6 do3 w uiqa!M paJJn330 JaqeMaqseM 40 uo~7e3~4~Jnd aqa 40 pow Jeqq (1z) uo!Jeqs LeluawhJadx] a3uaJMei ay7. Je pazbLeaJ uoos sew 2c ‘JaAaMoq :$aa4’ 01 02 t aq 03 pau6 Lsap AL Le!J lui aJaM sJa3 Lb4 pues Juaql yJa2ui 40 sqldaa

OZ'I

Jaq4e s Lkos Kpues u .L SWa~S/(s uo!JdJosqe ~04 SaleJ 6u kpeo L 03 Jet cwks sk anteA sky1 l saDuap CsaJ au !J- L tn4 ~04 (~/zw/~w vo*o) ~34/pd6 0.1 ueq$ ssaL Jo 03 Lenba ICLLewJou si sJalLi4 asay 40 6ubpeoL DILneJp&

pues Jua$$ LwJayi c aDe4Jnsqns ~04 eiJa3 kJ3 u6ksap SazLJewwns L-g atqel

sJau4j pawa 1*9*r9

‘(82)(61)(Z) WWPadsaJ ‘swJo4 -4 ~03 Lew3 pup wa4 ~04 ~w 001/000‘00~ 03 000‘1 pue tw 001 Jad 000‘~ 01 001 wool4 6uk6ueJ sanleh ?uan l44a 6uimpoJd ‘~60~ p 03 z rCq ~~04~ LO:, LeDa pue LeJol 6u~3npaJ 40 aLqede3 aJe sJa3 114 3ua~~bwJa~uI l pues wn -ipaw e 02 apew aJaM ($$aj pue &)Z[y IJ~ q6Lq) ,,pnw paJ,, %b 40 suoka[ppe uayM 806 02 dn 40 SteAowaJ snJoqdsoyd pa$todaJ ‘ (EZ) *La 2a ‘SapUEJa Pue (81) AJqP”‘oq3

l LeAowaJ snJoqdsoqd lueDi4ku6ks aXtpoJd h!w pups aqa uiqa!M pax!wJaJuk stekJal.ew UOJ~ JO wnuiwnLe-q6bq Jay30 JO puss sno -aJe3te3 40 asn l MOL s.~ uo~~eJn~ew Jaa4e LeAowaJ sndoqdsoqd se LLaM se pues aqa 40 asow 40 Kq bDede3 a6ueqDxa aqa qnq fpues uea L3 uk %og RLaaew -LxoJdde 02 dn pampaJ aq ue3 suoL?eJ$uamo3 a?eqdsoqd-oq?Jo pue Lea01

l sJa$ L ~4 luaa2 !wJaJu k pa3eJado LLJadoJd u 1 Jn33o p Lnoqs uo kqe3 k41~3 iuap ou JO at73Ll l Lie4 saJnJeJadwa$ se sqluow Jaquy+t u i aseamap /CEUI uokJe3.L4 LJJ bu 40 saaed l 3iqoJae su CewaJ Jaa 1 i4 aqq pap !AOJd ~~04 aJeJ3 cu aqz$ 03 Qa3atdwoD Isow Le pawJoJsueJ3 si ua6oJl ~IJ ‘AL LUllJON l sp LLos papuadsns pue Saga 07 23adsaJ q7 LM sy.iant44a LJ b Lenb-q6 by ampoJd sJa7 t 44 ww 4w-wu 4 w-i3 wwsn L t 4 sa iv3 asw -9-g pue ‘g-g ‘b-9 atqel ub SJeadde sJaqeMJse# p Loqasnoq 6u~aeaJ3 sJa3 L ~4 pues >uaTl LwJayJ i paaDa Las 40 aaUewJO4Jad aql 40 hk?WwnS v

a3uelwo4Jad Jaq 15 j g*c*g

.aJn7eJal k L aqq u k pays k Lqeasa rCLJea L:, uaaq Lou seq anb!uqDal qDea 40 ssauanitlDa44a aql *e&paw uPaL q3LM 2.~ 6ukDeLdaJ pue eipaw aDe4Jns do2 aqq 6UhAOWJJ (E) JO ‘JsnJ3 6uk>kqcq -u .L aqq 6u LyeaJq snq? pue JalCe L a3e4Jns aq7 6ubYeJ (I) ‘awk$ 40 pokJad e ~04 paq aqa 6u!JSaJ ( 1) :apn LDuk asay 40 awes *pa660 L3 sawo3aq paq aq$ uaqM parfo Ldwa aq lCew paq Ja> Li4 aqq uieauiew 01 sanb kuqzaa sno!JeA

ET tJ

&I I

2 21

2 E

&2 PS<

E2 PS<

EZ 9E

&2 S’ti

I2 ($1

12 @

12 q6 - 9

I2 q6 - 9

o-1 9'9

O'P S'O

PE &'O

sz &

11 &

EI 01

22 2

61 S

EE 2

62 2

YV E

2E 8

L/bu’ L/6U

$iFi -i&iii

9’6

E

6

P

6

9E

8

9

P-6

2

E

8

P

82

E

9

e81

eL1

eI1

eE2

I

I

9-E

9-E

t2

2

2

I

A‘ep Jad

*baJj asoa

9E

9E

OE

OE

OE

OE

OE

OE

09

09

09

09

‘lib

udaa

1’6

1’6

8-E

s

t1

L’P

SL’2

o-t1

P’II

E’2

S’b

L’6

L-6

E’E

O'E

61’0

61’0

61’0

St’0

PO’1

to.1

SZ’O

SZ’O

IV.0

LZ'O

IP'O

92'0 - EZ'O

StlUlIzl lN3llIWti31NI SS333V 33&l JO 33NVl4tiOzkl3d

(JalU IM)UOO6el

(JauiwnS)uoo6e~

-Jaw papualx3

yu el 3 whs

a3JnoS

s-9 318Vl

*(weld pd6 oocj'g 03 MOL) pLOqaSnOq) suo~3e~~e~su~ 2~ ~04 a6PJaAv 3

‘MO14 PJQMJO) UO PaSea q

wan tua we3 ~Nas e

p,ban se LZ PaaM - E B

Owi 92 am 3tr’8 30'01 ~18.91

P,bati se t2 wwpw4 - 5 t

*PJ OE haha u~w 9

JI( E-2 L4aAa ulw 02

9E qO'E 0’2 2'1

t72 qO'S - O'E S'E 9.1 - E'O

9E 5’2 0'1 - 9'0

pSil3111~ lN311IbWl1NI 3NIlVlil3tlI33~ JO 33NVW~O&l3d

9-9 37flVl

I@I Jad 1

pua UleaJ~suMoa

03 b/E) WOZjS JO LaAeJfi alqeJnp PaLjSleM adtd paJPJoJJad JO $1.4 COP uado

pua tuea.Qsdn ('U! Ill-T 02 P/l)

aUOC)S paySnJ3 JO LaAeJ6 alqeJnp paySeM JuaWad 0'~ 02 ~'0

adkd paqeJOJJad JO au ioc uad0

( Jlj6 ~C3M Aq Jat)lelU 3bUe6JO 3uaXad 1 Ueqq ssal) Le,LJa3eiu JelnueJ6 alqemp payseM

Gu~soa

Buc7.uan,

fiw~aa ado ts

1~ wvw su LeJpJapun

p www e ww

zwpd6 o*z> zw~d6 O*I>

Leuoseas JeaX t TV

6ucpeo7 D.LI~~J~KH

(2UalPA inba JO yueq D)ldas) uo k?ewawipas - [ahal tunlubu 1~

e IJaa 1~13 u6 pa ET

Sti3llIj lN311IWtl31NI a3Itlll9 tiOj VIt131IXI N9IS3C.l

L-9 379Vl

SIT

aJe saLzzou KeJdS JO Sq6nO.Q ‘AL Leuoksemo l a3e4Jns pues aq7 40 sJauJo3 JO Jaqua3 aql ae paae3o L sa?e Ld qse Lds uo paa3aJip pue sau! Ladkd q6nOJLQ pap!AOJd ua340 Sk uokcwqkJ$sia l sJaJLi4 a3e4Jnsqns ~04 asoy 03 JeLkurks aJe sJa2 Lk4 ssa33e aaJ4 ~04 slua?slCs u!eJpJapun pue s3kasiJa33eJeq3 ebpaw

l ameua3ukeui ~04 a3e4Jns Jai L!4 aq3 40 Kqb L.Lqissame aya 01 AL.LJe@Jd sa2eLa.I sJaqL.LJ aDe4Jnsqns 01 paJeduro3 se sJa3 Lk4 asay uo sliukpeo L a Lqeqdame Jaq6g l (g*E*g uoL23as aas) sau1~3. unJ JalLLJ paJbsap rCq pamanL4u.L aq osLe LLy 6ukpeoL 3kLneJphq 40 ~017 -33 Las *(p/u13 op) 14 p/Le6 0~ se y6bq se sa$eJ ?e pa)Ldde aq Aetu JaaeM -aaseM paleaJaaJd dwnb -why e SeaJaw ‘(p/p/ u ZOO) u/pd6 s 0’~ dn saaeJ $e paI Ldde aq rCetu auan L44a yueq zildas l .bkqs iJa&eJeq3 JaleM -aJseM pue azis ebpalu uodn spuadap sJaqLi4 asay 02 6;bpeoL 3~ LneJpAH

‘8-g a Lqel ui pa3UaSaJd aJe sJaaLC4 ssa33e aaJ4 ~04 ekJaqcJ3 u6lsaa

(6ulae Ln3JkDad-uoN) sJa2 Llj ssamv aaJj z*g*~*g

‘8 Jaadeqz UC Jeadde sail -i LkDe4 JaqureqD bucsop 40 uo!JmJqsuoD pue uliisap uo sL!eqaa l papuawo -3aJ s .L rf~p Jad sauIl$ 0~1 ueya JaaeaJ6 40 hanbaJ4 Guisop v *a L3XD 6u .L -sop aqa 6ukJnp JaJLb4 aJ)aua aya pool4 02 pau6ksap si tualsfs 6uisop aql l ameuuo4Jad Ln4ssacms sli 03 LeDLaiJ3 si JaaLk4 aqa 02 6uisop JadOJd

l 6u kdid uo!qnqiJas kp uo sado Ls ~04 yJatuaJ~nba.i ou aq p LnoM aJay c6uksop q1 .LM ‘%I 01 9’0 ~0~4 a6UW adbd u!eJpJapun 40 sado Ls ‘(u3 9’0 03 8-E) "J!- b/I 02 Z/T -1 uaawaq Sk subeJpJapun aya ~04 auoas ~0 LaAeJ6 aq3 40 a6UeJ az is aq3 seaJaqM ‘ (w z) l u& b/c uey’s Ja6Je L lnq (w g) l uk z/l-z ueq$ JaL Leers ALLensn Sk auoqs JO LaAeJ6 ay2 CsauiL Uo~~nq~J~s~p JOj l auoJs paysnJ3 ~0 LaAPJ6 aLqeJnp payseM 40 l u; 8 lsea L le rCq papunoJJns aJP sauh L u !eJpJapun pue uoi3nqcJas lp ayl *Jaqaluehp (~13-0~) *UC-~ umluiuy e qay adid aukof-uado JO paqeJO4Jad ALLeUJou aJe su!eJpJapun pue uoi$nqlJasba

l tfqc Lenb luan LJJa JaMO L e a3npOJd AL LeuLlOu LL~M pue uo~~nq~J~s bp JaJood IJL 3 LnsaJ IMI ekpau JasJeo3 seaJayn ‘kL!peaJ aJolu 60 LD 02 pua3 L LLM elpaur Jau bj l g’s ueq? ssaL rCLqeJa4aJd pue ‘0.p ueqq ssaL 3n r2 qa!M ultu 0.1 03 SE.0 uoJ4 sa6ueJ sJa1 Lc4 a3e4Jnsqns ~04 ekpaur 40 az cs aAkJ3a44a aql

l paq aqq 40 aDe4Jns aACleJaLi4u .L aqq 6u !JoJsaJ pue 6u .~if~p ~04 aLqeL!eAe aq LLP aw i2 qua k3 i44ns a3u bs (P/zWE~ 80'0) z~4/~d5 o’z OJ paseaJm b aq rfeui 6u !peoL 3~ LneJpkq cuo~~edn~~o Leuoseas qq LM sai$ i LPPJ ~04 pau6isap aJe sJaaLL4 uaqM l pau Leqqo aJe suo .LJ ipuo~ wn CJq .L L Cnba

911

Jaw4 q6ws MO 14 u6isap ~04 parks yDea ‘sJa? L k4 Lena

tfep Jad z ueq3 JaJeaJ6 huanbaJ4 fsaym~ z 03 JaqLi4 poo~j

UO~~rlq~J3S{p JaLYli @ds fSJWJO3 JO Jaaua:, me saJeLd qselds laDe4Jns uo sq6noJl

pua UeaJ>Sdn ( ‘Ul Ill-1 03 WI)

auoas paysnJ3 JO LaAPJ6 alqeJnp payseM yaxiad 0.1: 03 s*O

adCd paJk?Jo4Jad JO ~IJ LO!: uad0

(awJa4aJd S’S>) O’tr> U’LL’ 00’1 01 SE’0

(346 LaM rCq Jalaw 3 ru e6Jo guaDJad 1 ueyl ssa I) Le CJaaeuI JetnueJ6 aLqeJnp paqsefl

z~4/~d6 0.01 03 o’s Zu/W o’s 02 0.1

(aua Lenknba JO yueq 3 gdas) uo gewaugpas - LaAa L lunluku .LM

paa 3 CqoJaV pa’a4 yue) DgdaS

JaqulnN

6ugsoa

~0 wq bw La

6u gush

6~ wwa ado LS

Le wwu su !eJpJapun

mdaa l 44w '4 wn

az gs ah g3a443

paa 3 IqoJaV pw we3 3 Ws

6u bpeol 3 c LneJplCH

Skl3llIj lN311IW31NI SS333V 33tlj tiOj VIti31Iti3 N9IS3Cl

8-9 318Vl

LZI

uado 421~ pre[ LL[PWJOU sb al!‘) aql ‘(~13 01) l uk p 40 Jaaawekp wnwiuhw e qaiM LeCJaqew atqeqdaDDe ue 40 payNtJqsuo3 aq p Lnoqs Saul L ULeJpJapun pue uo ~~nq~J~s la l 6u~poo~4 rCq palqlas 11~4 Je LnueJ6 aqa pue uo!JeAeDxa Jaq4e pa33nJJsuo3 KLLn4aJle3 aq Jsnw JaaLb4 aql *sad id uohlnqkJas ip aya 40 uM0~3 aqq Jaho (~13 51) l u) 01 40 ssa3xa ui JaA03 Lbosdor+ LeJnleu e q? .LM pUnoJ6 ay$ uiy%y pa3e Ld s 1 JaJ ~k4 aql ‘5-g aJn6kj IJ~ pa33idap aJe JaJ Lc4 pues luala &uua$u k pa!Jnq e 40 a Lk4oJd pue ule Ld Le3bdQ v

l luea Di>das ayq 40 awn LoA aya Z/T 03 b/l le pazts AL LPW -JOU aJe sJaqwey3 uoiqe Ln3J L3ad l (w3 s) l u i z ueyl JaleaJ6 03 a384Jns aql 40 6ukpoo ~4 amsu i 02 y6noua q6y aleJ e ae aq p Lnoqs 6uisoa .JY E 03 z KJaAa UbW ()z - suo!~eLLe3su~ Ja6JeL ~04 aLqeJisap aq Kew saL3rC3 6u ~sop Jabuol l ugw ()E Jad ucw 01 0% s KLalewbxoJdde asop 01 Jaw!1 rfq qas aq p~noqs Sdwnd ‘3 LqeJa~aJd Sk (MO Lj pJeMJOj :a L3ha)J) 0laeJ uoby2Ln3Jk3aJ 1:s 03 T:E e pue ‘uoileJad0 aAhl3a44a 07 Le3iqlJ3 SC uoia -e ~ri3~ 1 Dad l sJaaL,r4 ssa33e aaJ4 ~04 asoy 02 Jelkwks aJe sJuawa6ueJJe uo LJnq LJqs cp pue u IeJpJapun l (gz) (Ez) papuawwoDaJ 6uiaq saz 1s JasJeoD ay3 ‘ww S-T: 02 ~00 ~0~4 sh a6ueJ azks ekpaw l azks eipaw uo Guhpuadap (P/~W/~W oz.0 03 zro) z14/pd6 s 02 E ~0~4 sa6ueJ 6ubpeoL vLneJp&!

UOi$PlrDJ y)aJ aqa 07 Juan L44a paJa3 L i4 40 uJn$aJ JO4 UOhS LAOJd I./a !M JaJ L i4 pue lkun JuawleaJaaJd aq3 uaaM$aq yug (6u isop) uo ~~eLn~J~~aJ e Lo Ldwa sJa$ Li4 ssa3ae aaJ4 asaql l (9z)(bz) 6-9 wu 9 PwasaJd aJe SJa3 LiJ pues qua13 !wJaqu c 6u .L3eLn3J C3aJ JO4 ekJa$ iJ3 u6 Lsap PaSOdOJd

l (8*Emg uoia3as aas) 6ui66otD Jal4e 6ubasaJ SuaC3144ns Mo Lie 03 quan L44a yuea Dkadas 6ui’lea.Q uaqM alqe -J Lsap aq hw ‘aaeJ MO ~4 u6Lsap ay3 hJe3 01 paubbsap q3ea ‘sJaT+ 114 Lena l a3ueuaqukew JaILi 40 spoq2aw aq3 ‘aJo4aJaqJ ‘PUP JaJLb4 ayq 40 s3kask -JaaDeJeq3 6~~660~2 aqa lDa44e pab Ldde Ja$eMalseM ay$ 40 SaQJadoJd aql

‘8 Jaad&?ys ul pun04 aJle suoyd!s pue ‘sdwnd ‘sJaqweq3 6ubsop ~04 eiJa$iJD u6bsaa *a LqeJ!sap so Kep Jad saw13 p ueq3 JaJPaJ6 hUanbaJ4 Bu~sop e ‘(WW 5.0 ueq$ Ja)eaJ6) Pkpaw JasJeo3 JOj l Kep Jad saw!2 OM~ ueyq JaaeaJ6 KL Lensn sb huanbaJ4 Bulsoa l u .L z KLaaewbxoJdde 40 qqdap e 03 paq aya 6uipoo ~4 ~04 ap!AOJd p lnoys Jaa Li4 aya 40 6uisoa l suo~~;puo3 3.Laewkl3 aJaAas IJ~ uoiqelrado Jaau;M 6U&np Ln4ssa33ns uaaq sey uokae3L Ldde MoJJn4 pue a6piJ pue ‘ LLaM se paLo Ldwa

8ZT

MeJ s, rfep auo Isea L $e 01 yaleA hnba awnlo~

u ;w 0~ ueql ssat uk yue3 uo ge LmJ gaJ &dwa fu rw 0~ Jad u iw 01 02

s dwnd Isaq~ L Z l xoJdde 01 Jaq~i4 poolj 6u pea

uO~$nq~J$S$ JaLqU LJdS fSJaUJO3 JO JaquaD $e sa2eLd qselds IaDe4Jns uo SybnoJl uo 4w !J7s la

pua WeaJasdn ( ‘UC Z/l--t 03 t/11

auoJs paqsnJ3 JO LaAPJ6 alqeJnp paqsejj 3uaDJad 0.1 03 9.0

adcd paqeJo4Jad JO ye kor uad0

6u baua/,

f3~ was ado IS

wwew su beJpJapun

saw4 9c 03 BZ (a LqemaJd s l E> ) o-t0

‘l’w S’l 02 IT.0 (aq6 LaM kq Ja~~kU Dgue6Jo JuaNad 1 ueqa

ssa 1) LE? yaat?uJ JeLnueJ6 aLqeJnp payseM

wdaa l 44w l 4 bun

az ks ah g3a443

te wvw waw

(~014 wef+f-W zu/pd6 o-s 03 ox

(Jua[eA bnba JO yuea 3 gdas) uo kle>uaw kpas - LaAa t wnluCu k~ 3uawleaJqaJd

Sti3llIj lN311IkRl31NI 9NIlVllTXlI33~ tlOJ VIt131Id3 N9IS3a

6-9 3lflVl

ptnoqs s.tleM JalLk4 ‘paJaquno3ua aJe salewil3 aJaAas aJaqM l JaJeMa$seM 40 ~014 aqa au i4uo3 02 pue ekpaw JaqLi4 aql oluk 6ukqseM woJ4 ylJea quan -aJd 02 cuo~~3nJ~suo3 LJuosew 40 ual4o ‘sLLeMapis /cq papunoJJns LLLensn aJe Layi *aDegJns punoJ6 aql ahoqe LLa$aLdwoD paa3nJasuoD aq oste rCew Jnq ‘~~0s LeJnqeu ayq u~@)M 3llnq uaa40 aJ,e sJa>;k4 asaql l 9-9 aJn6hj uk Jeadde Ja$Lb4 ssa33e aaJ4 Le3kdLa e 40 ali4oJd pue ueLd ayl

l \enul?w SkyI 40 8 JaadPyz ll!. paqbJ3sap a.@ Jaatb4 aya 03 JaleMa>sleM 40 uo!.le3LLdde JadoJd ~04 parCoLd -wa uoydks JO dwnd pue JaqweqD 6ubsop aql 40 uogmJsuo3 pue u6Lsaa

l asJeo3 JaAo sJarl‘e( auk4 q7~~ k4~3eJ3s qou saop etpaw aq> $eyq amsuc 03 ‘JaAaMoq ‘uayel aq qsnw aJe3 l a4iL Ja3Li4 puaqxa 03 pue sJuelnLLod paqDa\as 40 LeAowaJ aqq aDuequa 03 pasn uaaq aApq sLe!Jaqew Jay20 Jo 'Leo3 '6eLs ‘pues 40 saJnJxrH l wnipaw JaaLr4 ~04 pasn aq /cew Jaaqew 3iUe6JO UC MEL sk ley$ LeIJaqt3u JeLnUeJ6 atqeJnp CpayseM Kuv

l JuakDL44ns aq plnon ‘s~L3s~Ja~~eJey~ Lhosdoa uodn 6uipuadap ‘xs 03 E .~la~ew~xoJddt? 40 apeJ6 v l paq JaqLL4 aq? w0J4 AeMe LLe4ukeJ 40 a6euipJp apCAoJd 03 se OS papunow aq plnoys JaqLk4 ay3 Jaho apeJ6 payskui4 aql

.L~osdoq LeJn>pu aqa pue LebJaJew Gukppaq aya uaa#aaq paDeLd aq plnoqs 3LJqe4 a6euieJp JO 'LaAeJ6 ead payseM 'rCeq ysJel*l l sauk[ uo~yIqlJ~s~p 40 6uippaq ~04 palCoLdwa KtLlensn Sl (aZ!S [WD-E-9 03 +'I] 'ui-Z/l-Z 02 -P/f) LaAeJ6 papeJ6 40 (w3 Sz) *us 01 K[a>ewkxoJddy l aDe4JnS pUnoJ6 aql 02 SJaSbJ le3c$JaA YlbM PUa weaJ>suMop ayl qe paJuan aq ptnoqs saukt uo~3nq~J~s~a l sJaJua3 (w 6.0) 345 ae paDeds ALLewJou aJe pue LaAal aq plnoqs saurl uokanq!Jasbp aql

l e,LpaW JaalL4 aql qa!M 6uk3e4Ja>ui (aUO?S [W3 0.1 02 9.01 'Uk+/E 03 -o/T) LaAeJ6 ead payseM 40 (~(3 8) 'ui & 40 wnwiurw e lQ!M U,LeLJaAo aq Kew auo2s JO LaAeJ6 aql '(w3 8’E 03 9’0) ‘UC Z/T-T 03 t/l ~0~4 GU~BUI~J saz;s ql!M auols JO taAeJ6 papPJ6 paqseh (w3 SZ) l ul 01 40 wnw~u~w e QLensn sb saucy ubeJpJapun ~04 LeiJaJew Gukppaq aql l aDe4Jns punoJ6 aql 03 6uLpualxa pua wea.Qsdn ayl Je adid JU~A e LQCM pap!AoJd aJe su!eJpJapun 'Y1P.LM VuaJ7 40 (w 9'E) 14 1'5 qDea JO4 PaPlA -oJd SC au!L au0 pue (~1 02 5.0) apeJ6 01 pbe[ aJe sau!L UkeJpJapun aql

l Ja$lk4 ay3 ukqq!M JaaewaaseM 40 uol33aLLo3 pue uo;Vq!J3sgp aaenbape apCAOJd 11~~ adid paqeJo4Jad Leuoka -uaAuoD 'pasn SC auiladkd snonubluo:, 41 l qJede (~13 &*'I) l ur Z/T ueyq JaaeaJ6 JO (W3 9'0) 'UC v/T ueqa SsaL l.ou paDeds suo~~3as q$y S~U~OF

lU!Or uado JO paleJOjJ+J adiA UOI~~IIO~.

J&l03 pawlnsul -2

~uaUl~ea’~aJd UlOJj

ueld

I . ’ .

. ---- f!L ----. -I-I-- - C .-m--m

aeld yselds 5

ti31lIzl lN311IWtl31NI SS333V 33&l lV3IdAl

9-9 3m9Id

l a3e4Jns eipaw aya 40 uoi$Jod e aAowaJ ~0 ayeJ 01 aw!a sh 1~ uaqM ‘JaAaMoq fsakaln3!44ip a3ueuaaukew aJeaJ3 LL~M a3bzQeJd s lql l uoisoJa aDe4Jns pboAe 03 parCoLdwa aq os Le AeW e kpaw JaJ ~14 aq$ Jaho pa3e Ld LaAeJ6 ead payseM 40 Jade 1 v l Jno3s a3npa.i LLkM saJeLd ayq 40 KJaydkJad aya punoJe paDe Id sauoqs a6JeL JO saqe Ld yse Lds ay$ punoJe sqJn3 40 asn ayl l a3e4Jns pues aq2 apoJa $0~ op a3e4Jns JaaLl4 aqa 02 rC[lDaJip 6u~6JeqX~p Saul\ leql aJnsu1 02 uale? aq lsnw aJe3 l SJO~nq~J~S ip ifeJds JO ‘Ja$li4 ay3 40 SJaUJO3 JO Jaqua3 ayl le paae3o 1 saqe id yse Ids 03 6u k6JeyDs tp saui ladkd ‘aze4 -Jns aqz& uo pbe[ sq6noJl 40 sueaw rCq aq Lew JaJLb4 aqa 03 uokqnqiJqs!a

l e ipaw JaY+LkJ ayl Q~M 6UkDe4JaVJi LaAeJ6 ead payseM 40 (~3 $3) l ur c 40 wnwp~~w e YqhM UkeLJaAO aq ifPW aUOaS JO LaAe.46 aql l (W3 8’s 02 9.0) ‘Ug Z/l-T 02 p/l WOJ4 6uk6ueJ sazbs QCM auoas JO laAeJ6 papeJ6 payseM 40 (a’3 Sz) l uk 01 40 wnw~u~w e aq pLnoys SaLIlL UieJpJapun ~04 LeiJaqew 6ukppaq ayl

l a3eds paJaAo3 aya U)L(J~M yIq ‘aDe4Jns Jaq L k4 aq$ ahoqe ad id 2uaA leD!JJaA e ql .IM paJuaA aq p Lnoqs au; 1 u )eJp y3ea 40 pua wPaJJsdn ayl l a6JeyDsLp 01 apeJ6 %I 01 cj.0 KLaaewbxoJdde ae pado 1s pue sJa>uaD (w-9-E) 34-11 3e paDeds LLleuuou aJe sauk L u!eJa l ~ooL4 JaalL4 aya U~Y~~M q3uaJq MoLleqs e ukqtjb~ pbe~ aq Kew auki uieJp a43 ‘sJaJL.L4 MOLLPL(S UI *auk L u!eJp aya 0% quanL44a paJa1 ii4 KJJe3 02 pwwd Qvi6k ts aq wow YWM ‘JOOL4 Jai LiJ aqa UO ALl3aJip piei aq rCew sau k L uLeJpJapun ayl l uogaDa ~~03 pue uo~~nq~J~s bp ~04 paLo Ld -wa aq OS Le rCew adkd paleJo4Jad leuobauaAuo3 l qJede (~13 ~‘1) l ur z/l ueyf& JaaeaJ6 JO (~13 9.0) l ub p/l ueql ssal qou paDeds aJe s~.u;o~ $eyl 0s p!et LLLeuuou sk all1 ayl ‘(~13 01) l uc p 40 Jaaaweip wnw~u~w e qqbM LebJaqPw a LqeqdaDDe UP 40 pa$DnJqsuoD aq p Lnoys saui 1 u!eJpJapun aql

l a3e4Jns pues pua JaA03 paaeLnsu& aqa uaaM2aq paMo[le aq p pow (~3 19 03 OE) l u! PZ 02 ZI 40 amis v l pa>e lnsu .L aq p Lnoqs S JaA03 ‘aqea3bp suoia ;puo:, JayaeaM aJaqM l sa3e4Jns Jaq Li4 23aJoJd 03 aAJas 0s Le Kew saweJ4 uapooM uo palunow yqol3 aJenpJey JO suaaJ3s l Le.LJaaew a LqeqCns Jay20 JO ‘ Leaaw paz 1ueA Le6 ‘syue id UapooM paaeaY(a 40 pa33nJlsuo3 aq Kew sJaAo=) l suo~~~puo3 ~0~0 a3npaJ 01 saAJas 0sLe JaA03 ayl l slewkuu ~0 spaaM 40 Juawq3eoJ3ua p!oAe 03 pue ‘suok3cpuo3 Jaqr&eaM aJaAas qsube6e $3a$OJd 03 paJaAo3 aq rCew sJa2 Lc4 ssa33e aaJ j

‘SU !PJpJapun paaeJo4Jad JO aukoF uado 03~~ pazQa[LoD aq UN 7.uanL44a leq~ OS apeJ6 qq6i 1s e 03 pado 1s KL lensn SC 31 l LAOS palDedwo3 LeJnleu aq~ 40 7sksuo3 rCew Inq ’ AJuosew Jay10 JO alaJ3uo3 pacrnod 40 paq3nJJsuo3 ua240 s4 Ja2 t44 w 40 JOO 14 au l Jke aqa 03 rCLa3aJLp pasodxa 4 b paqe Lnsuk aq

‘8 Jaadeyg ui pun04 aq /few suolge3!4 iDads LoY(3uo3 pue dwnd uo slielaa ‘apCJJaA0 Ja3PM q6bq pue 440-$nqs JeOLJ e lQ!M padd!nba aq plnoys pue c (92) uy~ O& KJaha ukw 01 03 s uaaM$aq aaeJado 01 ~30~3 awb$ e Kq patloJJuo3 aq p[noqs dwnd uok3etn3JiDaJ aql ‘U NJ o< J;;i;: ssaL UC duel uoble Ln3Jb3aJ aql Aadwa 07 paz;s aq p Lnoys Kay1 -asJoy E/I ~04 paaeJ sdumd alqbsJatuqns /CL LeuLlou aJe sdwnd uobqejnDJ LDau

‘(92) 1:s 01 1:~ uaartJaq paysklqeasa rC~~muJou aJe sok$eJ uo~~eln3J~3a~ l sasiJ LaAa 1 JaJrM aql uayM aaa paqJaAuk aya 440 as013 pue dn JeoL4 LL~M t teq au l 3aqseq aJ!rn e ui papuadsns 1 Leq JaqqnJ e pue aal. a Ldwis e SaeJOdJO3U 1 ,,aAteA 3w4,, au ‘(6-g aJn6kj) 3uawaBueJJe ,,ariLeA aeoL4,, anbkun e pue ‘WA [PA y3ay3 ‘ saae6 a Lqeahow ‘ saxoq Jaal .L Lds apn LX.J .L =--ii .spoyaaw 40 &a~Jeh e Kq pa LLoJauos aq rCew soi?eJ uokJetn3Ji3ad

•SUO~~&NJO~ 3LqeuIi 13 Aq paJinbaJ se paqe insub pue pap!AOJd aq ptnoqs SJtaAOD l SaALt?A [8JlUO3 put? ‘SJaWkq ‘sdwnd 40 ameuaJu!ew ~04 aLq!ssaD -38 aq yinw ~UQ ay1 l (MoLJ Ja%eMaqsen MeJ 40 awn Lob s ,hp au0 lsea 1 ae 0~ ~ua~e~~rtba wn LOA e JO) yule3 Dkldas ay2 40 azks aql z/l 01 B/T &Le~ou ~4 71 l AU- 2iadas aqa 03 LejJa?ew pue qJ6uaJas lua[ehLnba 40 si yueq UO~~&?[nDJ~3aJ ayl l a3e4Jns Ja3~44 aya 01 aJnax!w JaJeMaJseM aqa sdwnd ‘ ws jueym~ 1% ~3 at+? e Aq pa 1 LoJauoD ‘dwnd v *van L44a Ja2 1 .LJ pUeS 40 uobaJod P SIC LlaM SP ‘yUe2 Di?das e WOJ4 MOL4JaAO aq3 SaAia3 -aJ lueq uogte Ln3JlmJ aq1 l quan 144a Jai ii4 a LSDaJ 03 dwnd e saleJ -odJomi q3bq~ (~aqrrey3 6ucsop) Jaqwey3 uo~~eln3.4~3aJ aya sk Jaqtk4 ssa3 -39 aaJ4 ayq pur ~a3 ~14 6uiae LnDJCDaJ aq2 uaaM3aq amaJa44 .Lp 3kseq aql

-8-g aJn6i j uk paquasaJd sl yue’) uo~~eln3J~3aJ e 40 3bqewaq3s v l (ahoqe &*g*&*g uob3sas) JaaLi4 ssa33e aaJ4 ay3 ~04 asoya 03 Le3kauapl aJe uoi33nJqs -uo3 Ja2 144 40 s~uatua La ayl l a3e4Jns JaJ Lb4 aqa 07 ssa33e aaJ4 qa!h pa~mJ~suo3 ~~~euuou aJe sJa$Ll4 6ui$e Ln3Ji3aa *L-g aJn6ij uk paauas -aJd si ~3% 1.14 pues T$uar+~~wJa~u~ Buiqe LnWb3aJ LeDidrCq e 40 alk40Jd v

SJaqLij 6u~~e[n3J~3a~ E*L*&*g

‘$3 JaqdPy3 u& paqbJ3sap aJe ‘SJaJlb4 asay ~04 SWa>Sk uoqdks JO ‘sdwnd pur JaqureyD 6u4sop aql 40 saJnlea4 uokqmJasuo3 pue u6ksap aql

‘uo~~ne3 4~4~ Inq ‘paLo tdwa aq rCew s LakJaarru Jayqo ~0 ‘ Leo3 ‘Bets ‘pues 40 saJnax!w ‘sJaaLi4 pa!Jnq JO4 ~LSnO~AaJd pale3lpU4 Sy l Ja32ew 3kue6Jo 40 aaJ4 LeLJalew Je LnueJ6 a LqeJnp ‘paqseM he aq Lew sJa2 lb4 ssame aaJ4 ur parCo Ldwa erpaw Jaa 1 ij

A 1a~a-1 p!nb!l

C . -

P- &JLXLJ~e~Jl~Jd

UJOJj

>INVl NOIlVln3~133ti

8-9 3tin9u

JW!zl PueS SSXKI~ S3J j

dwnd

W31SAS tJ3llIzl lN311IWti31NI 9NIlVlll3tiI33~ lV3IdAl

f-9 3tin9Ij

sl!aN\ alqelsn!Pv

2

atjJeCps!a +

layseg uado 4 - -

I -I* I

aal hequeST

+ afkeyma

StlXlIzl 9NIlVlll3tiI33kl tiOzi S3AIlVNtlUlV SSVd-A8

snonuiwo3 pue MOJJrl4 pue a6p@ Gu~pnl3u~ ‘uoiqeD!Ldde JaqeMaaSCM 30 spo -yWu Jua~agJ kp aJinbaJ ifeur eipaul 40 a?ueua~u~eu~ .iay$ear(\ p 103 l t [a~ se LehouraJ paaM aJ!nbaJ Jie aya 02 uado sJaqL)d l (~z)(~~)(p~)(z) sa!pnJs LeJahas I.J~ paAo[dtua @noyaLe ‘pays! LqeJsa ALdeaL uaaq aou sey aDe4ms e Lpalu aql 40 6ULqeJ au!lnoJ 40 ssauaAb?Da44a ayl l rC~uo seal 1~4 ssa33e aaJ4 03 rCLdde SaJnpa3OJd asayl l 6u~660 ~3 uodn uoLaeJaua6aJ e kpaw pue SaJnpaDOJd a3ueua~u~eur au!.lnoJ yloq sapn Lc)ub ekpaw aya 40 aXieua~u~e~

e&paH 40 ameuaquiew 1*8*E*g

l (LZ) JeaA au0 40 ssa3xa UC sum JaaLi4 a3ezLpub (uIw 9.1 - 0.1) e ipalu asJeo3 6u ksn sJa$~k~ paaeln3JS3aJ ye !M sl Insad ‘(EZ) (2) ~/6w 05 Japun aJiz sp 1.10s papuadsns 4 .L syyolu 11 03 dn JOJ sa?eJ aWes ay$ Je pa bldde aq up3 wan LJJa paaeaJ3 rCLLw!qoJay l ( 2) IClan kJ3adsaJ ‘INI 9.0 pue UIUI 2.0 40 sazgs aAiz+DaJJa JO;I s/Cep 05~ pue 0~ Qaaeui!.xoJdde us 60 L3 LL !M 3Uan[JU c yUe3 3 Cadas 6u CA La3aJ SJaa 1 LJ PUPS quaJC$ yitJa~u c 3eyq saaes CPU; a3ua kJadX3 l saqeJ uo kae3 k Ldde Jay6 iy Jr! pue e ipalu ~au i4 y1 .LM pau6 isap aq &IJ ‘puey Jay30 aq$ uo ‘sJa)lk4 ssame aaJd l ame)Jodtu~ ~unouwed 40 .s t a3ueuaJuiw 3uatuqeaJJaJd JadoJd *([p/w g] p/au b 2 ueyl ssa 1 K[ LenSn) MO 1 aJe sac$eJ uo kqe:, b Ldde 3kLneJprCq pue a6Jel A[ L~UIJOU sc azp ekpalu aqq Cpa3cAJas KLisea aq aouue3 sJa3 Lk4 pa !Jnq a3u cs

l uol$ ipuo~ papuod e 40 J~UMO ayl K49ou 03 SahJas a3eJJns pues ay2 ahoqp (~13 o&) l ui 21: paae3ol uLle[P JaJeh ytiry v l a3e4Jns pues aya aAoqe (~13 0~) l u i 21 40 ssa3xa uk s Laha 1 qe sJn330 6uipuod snonuiwo3 uayM panu!luoDs Lp aq p lnoys Jaa LL4 ay> 03 Ja2eMaqseM 40 uocleDk Lddy •uo~z)e3~4~~7~u 40 uo~~essa3 e pue 6u ~66013 ptdw Jay&Jr-I,) uk 2LnsaJ JaaLk4 aycj uky$g~ suo~3~puo3 3bqoJaeuP ‘Ja44ns ALLPCJ~U~ JOU rCetu LA k lenb wan LJJa y6noya Ly l sJn33o Guipuod r+uaueuuad ‘6ukpeo 1 D! 1 -neJpA.j a6eJahe all3 MoLaq s~~e4 K3bAbl3npuo3 3~ LneJplCy a3ug 0s Le bJaletu LeDI Lobq pue &~auk L#.LM LL~J 03 suh6aq suleJ6’ erpaw aya uaaM3aq meds aJOd au2 SP sJn33o if1 LenauaAa Jai 114 ayl 40 6~~660 ~3 ‘aAoqe passnzs!p SW

‘($1) do LaAap ALJadoJd aou /celu ekpaui Jaq L k4 ay3 uo yqMoJ6 1~3 ~60~0 bq aya a3u IS pap !oAe aq p Lnol(s dn-JJeqs Jalu .LM *do lanap 03 sy~uolu g 03 dn SyaaM 2 UJOJ~ aye3 AeuI uo &le3!4CJa&u ‘aJrQeJadLuaLl Jua bqtue pue ‘uoc?eD 1 ldde 40 a$e~ ‘azks .ekpatu uodn 6u kpuadaa l uo !JeJnqeui Ja24e ALp CdeJ doJp AL ~etuylou LL LM auanL4Ja ayq u i suo k$eJy4aXo3 ss we aoa ‘(8.3) (2) paJn3euI sey pues ay3 aJo4aq syaafi OK+ 03 srCep Ma4 e UIOJJ sayeq 3.~ ‘~a~1 k4 aye 01 pa LLdde s k JaaeMaqseM a3ug l a3ueua3u imu Jo LoJwo3 Leuo !JeJado a 122 51 ALah !qelaJ a~ CnbaJ sJa3 L k4 pues ~uaqa iwa>uI

LeJaUag T’8’&‘g

a3ueua2ukew pue uobJeJad0 8.E.g

Leuo !I LPPV l sameuaqmdde pue ‘yueq D)ldas ‘Jaqluey3 Gu~sop 40 uoge -uhluexa pue JuaUa3eLdaJ pue a3ueua3uieu ekpalu ~04 JeaL Jad s/Cep uew b 02 1 ~0~4 aJinbaJ Kew sJa7. Lk4 ssa33e aaJj l yueq zhldas pue sa3ueuaJmdde pue JaqUey3 6u csop 40 uo~~c!uy~xa ~04 JearC Jad SKep uetu 2 ueya ssa L aq pLnoM wac@s Ja7Lk4 pakmq ~04 SWaUIaJgnbaJ JaModuelu paLL!ysun ‘asrzq eqep Ja6eatu e uo paseg l sameua$mdde J ~aq$ pue sJa3 [[4 y3ay3 03 Jeak Jad saw!1 Jno4 apelu aq p Lnoys ~21s in anq ‘a3 bsuo uo cqeJ3 1.~4 qua13 ~uua~ -UC ~04 pa3uatun3op ~laM uaaq Jou aney S~UaUIaJ~nbaJ a3ueuaJuketu aukyioa ‘21-g pue ‘1’1-9 ‘01-g saiqel UC paZ~JPUilUllS aJe SJaq Lb4 6ULleLn3Jk3aJ pue ssa33e aaJ4 ‘pa!Jnq ~04 sJuauiaJ!nbaJ LeuogeJado pue a3ueuaauJem aql

~JE!UKIJnr; P’8’E.g

’ 1 LaM Se pay3alj3 AL Le3kpo LJad aq 0sLe p Lnoys sa3brrap asay ‘6ukpuod ~a3 1.~4 JO sJauMo uJeM 03 palfo Lduta aJe saD!Aap bugsuas DluoJaDala 41 3 Jaqdeyz u& papuaukuo3aJ se sy3ay3 ameua)uieur 3!pohJad aA!a~a~ pLnoys suoydbs pue ‘sdumd ‘sJaqwy3 ljuisoa

sc&uauIaJ4nbaJ y1 .LM a3uepJo33e ui pau~eyJgslu KLaui$noJ aq p Lnoys SaSsaDOJd 3uauQeaJaaJd Jay30 pue ‘syue~ zkadas ‘sde.Q aseaJt) ‘SJa$ Lk4 palJnq ~04 LeDiJiJ3 rCLLe!Dadsa si sky1 l aJnlCe4 Jac)LJ4 aJn~ett@Jd uh SaLnsaJ 3uauqeaJAaJd aJenbapeuL 02 anp aDe4Jns Jai LL4 ayq uo s Le LJaqew pk LOS we ‘aseaJ6 ‘UIn3S 40 uoit)e ~nuIn33e ayl l sassa3oJd lUaUQeaJ3aJd ayq 40 ameua$ukeur Jadodd uo Juapuadap s!. SJ~~LJJ 40 uo!qeJado Ln4ssams ayl

l aua6e 6u~z~p~xo sky3 40 uogeD!Ldde t!JJaa-6uoL uo aLqeLbehe aJe eqep JuakDh44ns -u .I y6noyl Le ‘aA~33a44a aq 03 aAoJd OS Le kul ~UauQeaJ~ apixoJad ua6oJp -4 ’ (2) k$[ALa3npUO3 3k LneJpKq Jai Li4 6UiJOz&SaJ UC aAiJDa44a &JaA aq 03 uaAoJd seq atui? 40 pO@ad e ~04 egpatu ay3 40 6ubasad l s LeiJaleu 6~16 -60~3 aya 40 uo~3Qp&XO 6Uy;nbaJ SJa3144 3Ua~3~UJJa3U~ tfueur UC SlLeAaJd ua34o ‘JaAaMoq ‘6~ 5660 ~3 UJdap-uI ‘(2) auanL44a pa>eaJq Qle3iqoJae 6U~A.la3aJ SJa3LbJ Sapnl3Jr Sky1 ‘qeur a3e4Jns e rcq /CL~JeIU!Jd pa660[3 SJaq Li4 JO4 ankaDa44a AJaA aq 03 SJeadde ’ (~13 gL 03 19) ‘Ui ()E 03 pz ueya ssaL 02 pat)a Ldap aJe syldap pues uayM pues uea LD y3 .LM quauwe LdaJ se L LAM se ‘pues 40 JarCeL doa ay7. 40 Lehotw ayl ‘(l71) (I) uo43ea4 14q -eyaJ aAisua?xa aJ0u.i ~04 paau ay3 aqeu ctuk La 4 ~as3 .L uk 20~ 1 L CM a3e4Jns w 40 Wvv l uoi3eJaua6aJ ebpatu saJ!nbaJ 6u ~660 L:, Ja2 L!4 CrCL Lm2uan-j

l ( z) j .o*- se MOL se saJnqeJadtua$ Juaiqtue y3 .LM seaJe ui UO~~eJadO ~a~uy aaJ4-alqnoJ3 sayJad sJaAo3 paqetnsuk 40 asfl l Juaw -do Lahap qaays a34 a2eugi.ui La 02 pau6isap aJe spoy2au.I asayL l 6u ipoo ~4

8&I

wJeLe JaaeM 464 laay3 6u !Jaays a31 qsu ie6e WaaoJd

paJ LnbaJ se a3 !Aap uo IJnq 4~2s rp u ke)u beW paJcnbaJ se paaM Jay20

03 uJnJaJ Ipues l u .L E 03 z doa a3eldaJ Idaap l u L 21: ueL(J aJw papuod uaqM aDeLdad

(srCep 09) uoi7eJado uk 1 iun aqeuJaqLe aL!qM IsaJ fpues l ub E 02 z doa a3eLdaJ

fdaap l u .L ~1 ueya aJolu papuod uayM aDeldad

paa 3 iqoylay

paa4 we7 3 ndas

daap l ub E ‘syy~ow E KJaA]

sy~uoul E LJaAa syy,iow f ICJaAa $snFpe pue

sy~uoul & kaha

sameua$JnddV amanbas Jalu il

SLOJqUO3 pue Sdlund Jaqlueeya 6u ksoa

ssa3oJd uodn spuadaa

SEUlIzl lNUlIWti31NI SS333V 3Y3 tlOJ SlN1WBlInb3i 13NVNXNIVW (INV NOIlVtl3dO

sy~uow E r(JaAa y3aq3 syquow E KJaAa Jsnppe pue 13aq3

sy~uow E kaAa y3aq3

sameualJnddv axanbas Jau il

SLOJ7.t.403 pue sdumd Jaqlueyg 6u bsoa

ssa3oJd uodn spuadaa

sti3li1~ 1~3111wti31~1 amna tioj SlN1W3lIntEiti XINVNXNIWW CINV NOIlVti3dO

01-9 3iawl

-aweM 40 3uatqeaJa 40 s Laha L y6~y ahaiy3e 0~ suoiqe LLelsui eLe3s Ja6JeL u .L paKo Ldua KL Ln4ssamns uaaq aAey sassa3oJd uogeJJ 1~4 ~ua~Jj.urJa~uI

sdaaenaqsefl Leixaukwq pue aUoH-i2Lnw ~04 suogeJapisuo3 6'E.g

6u b$aays a3C qsuke6e 33aqoJd paJ LnbaJ se a3 gap uo gnq !J~+s ip u LeJu iew

paJgIbaJ se paaM

‘U4 PI MoLaq SL ~124 yqdap pues uayM pues Mau ppe

fm330 suoge~srwu k heay uayht pues luiys daap ‘U .L E ‘SqqUOuI E KJaA]

ssa3oJd uodn spuadaa

quautaa inbaa w/o

sameua&mddv amanbas Jatu il

sLOJqUO3 pue sdlund JaqtmyD 6u ksoa

Sti31lIJ lN311IWti31NI 3NIlWltl3tiI33ti tlOzl SlN1W3Ullb3ti ~3NtfN31NIWW (INV NOIlVki3dO

z'i-9 mawi

3uaurJ eaJJaJd

l pahouaJ aq asnlu eipalu auIg y3ea PaJe a3e4Jns 40 ( W/~W 80*(-j) 34/$4 cjz.0 ALaaeuiixoJdde 03 yinolue lcew sJa7. LL4 luaqq lwa uk P W)JJ 04 atu t aasen 40 au.rtLon ayl l Aep/qMy 1.0 ueqa ssa L aq p Lnoys anq ‘parCo Ldtua p0yaat.u 6u bsop aq1 uodn 6u Lpuadap ‘a Lqe &Jeh aq p LnoM s3uauaJinba-i JaMod *paJ knbaJ se s LslfLeue A$~Lenb JuanL44a ~04 suel3iuy3aJ Le3grCLeue Aq paJ&nbaJ aq pLn0~ atug

SC SassaDoJd 3iqoJaeue ~0~4 sluan144a ayq 40 >uauqeaJq JaylJnd l aueyqalu Pue ‘ua6oJpky ‘apkxokp uoqJe3 Gukpn 13ui sase6 pue ‘ssetu 1 La3 paz isay -uk ‘S~mpoJd pua pa3npaJ Jay30 ‘SpcX 3kUe6JO ‘SlOyO3Le 40 &akJen e

‘a3npoJd 02 pa?uawJa4 sa3npOJd 2ueqLnsaJ ay3 pue pazKLoJprCy aq Aew s Le.LJ -aqeur Ja)maJseM c (SSa3OJd DkqoJaeue) ua6rCxo 40 awasqe aya UI l ualjRxo 40 amasqe JO a3uasaJd aya ui Jn330 KeuI sassa3oJd asayl l s?CmpoJd pua 31 Loqe)alu pue ‘ LeJJa$eur LLa:, ‘sase6 ocjuk sque?nllod LepkoLloD pue pahlos -sip uuo4sueJa 03 parCo Ldula aJe SassaDoJd ‘J.uauQeaJq JaJeMalseM Le3!6oLoka

*paAo Ldtua suaasrfs 6u csop uo puadap sauawaJ!nbaJ Ja -MOd •suo~3el~e~su~ Ja6JeL ~04 paa3adxa aq AeUI yaaM Jad SJnoy-uetu 5~ oq 01 40 S~uatuaJ LnbaJ Ji3MOdUPI.U pa LL.Lysun l pauieJuketu LLLe3bpoiJad aq ~sntu s LOJ~JOD pue suoydbs JO sdumd f LahaL aday aq plnoqs sy6noJa uoyIq!JJ -Sk0 l sbseq ALyaaM e uo paLafta 1 pue paleJ aq p Lnoys sa3e4Jns pues l Lew

-CU~II aJe SUJa~SAS Jaq Lk4 Ja6JPL 40 a3ueuayA~eui pue UO~~k?JadO kp-O>-ha

ameua3ukew purr Uo~~eJadg 9’6y.g

l saqeurk ~3 p ~03 KJaA uh aLqeJ!sap s .L 6u LJaftoa l aaeJoqe La aJow AL -1eucrou aJe stuaask uoJ)3alLo3 pue uokqnqlJ3s!a l s3kun Jai Lexus 40 asoy2 01 JeLkuIis aJe sJa2 Li4 pues lua3lyiJa>uk a6Je[ ~04 saJnqea4 uob33nJ>suo3

*wan 1443 we3 Db$das 6ulAiaDaJ SJaaLl4 JO4 spo!Jad 6ubJsa.t &?p-Og JO4 apelu aq PLnOqS a3ueMo 11~ l Jkun JaqLk4 a6JeL auo 40 peaasui aLqeJ!sap aJe spaq aLdi?Lnw

*asop Jad paAaFy3e aq p Lnoys (~13 5 ) l u 4 z Alaeu!bxoJdde 02 Gu~poo ~4 Jai Lb j l Aep Jad sasop b 02 z UIOJ~ ana&yDe 03 paAoLdwa aq p Lnoys sdumd JO suoyd -4s .pasn aq Aea suIa>sAs uoJde adid aLd!lLnlu pue ‘SJo~nq~J~s~p rCeJds MOJJnJ pue a6piJ csy6noJl l uoiJnqkJas kp JaleMaAseM alenbape s .L sr+ kun MO L4 Ja6Je L y2 LM AJ LnDi44.lp lsa66iq ayl l papkohe aq p Lnoys sJaJLi4 pa6JaluqnS ‘(0~) slua3srCs aalsuo ~04 pasn e~Ja~~J3 Jetilurs qa!M a3uep -Jome uk pau6ksap aq AetU suo~$elLe~su~ Ja6JeL ~04 sJaJLL4 ~Ua~~yhJa~uI

eJJaakJ3 u6isaa Z’6’E’g

l LeAotuaJ pue uo!aeJedas spc LOS pue GalseM aya pue saqoJ3kw ayl uaanaaq 23eJuo3 aJeuri?u k ‘JalPMaqSeM aya 03 Ja4sueJJ ua6Lxo ap!AoJd Lie anq ‘saJn$ea4 u6isap pue s3~ys~Jar$X?Jey3 Leuo~~wado anbiun UMO sqk sey WJS& t.pe3 ‘QMOJ~ pax14 (2) pue q$M0~6 papuadsns (T) :aJe asayl l uoLqeDi Ldde aaksuo ~04 rCepoq aLqe LieAe RI leyJaurtuo3 aJe sauay3s ssa3oJd 0~3 JsPal 3~

*aDue 1 [IaAJns 3uanbaJ4 ~04 paau aya a3npaJ 03 JapJo u!. SJbun a6eyDed asayr+ 40 u6ksap aya 0~~~ saJnaea4 sno!JleA pa~eJOdJO3U~ ahey sJaJna3e4 -nueuI auIoS ca3ueua$u~etu pue uob?eJado ~15~ pa~e~3osse SluaLqoJd aya pioAe Ol .sauanL44a &iLenb-MoL a3npoJd Kelu JCun 3kqoJae ayq ca3Jeua~ugeuI pue UO 4s !AJadnS Je Ln6aJ yIoy$ LM l slasdn 03 a LqkqdaDsns aJe auameaJ> a3 Ls -uo ~04 sqiun 3iqoJae ‘sa~~~L~qede~ ?uaweaJa snoa6e~ueApe Jkayq aJ!dsag

•stus~ue6Jo Diua6oyaed 40 uoia3npaJ aueDk4iu6is ay$ pue (suo~~~puo3 aaekJdoJdde Japun) a~sw ayq ub e)uouIwe 40 uoh$ -e3!4 kJ2it.J s .L ssa3oJd ayq 40 aJnaea4 KJepuo3as v l uo Lqe3uawkpas a Ldluks Lq paAotuaJ aou aJe qeyl spi LOS papuadsns pue a08 40 squnolue LeLaue>sqns aAouaJ 02 aaksuo parColdlua aq ue3 SassaDoJd auaqeaJ2 Le:,i6oLokq DkqoJav

paJ!sap ay$ VI0 AjJe3 03 saqoJ3ktu 40 uoiaeLndod an!339 ue tuaJsrCs aq.3 u!.Y~~M u~e~u~etu 03 ~Ue~Jodur~ se QLenba sb 1.~ ‘2aA l wa3slCs ayq U~~JLM dn p Linq Laya se spk LOS asay alseM 02 ‘ aJo4aJayJ c KJessaDau sk 11 l saqoJ3yI ayl Kq paz ~Say~urCs sp; LOS a LqPpeJ6apuou se LLaht se Jac)eMalseM Auan L4ui ay7 ul LekJaqeut 3Jau i 40 yinowe ubeaJa3 e 40 a3uasaJd aya 03 anp 0Jaz say3eaJ JaAau qnq ‘saseaJ3ap s!sayyrCs Lla3 Jau ay3 ‘saseaJ3 -ui tua3srCs aql uc s~La3 teiqoJ3iuI 40 atuba a3uapisaJ ay? sy l lualsrCs ay3 01 pappe JaweuJ 34WbJO 40 W6)aM AJp ay3 40 %og 02 (-J& luOJ4 a6ueJ 03 pa33adxa aq /Ceu 43~0~6 leDk6oLolq Mau ‘sassa3oJd 3hqoJae LeuokauaA -uo3 UI l pbnbk L paqeaJ3 ay2 ~0~4 s [La2 Le~qo.mpu 40 UobaeJedas auanbas -qnS pue S~Saq~UkS ayq si SassaDoJd leDi6oLolq 40 aJnqea4 ~ueJ.iodw~ uv

l sJo$3e4 Le)uawioJiAua Jay10 se LLaM se s>ueanLLod anduk uh suoile!JeA 02 aSUOdSaJ u!. suoiweaJ LeDLurayD -0;q 40 r(7ahJeA e qno ~U~~JJKI ui aLiaesJaA KJaA ‘aJo4aJaya ‘si luaqsk au ‘LLLe3~~o~qtis 3sCxa sw~ue6JooJ3~w 40 rCaa!JeA 3eaJ6 e KqaJayM aJn3 -In3 uado ue ui ano pabJJe3 LLLeuuou sb ~uaur&eaJ~ JaqeMaqseM LeDiboLoLg

l sassa3oJd asay ui sawaJa4 -4 bp 3kseq ayq saz ~Jewns 01-g aJn6i j l sseluobq pazb Loqeqaur pue ‘apbxokp uoqJe3 ‘S23npOJd pua pazkp!xo 40 QabJeA e 6~~~~~3~03 squanL44a tQ!Lenb -y6;y aqeJaua6 LL~M sassa3oJd DiqoJae ‘puey Jaylo aya ug l a6Jey3s 5p a3e4Jns Jo4 La& Lenb alqeadaDDe ue aAary3e 03 JapJo uk paJinbaJ /C~~euuou

SSQW 1133

SlNQlflllOd

319Ot13Q

318QaQEi33aNON

O’H

simaotld NouIsodw033a 3IaomvNw at-hi 3Iaom

01-9 3msu

asay 40 hew u4 pa3133eJd QauilnoJ lou uaa40 sk spl Los pa~elni.un33e 40 6U gSeM a3u &s ‘(0~) uok$3npoJd a6pn 1s Jau a3npaJ 03 pue ‘tua?sAs aya 03 peoLJaAo 3~UE?6JO JO 3c LneJpKy Jsuke6e a6pay 01 ’ ~oJ~u03 LPuO~~eJado umtu -4uclu Je quaQeaJ) 40 aaJ6ap y6by e aJnsua 03 pau&eJukelu aJe (18s) saluka uob>uaJaJ sp! LOS pue Dk LneJprCy 6~0 L c saue Id a6eeyDed uo&leJae papuaqxa UI

paae Lnsuk aq p[noqs pue ‘auapuadap-aJnqeJadtua3 s{ ssa3oJd ayl l sa3uea -s ip yDleq-2as uieaJa3 aJ)nbaJ &III sap03 LeDo L y6noya Le ‘uo~~e~~ Ldde ~34 1 yq i Jeya SUO~J ipuo3 a$bs LeDksrCyd JueDi4 ku6ks ou aJe aJay ‘14 ~$LM paaei3osse aq rCelu ~opo pue as iou awes pue ‘JaMOd SaJ ybaJ ealsrCs uoileJae ayl l alqissa33e XLipeaJ aq qsnlu anq ‘alisuo pasnoy Jo pa!Jnq aq &III slule[d ayl l a3uPua~u~euI pue uo!aeJado JeLn6aJ aJ!nbaJ pue ‘syuel DiJdas uleya xa LdluoD aJolu rCL!JessaDau aJe sassa3oJd uo!JeJae papua$xI.

l sqkun paJn3 -3e4nuetu uaaM?aq rC\apy sa!JeA spk LOS ssa3xa 40 6u ,LaseM yIq ‘paAoLdwa LLLetuJou sc yueq uok?eJae aya 02 uJnqaJ sseuokq aAL>isod l uol2eJae Le3&ueyDaui JO pasn44 cp Jayala Icq pa! lddns s i ua6rCxo PUP ‘apouI ~0~4 snonu~~uo3 JO Y33eq e UC paqeJado aq Kerr SsaDoJd ayl l suIa~sk uo!JeJae papuaqxa a6eyzed LeDkdrCl 0~3 sqD)dap 11-g aJn6bj l uobqe3i Ldde aa ksuo ~04 hpol 3ayJelu ay2 uo a Lqe L IeAe sy~? Id a6elDed uo!qeJae papualxa KJe> -aiJdoJd 40 LJalJeA e aJe aJayl l yue3 uo!aeJae ay3 03 y3eq sseuroiq aya 40 UoiaJod e JO lie 40 alD&aJ pue uob>eJedas Kq paMo(Lo4 ‘yue$ uo!JeJae ue u!. pau~e~u~euI aJe SUiS~Ue6JOOJ3yJ 40 uo~~eJ~ua3Jo3 y6iy e rCqa.iaLjM ssa3oJd a6pnIs paaeA!aDe aya 40 uo9e3~4~pou~ e sk uolleJae papuaax

uobJeJav papuaax - sluaas& y1MoJg papuadsns z=t*g

l sassa3oJd asayq yq CM awa4Jadxa p iaL4 uuaq-6uo L ou uaaq sey aJay qnq 6 (61) sJaaeMa3seM 40 quaqeaJ2 aJ[suo ~04 pasodoJd uaaq ahey spaq payDed 3cq -0Jaew ‘9.9 uoi$3aS UC paqiJ3sap aJe SSa3OJd sky3 40 sL!eaaa l a?ksuo pa3!$3eJd aq OsLe rfelu sJa%eMaJseM pa~4~.QCu 40 uo~~e3r4~J~[uap 34x0~~ *uoiabsodtuoaap 3iqoJaeue azyI!Jdo 03 suo;AeJap!.suoD a>eJOdJOXI~ lcLLeuuou aou op ‘JaAaMOY ‘su6 ksap yule3 Diadas l z*g uoka3as ug rCLLn4 aJotu passn3 -sip se ~ua~eaJ~ 3gqoJaeue ap!AoJd syueq zkqdas l auauqPaJa JaqeMaJseM aaisuo ~04 parCo Ldura aq osLe Xetu SassaDoJd auaur$eaJ$ Le3!6oLoiq 3iqoJaet.w

uogeJav pasqga

JO lequeqaayy

UogeAalg

p-w-is dund

SNOIlQ~tl9I~N03 1NQld 39QI3Qd NOIlQti3Q a3aN31X3 JO S3ldWQX3

40 suok33npad l y6by aJe sawkq uoblua?aJ spk~os pue DbLneJprCy aauis uoba -e3!4 LJJiu 40 aaJ6ap y6y e a3npoJd sque Id uo!JeJae papua’)xa ‘fl LeJauag

l uoi3eJobJa>ap Juan L44a 40 asne3 Jo Few ayl s i WaasAs ay3 ~0~4 spy LOS 40 sso 1 pat LoJquo3un aye ‘LeJaua6 UI l aXiewJo4Jad Jood ~04 SuoseaJ uowwo3 lsow ayl Guowe aJe suo~23un4Lew LeDbueyDaw pue ‘23al6au JO asnqe JauMoawoy ‘6ukylnq a6pn LS 6 we0 L wws l swa3srCs uo!leJae papuaaxa 33a44e /CLasJaApe ue3 2ey2 sJo33e4 40 AlgsJaAkp spy ay2 03 anp alqeiJeA s4 a3uewJo4Jad leyq a2eDipui AJeWWnS S~Q ui paquasaJd SZj Lnsad *&T-g atqel UC paz!Jewwns s 5 swa$srCs abel3ed uo!aeJae papuaJxa albsuo 40 aDUeUUO4Jad p [ai4 ayl

Jbedwi LL?eaJ6 L\hM aX4Jns JaC4CJe L3 ay3 WOJ4 paAOWaJ KLJadoJd IOU LeiJaaew aLqeaeoL4 pue wn3s l saBpnLs asay?. 40 uokaegoL4 pue uobqeDr4 -1se6 !JC 2Lnsa.i kew Jab4iJe~D ayq us sa6pn 1s paLqlas ~04 sawi uoblua$ -aJ 6~0 L rC\aA gssaDx3 ‘JaAOLJJe3 Spi LOS lenquaha Uk >LnsaJ spi LOS Jonb! 1 paxbw 40 uo~ZjeLnwn33e Lq pasne3 s6ulpeoL spblos y6iy crCLsno~AaJd pauok2 -uaw SQ l suo~~3un4Lew JaC4.LJel3 SnoiJas uh 3 LnsaJ ue3 sa6Jns 3~ LneJp -KH l aaeJ Gukpeo L spk LOS ayq pue ‘aaeJ ~oL4JaAo sk LneJpk’y ayq ‘ssewoiq ay2 40 &i LjqeaLqaas aya uodn spuadap a3ueuuo4Jad Jak4ye ~3 -pa L4e4 sey ssa3oJd aya ‘~uanL44a paaeaJ3 ayl ~0~4 paaeJedas KLJadoJd aq qou -ue3 ssewokq ay3 41 l SSaDOJd ayl 40 3Jed lueqJodwb ue si Jah4;JeLs ayl

l aJnaPJadWaZ) 6u kseaJ3uk ~14~ 6u~AoJdwC AL LeJaua6 ‘i3Jn~t?JadwZ$ rCq paq3a44e aq rCew huak3!44a ssa3oJd l suo~23un4 Lew quawd inba pue sqasdn ssa3oJd asne:, UPD sn$iJqap Jaylo pue ‘Ja~~ew 6u iaeo 14 ’ SaseaJ6 ‘slua6e 6uiueaLD uleaJa3 49 sJunowe ssaDx] l ssa3 -0Jd a113 40 a3uewJo4Jad a3uanLJu.L OS Le h?W s3~~s~Ja23eJey3 JaqeMaaseM

l saqoJDkw ay3 03 ua6rCxo pue sauayanu 40 Ja4sueJa ssew pue spi~os 40 uoisuadsns ~006 aJnsua 0% 6ukxgw luabDL44ns apkAOJd sqkun a6leyDed $sow l ssaDoJd uo!leJae ayl Aq pap)AOJd 6ukxiw ay3 sk swa3sh uor3eJae ~SOW 40 auawala 3ue3.Jodw~ uv l saAbJp Le3buey3aw JO SJO$OW JaMOLq uo suo!,~3~J$saJ az!s wnwiuiw 03 anp ua6Kxo paALossCp 40 ssa3xa ue rCLddns ique id uokJeJae papqaaxa aJ!suo ‘KLLeuuoN l a6pn Ls liu[l3las ~006 e pue 3uaQeaJ3 40 aaJ6ap y6y e aJnsu4 02 JapJo uh ~/6w z paaDxa plnoys yuel uoiAeJae ay3 u4 suo!aeJauaDuoD ua6Kxo paALosska

l a3uewJo4Jad Jood 40 S$JOdaJ JO4 uoseaJ aqta ual40 sg pue ‘sa&un uo!aeJae papua>xa IQLM SwaLqoJd [PUO~~PJadO asa66bq .ayq 40 au0 s4 S!Yl l SnoyseM spk~os papuadsns y6cy ui 2tnsaJ ~14~ dn-p(knq spi~os aA!ssaDxa aJayn Aukod e 02 1~s pue awkp uokaua%aJ 3i LneJpL’y 6ubseaJ:, -uk Y~.LM SaAOJdWb tfLLeWJOU (uO~~e3~4~.QgU GuipnlDub) aDueuuo4Jad auaw -3 eaJ1 l JuanL44a ay3 uk paaseM QqelloJ~uo3un aq LL~M q3iyt ‘sp4 ~0s ay3 a Lpuey Ja6uo L ou ue3 Jai4 ;Je L:, ay? aJaqM quiod e 02 saseaJc)u$ 1~s ‘saiun

Z&l 99&-P t79L

TSZ 9P’I 89L-L’E - 16281

L9T L’I’I 019-T ZSZ-E

I!4 6B ZZI I76 I76 19 6&

VZI 01 &6& 9l?l 98 L9T ZT'I OLI-& 08-6 tZ8-01 - 081-01 S&Z-T 801-D

9& I& bPT 16 LP I!& LE

(c;E) l 4w (t&i l 4atl (EE) l 4ati (2~) l mi (TE) l 4atf (0~) l 4atl (2) l 4a a3Jnos

sa LdwQ 40 l 'oN ,-, :. ~/6w 'a6uq

. . I ,;:,,:.

.~/6w 'uleaW sp)~oS papuadsns :

saldwqj 40 'ON L/Bw ‘a6ulea

~/6w ‘ueaw saoa

JaqaweJad

S3ItX-US 01313 1INt-l 318Ot13Q StlOItiQA WOtlJ QlQQ lN3filkl3 A0 AIIQWWCIS

El-9 31av1

l y~uow Jad a3uo $noqe paWJO4Jad aq pLnoys sai')iI\LgDe aDI.JPua~u~ew e

l (paJknbaJ 4.~ d pue N) Hd 'SS '@)a ~04 aLdwes aagodwo3

quanL44a Leui4 aJnseaw faJnaeJadwa3 ‘&kL~qeaLa7as ‘Hd ‘SSiw ‘oa ~04 aLdwes qeJ6 yuea uoLqeJae aJnseaw

l paJknbaJ se SpkLos aJsem dwnd

l xoq LoJluo3 LeDgJ73aLa ADay:, fsw~e~e pue sLo~~uoD LLe 40 suo~$3un4 2no qDaq3

l sLLe~apks UMOP asoy fspkLos paJLenwnDDe Jo4 >IDaqa

l JaJnlDe4nuew Aq paJybaJ se Juawd knba LeDyeyDaw aD!AJas

flayueLq a6pnLs aJesoL IpaJgbaJ 4~ aDuanbas aw!J asncpe pue a>eJ ~oL4 uJn%aJ a6pnLs IDay:,

faDueua$Jndde pue sLLeMap!s UMOP asoy fsJian ueaL3 IaDueJeadde y.ianL44a ysays fwnDs 6uigeoL4 ~04 yDay3

paJ!nbaJ s,JaJnaDe4nulew WJO4Jad IsLeas ‘LaAaL ~40 yDat@ I6u i$eayJaAo pue uoC~e.iqp ~04 yDaq3 l aDueuaquiew paJ;nbaJ s,JaJn?~e4nuw WJO4Jad

faJnssaJd IDeq 'LaAaL Lho 'SLeaS ‘SJaJLi4 J~P YDaq3

l uognqiJasgp Ike uahaun pue 6u~weo4 ~04 yDaq3

actueuaauhew paasa66nS

LevALeuQ

6ugseM a6pnLS

SLOJqUO3

deJ1 yseJ1

Ja!JCJeL3

LeDkueyDaw

JP pasn44ia waasAS uogeJaQ

ye1 uogeJaQ

eSlNQld 39QKlQd NOIlQti3Q a3clN31X3 3lISNO tlOJ 33NQN3lNIQW a31S399i-C

I tern

Aeration Tank

Aeration System Diffused air

Mechanical

Clarifier

Trash Trap

Controls

Sludge Wasting

Analytical

TABLE 6-15

SUGGESTED MAINTENANCE FOR ONSITE EXTENDED AERATION PACKAGE PLANTSa

Suggested Maintenance

Check for foaming and uneven air distribution.

Check air filters, seals, oil level, back pressure; perform manufacturer's required maintenance.

Check for vibration and overheating; check oil level, seals; perform manufacturer's required maintenance.

Check for floating scum; check effluent appearance; clean weirs; hose down sidewalls and appurtenance; check sludge return flow rate and adjust time sequence if required; locate sludge blanket; service mechanical equipment as required by manufacturer.

Check for accumualted solids; hose down sidewalls.

Check out functions of all controls and alarms; check electrical control box.

Pump waste solids as required.

Measure aeration tank grab sample for DO, MLSS, pH, settleability, temperature; measure final effluent composite sample for BOD, SS, pH (N and P if required).

a Maintenance activities should be performed about once per month.

153

TABLE 6-13

Parameter

SUMMARY OF EFFLUENT DATA FROM VARIOUS AEROBIC UNIT FIELD STUDIES

Source Ref. (2) Ref. (30) Ref. (31) Ref. (32) Ref. (331 Ref. (34) Ref. (35)

BODg Mean, mg/l 37 37 ,,“I,0 92 144 36 Range, w/J d-208 l-235 lo-824

920 3-170

No. of Samples 112 167 86 146 393 10 124

Suspended Solids

Mean, mg/l Range, mg/l No. of Samples

3-%2 62 94 94 122 49 l-510 18-692 li6

17-768 5-164 4”,‘66 117 167 74 251 10 132

phosphorus are normally less than 25%. The removal of indicator bac- teria in onsite extended aeration processes is highly variable and not well documented. Reported values of fecal coliforms appear to be about 2 orders of magnitude lower in extended aeration effluents than in septic tank effluents (2).

6.4.2.4 Design

A discussion of some of the important features of onsite extended aera- tion package plants in light of current operational experience is pre- sented below.

a. Configuration

Most extended aeration package plants designed for individual home ap- plication range in capacity from 600 to 1,500 gal (2,270 to 5,680 11, which includes the aeration compartment, settling chamber, and in some units, a pretreatment compartment. Based upon average flows from house- holds, this volume will provide total hydraulic retention times of several days.

b. Pretreatment

Some aerobic units provide a pretreatment step to remove gross solids (grease, trash, garbage grindings, etc.). Pretreatment devices include trash traps, septic tanks, comminutors, and aerated surge chambers. The use of a trash trap or septic tank preceding the extended aeration pro- cess reduces problems with floating debris in the final clarifier, clog- ging of flow lines, and plugging of pumps.

c. Flow Mode

Aerobic package plants may be designed as continuous flow or batch flow systems. The simplest continuous flow units provide no flow equaliza- tion and depend upon aeration tank volume and/or baffles to reduce the impact of hydraulic surges. Some units employ more sophisticated flow dampening devices, including air lift or float-controlled mechanical pumps to transfer the wastewater from aeration tank to clarifier. Still other units provide multiple-chambered tanks to attenuate flow. The batch (fill and draw) flow system eliminates the problem of hydraulic variation. This unit collects and treats the wastewater over a period of time (usually one day), then discharges the settled effluent by pump- ing at the end of the cycle.

147

d. Method of Aeration

Oxygen is transferred to the mixed liquor by means of diffused air, sparged turbine, or surface entrainment devices. When diffused air sys- tems are employed, low head blowers or compressors are used to force the air through the diffusers placed on the bottom of the tank. The sparged turbine employs both a diffused air source and external mixing, usually by means of a submerged flat-bladed turbine. The sparged turbine is more complex than the simple diffused air system. There are a variety of mechanical aeration devices employed in package plants to aerate and mix the wastewater. Air is entrained and circulated within the mixed liquor through violent agitation from mixing or pumping action.

Oxygen transfer efficiencies for these small package plants are normally low (0.2 to 1.0 lb 0 /hp hr) (3.4 to 16.9 kg 02/MJ) as compared with large-scale systems ii ue primarily to the high power inputs to the smaller units (constrained by minimm motor sizes for these relatively small aeration tanks) (2). Normally, there is sufficient oxygen trans- ferred to produce high oxygen levels. In an attempt to reduce power requirements or to enhance nitrogen removal, some units employ cycled aeration periods. Care must be taken to avoid the development of poor settling biomass when cycled aeration is used.

Mixing of the aeration tank contents is also an important consideration in the design of oxygen transfer devices. for mixing i3

Rule of thumb reqvrements aeration tanks range from 0.5 to 1 hp/l,OOO ft (13 to

26 kw/l,OOO m ) depending upon reactor geometry. Commercially available package units Q re reported to deliver mixing inputs rangCng from 0.2 to 3 hp/l,OOO ft (5 to 79 kw/l,OOO m3) (2). Deposition problems may develop in those units with the lower mixing intensities.

e. Biomass Separation

The clarifier is critical to the successful performance of the extended aeration process. A majority of the commercially available package plants provide simple gravity separation. Weir and baffle designs have not been given much attention in package units. Weir lengths Qjf at least 12 in. (30 cm) are preferred (10,000 gpd/ft at 7 gpm) (127 m /d/m at 0.4 l/set) and sludge deflection baffles should be included as a part of the outlet design. The use of gas deflection barriers is a simple way to keep floating solids away from the weir area.

Upflow clarifier devices have also been employed to improve separation.' Hydraulic surges must be avoided in these systems. Filtration devices

148

have also been employed in some units. While filters may produce high- quality effluent, they are very susceptible to both internal and external clogging. The behavior of clarifiers is dependent upon biomass settling properties, solids loading rate, and hydraulic overflow ra es. D5sign2peak hydraulic overflow rates should be less than 800 gpd ft 5 (32 m /d/m 1; $nd at averag flo design values normally range from 200 to 400 gpd/ft (J to 16 m'/d,$rn'l Solids loading than $0 lb/ft /d ($45 kg/m /dl'based upon

rates are usually less average flow and less than 50

lb/ft /d (242 kg/m /d) based upon peak flows.

f. Biomass Return

Once separated from the treated wastewater, the biomass must be returned to the aeration tank or be wasted. Air lift pumps, draft tubes working off the aerator, and gravity return methods are normally used. Batch units and plants that employ filters do not require sludge return. Rapid removal of solids from the clarifier is desirable to avoid deni- trification and subsequent floatation of solids. Positive sludge return should be employed in package plants since the use of gravity return systems has generally proved ineffective (2)(20).

Removal of floating solids from clarifiers has normally been ignored in most onsite package plant designs. Since this material results in serious deterioration of the effluent, efforts should be made to provide for positive removal of this residue. Reliance on the owner to remove floating scum is unrealistic.

!I* Biomass Wasting

Most onsite package plants do not provide for routine wasting of solids from the unit. Some systems, however, do employ an additional chamber for aerobic digestion of wasted sludge. Wasting is normally a manual operation whereby the operator checks mixed liquor solids and wasted sludge when mixed liquor concentrations exceed a selected value. In general, wasting should be provided once every 8 to 12 months (2)(35).

h. Controls and Alarms

Most aerobic units are supplied with some type of alarm and control sys- tem to detect mechanical breakdown and to control the operation of elec- trical components. They do not normally include devices to detect effluent quality or biomass deterioration. Since the control systems

149

contain electrical components, they are subject to corrosion. All elec- trical components should be waterproofed and regularly serviced to ensure their continued operation.

6.4.2.5 Additional Construction Features

Typical onsite extended aeration package plants are constructed of noncorrosive materials, including reinforced plastics and fiberglass, coated steel, and reinforced concrete. The unit may be buried provided that there is easy access to all mechanical parts and electrical control systems, as well as appurtenances requiring maintenance such as weirs, air lift pump lines, etc. Units may also be installed above ground, but should be properly housed to protect against severe climatic conditions. Installation of the units should be in accordance with specifications of the manufacturers.

Appurtenances for the plant should be constructed of corrosion-free materials including polyethylene plastics. Air diffuser support legs are normally constructed from galvanized iron or equivalent. Large-diameter air lift units should be employed to avoid clogging problems. Mechanical units should be properly waterproofed and/or housed from the elements.

Since blowers, pumps, and other prime movers are abused by severe envi- ronment, receive little attention, and are often subject to continuous operation, they should be designed for heavy duty use. They should be easily accessible for routine maintenance and tied into an effective alarm system.

6.4.2.6 Operation and Maintenance

a. General Plant Operation

Typical operating parameters for onsite extended aeration systems are presented in Table 6-14. The activated sludge process can be operated by controlling only a few parameters - the aeration tank dissolved oxy- gen, the return sludge rate, and the sludge wasting rate. For onsite package plants, these control techniques are normally fixed by mechani- cal limitations so that very little operational control is required. Dissolved oxygen is normally high and cannot be practically controlled except by "on or off" operation. Experimentation with the process may dictate a desirable cycling arrangement employing a simple time clock

150

TABLE 6-14

TYPICAL OPERATING PARAMETERS FOR ONSITE EXTENDED AERATION SYSTEMS

Parametera Average Maximum

MLSS, mg/l

F/M, lb BOD/d/lb MLSS

Solids Retention Time, days

Hydraulic Retention Time, days

Dissolved Oxygen, mg/l

Mixing, hp/l,OOO ft3

Clarifier Overflow Rate, gpd/ft2

Clarifier Solids Loading, lb/d/ftz

Clarifier Weir Loading, gpd/ftz

Sludge Wasting, months

2,000-6,000 8,000

0.05 - 0.1

20-100

2-5

>2.0

0.5-1.0

200-400 800

20-30 50

10,000-30,000 30,000

8-12

a Pretreatment: Trash trap or septic tank. Sludge Return and Scum Removal: Positive.

151

control that results in power savings and may also achieve some nitrogen removal (Section 6.6).

The return sludge rate is normally fixed by pumping capacity and pipe arrangements. Return sludge pumping rates often range from 50 to 200% of forward flow. They should be high enough to reduce sludge retention times in the clarifier to a minimum (less than 1 hr), yet low enough to discourage pumping of excessive amounts of water with the sludge. Time clock controls may be used to regulate return pumping.

Sludge wasting is manually accomplished in most package plants. Through experience, the operator knows when mixed liquor solids concentrations become excessive, resulting in excessive clarifier loading. Usually 8- to 12-month intervals between wasting is satisfactory, but this varies with plant design and wastewater characteristic. Wasting is normally accomplished by pumping mixed liquor directly from the aeration tank. Wasting of approximately 75% of the aeration tank volume is usually satisfactory. Wasted sludge must be handled properly (see Chapter 9).

b. Start-Up

Prior to actual start-up, a dry checkout should be performed to insure proper installation. Seeding of the plant with bacterial cultures is not required as they will develop within a 6- to 12-week period. Ini- tially, large amounts of white foam may develop, but will subside as mixed liquor solids increase. During start-up, it is advisable to re- turn sludge at a high rate. Intensive surveillance. by qualified maintenance personnel is desirable during the first month of start-up.

c. Routine Operation and Maintenance

Table 6-15 itemizes suggested routine maintenance performance for onsite extended aeration package plants. The process is labor-intensive and requires semi-skilled personnel. Based upon field experience with these units, 12 to 48 man-hr per yr plus analytical services are required to insure reasonable performance. Power requirements are variable, but range between 2.5 to 10 kWh/day.

d. Operational Problems

Table 6-16 outlines an abbreviated listing of operational problems and suggested remedies for them. A detailed discussion of these problems

152

TABLE 6-16

OPERATIONAL PROBLEMS--EXTENDED AERATION

Observation

Excessive local turbulence in aeration tank

White thick billowy foam on aeration tank

Thick scummy dark tan foam on aeration tank

Dark brown/black foam and mixed liquor in aeration tank

Billowing sludge washout in clarifier

Clumps of rising sludge in clarifier

Fine dispersed floe over weir, turbid effluent

Cause

Diffuser plugging Pipe breakage Excessive aeration

Insufficient MLSS

High MLSS

Anaerobic conditions Aerator failure

Hydraulic or solids overload

Bulking sludge

Denitrification

Septic conditions in clarifier

Turbulence in aeration tank

Sludge age too high

PACKAGE PLANTS

Remedv

Remove and clean Replace as required Throttle blower

Avoid wasting solids

Waste solids

Check aeration system, aeration tank D.O.

Waste sludge; check flow to unit

See reference (37)

Increase sludge return rate to decrease sludge retention time in clarifier

Increase return rate

Reduce power input

Waste sludge

154

for larger, centralized systems can be found in the "Manual of Practice - Operation of Wastewater Treatment Plants" (36) and "Process Control Manual for Aerobic Biological Wastewater Treatment Facilities" (37). Major mechanical maintenance problems for onsite treatment units are with blower or mechanical aerator failure, pump and pipe clogging, electrical motor failure, corrosion and/or failure of controls, and electrical malfunctions (35). Careful attention to a maintenance schedule will reduce these problems to a minimum, and will also alleviate operational problems due to the biological process upset. Emphasis should be placed on adequate maintenance checks during the first 2 or 3 months of operation.

6.4.2.7 Considerations for Multi-Home Application

The extended aeration process may be well suited for multiple-home or commercial applications. The same requirements listed for single onsite systems generally apply to the larger scale systems (20)(36)(37)(38). However, larger package plant systems may be more complex and require a greater degree of operator attention.

6.4.3 Fixed Film Systems

6.4.3.1 Description

Fixed film systems employ an inert media to which microorganisms may become attached. The wastewater comes in contact with this fixed film of microorganisms either by pumping the water past the media or by mov- ing the media past the wastewater to be treated. Oxygen may be supplied by natural ventilation or by mechanical or diffused aeration within the wastewater. Fixed film reactors are normally constructed as packed tow- ers or as rotating plates. Figure 6-12 depicts three types of onsite fixed film systems - the trickling filter (gravity flow of wastewater downward), the upflow filter (wastewater pumped upward through the media), and the rotating biological contractor.

The trickling filter has been used to treat wastewater for many years. Modern filters today consist of towers of media constructed from a vari- ety of plastics, stone, or redwood laths into a number of shapes (honey- comb blocks, rings, cylinders, etc.). Wastewater is distributed over the surface of the media and collected at the bottom through an undrain system. Oxygen is normally transferred by natural drafting, although some units employ blowers. Treated effluent is settled prior to being discharged or partially recycled back through the filter.

155

FIGURE 6-12

EXAMPLES OF FIXED FILM PACKAGE PLANT CONFIGURATIONS

ROTATING BIOLOGICAL CONTACTOR

UPFLOW FILTER

TRICKLING FILTFR

lnfluent,Distributor

Efflu ent II

lent

Pump I

V Septic 2 Tank

;;:,=$ip -Effluent to Clarifier or Septic Tank I 4

156

In an upflow filter, wastewater flows through the media and is subsequently collected at an overflow weir. Oxygen may be transferred to the biomass by means of diffusers located at the bottom of the tower or by surface entrainment devices at the top. One of the commercially available units of this type (built primarily for shipboard use) does not require effluent sedimentation prior to discharge (Figure 6-12). Circulation of wastewater through this particular unit promotes the shear of biomass from the media and subsequent carriage to the tank bottom.

The rotating biological contactor (RBC) employs a series of rotating discs mounted on a horizontal shaft. The partially submerged discs rotate at rates of 1 to 2 rpm through the wastewater. Oxygen is transferred to the biomass as the disc rotates from the air to the water phase. Recirculation of effluent is not normally practiced.

6.4.3.2 Applicability

There has been little long-term field experience with onsite fixed film systems. Generally, they are less complex than extended aeration sys- tems and should require less attention; if designed properly they should produce an effluent of equivalent quality.

There are no significant physical site constraints that should limit their application, although local codes may require certain set-back distances. The process is more temperature sensitive than extended aeration and should be insulated as required. Rotating biological contactors should also be protected from sunlight to avoid excessive growth of algae which may overgrow the plate surfaces.

6.4.3.3 Factors Affecting Performance

Limited data are currently available on long-term performance of onsite fixed film systems. Detailed description of process variables that affect fixed film process perfomrance appear in the "Manual of Practice for Wastewater Treatment Plant Design" (20). Low loaded filters should also achieve substantial nitrification, as well as good BOD and SS reductions.

6.4.3.4 Design

Onsite fixed film systems include a variety of proprietary devices. Design guidelines are, therefore, difficult to prescribe. Table 6-17

157

presents suggested design ranges for two generic fixed film systems, the RBC and the fixed media processes.

TABLE 6-17

TYPICAL OPERATING PARAMETERS FOR ONSITE FIXED FILM SYSTEMS

Parametera Fixed Media RBC

Hydraulic Loading, gpd/ft2 25-100 0.75-1.0

Organic Loading, lb BOD/d/lOOO ft8 5-20 1.0-1.5

Dissolved Oxygen, mg/l >2.0 >2.0

Overflow Rate, gpd/ft2 600-800 600-800

Weir Loading, gpd/ft2 10,000-20,000 10,000-20,000

Sludge Wasting, months 8-12 8-12

a Pretreatment: Settling or screening. Recirculation: Not required.

All fixed film systems should be preceded by settling and/or screening to remove materials that will otherwise cause process malfunction. Hydraulic loadings are normally constrained by biological reaction rates and mass transfer.

Organic loading is primarily dictated by oxygen transfer within the bio- logical film. Excessive organic loads may cause anaerobic conditions resulting in odor and poor performance. Dissolved oxygen in the liquid should be at least 2 mg/l. Recirculation is not normally practiced in package fixed film systems since it adds to the degree of complexity and is energy and maintenance intensive. However, recirculation may be desirable in certain applications where minimum wetting rates are required for optimal performance.

The production of biomass on fixed film systems is similar to that for extended aeration. Very often, accumulated sludge is directed back to the septic tank for storage and partial digestion.

158

6.4.3.5 Construction Features

Very few commercially produced fixed film systems are currently avail- able for onsite application. Figure 6-12 illustrates several flow ar- rangements that have been employed. Specific construction details are dependent on system characteristics. In general, synthetic packing or attachment media are preferred over naturally occurring materials be- cause they are lighter, more durable, and provide better void volume - surface area characteristics. All fixed film systems should be covered and insulated as required against severe weather. Units may be in- stalled at or below grade depending upon site topography and other adja- cent treatment processes. Access to all moving parts and controls is required, and proper venting of the unit is paramount, especially if natural ventilation is being used to supply oxygen. Underdrains, where required, should be accessible and designed to provide sufficient air space during maximum hydraulic loads. Clarification equipment should include positive sludge and scum handling. All pumps, blowers, and aeration devices, if required, should be rugged, corrosion-resistant, and built for continuous duty.

6.4.3.6 Operation and Maintenance

a. General Process Operation

Fixed film systems for onsite application normally require very minimal operation. Rotating biological contactors are installed at fixed rota- tional speed and submergence. Flow to these units is normally fixed through the use of an integrated pumping system. Sludge wasting is nor- mally controlled by a timer setting. Through experience, the operator may determine when clarifier sludge should be discharged in order to avoid sludge flotation (denitrification) or excessive build-up.

Where aeration is provided, it is normally designed for continuous duty. On-off cycling of aeration equipment may be practiced for energy conser- vation if shown not to cause a deterioration of effluent quality.

b. Routine Operation and Maintenance

Table 6-18 itemizes suggested routine maintenance performance for onsite fixed film systems. The process is less labor-intensive than extended aeration systems and requires semi-skilled personnel. Based upon very limited field experience with these units, 8 to 12 man-hr per yr plus

159

TABLE 6-18

Item

Media Tank

Aeration System

RBC Unit

Clarifier

Trash Trap

Controls

Analytical

SUGGESTED MAINTENANCE FOR ONSITE FIXED FILM PACKAGE PLANTSa

Suggested Maintenance

Check media for debris accumulation, ponding, and excessive biomass - clean as required; check underdrains - clean as required; hose down sidewalls and appurtenances; check effluent distribution and pumping - clean as required.

See Table 6-15

Lubricate motors and bearings; replace seals as required by manufacturer.

See Table 6-15

See Table 6-15

See Table 6-15

Measure final effluent composite sample for BOD, SS, pH (N and P if required).

a Maintenance activities should be performed about once per month.

160

analytical services are required to ensure adequate performance. Power requirements depend upon the device employed, but may range from 1 to 4 kWh/day.

c. Operational Problems

Table 6-19 outlines an abbreviated list of potential operational problems and suggested remedies for onsite fixed film systems. A detailed discussion of these may be found in the "Manual of Practice - Operation of Wastewater Treatment Plants" (36) and "Process Control Manual for Aerobic Biological Wastewater Treatment Facilities" (37).

6.4.3.7 Considerations for Multi-Home Applications

Fixed film systems may be well suited for multiple-home or commercial applications. The same requirements for single-home onsite systems apply to the large-scale systems (20)(29)(37)(38). However, larger systems may be more complex and require a greater degree of operator attention.

6.5 Disinfection

6.5.1 Introduction

Disinfection of wastewaters is employed to destroy pathogenic organisms in the wastewater stream. Since disposal of wastewater to surface water may result in potential contacts between individuals and the wastewater, disinfection processes to reduce the risk of infection should be considered.

There are a number of important waterborne pathogens found in the United States (39)(40)(41)(42). Within this group of pathogens, the protozoan cyst is generally most resistant to disinfection processes, followed by the virus and, the vegetative bacteria (43). The design of the disin- fection process must necessarily provide effective control of the most resistant pathogen likely to be present in the wastewater treated. Up- stream processes may effectively reduce some of these pathogens, but data are scant on the magnitude of this reduction for most pathogens. Currently, the effectiveness of disinfection is measured by the use of indicator bacteria (total or fecal coliform) or disinfectant residual where applicable. Unfortunately, neither method guarantees complete destruction of the pathogen, and conservative values are often selected to hedge against this risk.

161

TABLE 6-19

OPERATIONAL PROBLEMS--FIXED FILM PACKAGE PLANTS

Observation

Filter Ponding

Filter Flies

Odors

Freezing

Excessive Biomass Accumulation

Poor Clarification

Cause

Media too fine

Organic overload

Debris

Poor wastewater distribution

Poor ventilation/ aeration

Improper insultation

Organic overload

Low pH; anaerobic conditions

Denitrification in clarifier

Hydraulic o.verload

Remedy

Replace media

Flush surface with high pressure stream; increase recycle rate; dose with chlorine (lo-20 mg/l for 4 hours)

Remove debris; provide pretreatment

Provide complete wetting of media; increase recycle rate; chlorinate (5 mg/l for 6 hours at 1 to 2 week intervals)

Check underdrains; maintain aeration equipment, if employed; insure adequate ventilation; increase recycle

Check and provide sufficient insulation

Increase recycle; flush surface with high pressure stream; dose with chlorine; increase surface area (RBC)

Check venting; preaerate wastewater

Remove sludge more often

Reduce recycle; provide flow buffering

162

Table 6-20 presents a listing of potential disinfectants for onsite application. Selection of the best disinfectant is dependent upon the characteristics of the disinfectant, the characteristics of the wastewater and the treatment processes preceding disinfection. The most important disinfectants for onsite application are chlorine, iodine, ozone, and ultraviolet light, since more is known about these disinfectants and equipment is available for their application.

TABLE 6-20

SELECTED POTENTIAL DISINFECTANTS FOR ONSITE APPLICATION

Disinfectant

Sodium Hypochlorite

Calcium Hypochlorite

Elemental Iodine

Ozone

Ultraviolet Light

Formula Form Used Equipment

NaOCl Liquid

Ca(OC112 Tablet

12 Crystals

03 Gas

Electromagnetic Radiation

Metering Pump

Tablet Contactor

Crystal/Liquid Contactor

Generator, Gas/ Liquid Contactor

Thin Film Radiation Contactor

Disinfection processes for onsite disposal must necessarily be simple and safe to operate, reliable, and economical. They normally are the terminal process in the treatment flow sheet.

6.5.2 The Halogens - Chlorine and Iodine

6.5.2.1 Description

Chlorine and iodine are powerful oxidizing agents capable of oxidizing organic matter, including organisms, at rapid rates in relatively low concentrations. Some of the characteristics of these halogens appear in Table 6-21 (20)(441(45).

163

TABLE.6-21

HALOGEN PROPERTIES (27)

Commercial Strength Specific

Available Halogen Form % Handling

Gravity Materials

Sodium Liquid 12 - 15 1.14 - 1.17 Hypochlorite

Ceramic, Glass, Plastic, Rubber

Calcium Tablet 70 Glass, Wood, Hypochlorite (115 gm) Fiberglass,

Rubber

Iodine Crystals 100 4.93 Fiberglass, Some Plastics

Characteristics

Deteriorates rapidly at high temperatures, in sunlight, and at high concentrations.

Deteriorates at 3-%/year

Stable in water; solubility:

10' - 200 mg/l 20” - 290 mg/l 30” - 400 mp/l

Chlorine may be added to wastewater as a gas, Cl . However, because the gas can represent a safety hazard and is hig ly corrosive, chlorine 8 would normally be administered as a solid or liquid for onsite applica- tions. Addition of either sodium or calcium hypochlorite to wastewater results in an increase in pH and produces the chlorine compounds hypo- chlorous acid, HOCl, and hypochlorite ion, OCl', which are designated as "free" chlorine. In wastewaters containing reduced compounds such as sulfide, ferrous iron, organic matter, and ammonia, the free chlorine rapidly reacts in nonspecific side reactions with the reduced compounds, producing chloramines, a variety of chloro-organics, and chloride. Free chlorine is the,most powerful disinfectant, while chloride has virtually no disinfectant capabilities. The other chloro-compounds, often called combined chlorine, demonstrate disinfectant properties that range from moderate to weak. Measurement of "chlorine residual" detects all of these forms except chloride. The difference between the chlorine dose and the residual, called "chlorine demand," represents the consumption, of chlorine by reduced materia1.s in the wastewater (Table 6-22). Thus, in disinfection system design, it is the chlorine residual (free and combined) that is of importance in destroying pathogens.

164

TABLE 6-22

CHLORINE DEMAND OF SELECTED DOMESTIC WASTEWATERSa

Chlorine Demand

-Fin---

8 - 15

30 - 45

10 - 25

1 - 5

a Estimated concentration of chlorine consumed in nonspecific side reactions with 15-minute contact time.

Iodine is normally used in the elemental crystalline form, I , for water and wastewater disinfection. Iodine hydrolyzes in water to f arm the hy- poiodus forms, HI0 and IO’, and iodate, I03. Normally, the predominant disinfectant species in water are 12, HIO, and IO’, as little IO3 will be found at normal wastewater pH values (less than pH 8.0). Iodine does not appear to react very rapidly with organic compounds or ammonia in wastewaters. As with chlorine, however, most wastewaters will exhibit an iodine demand due to nonspecific side reactions. The reduced form of iodine, iodide, which is not an effective disinfectant, is not detected by iodine residual analyses.

6.5.2.2 Applicability

The halogens are probably the most practical disinfectants for use in onsite wastewater treatment applications. They are effective against waterborne pathogens, reliable, easy to apply, and are readily avail- able.

165

The use of chlorine as a disinfectant may result in the production of chlorinated by-products which may be toxic to aquatic life. No toxic by-products have been identified for iodine at this time.

6.5.2.3 Performance

The performance of halogen disinfectants is dependent upon halogen re- sidual concentration and contact time, wastewater characteristics, na- ture of the specific pathogen, and wastewater temperature (20). Waste- water characteristics may effect the selection of the halogen as well as the required dosage due to the nonspecific side reactions that occur (halogen demand). Chlorine demands for various wastewaters are pre- sented in Table 6-22. The demand of wastewaters for iodine is less clear. Some investigators have reported iodine demands 7 to 10 times higher than those for chlorine in wastewaters (46)(47) while others indicate that iodine should be relatively inert to reduced compounds when compared to chlorine (48). Design of halogen systems is normally based upon dose-contact relationships since the goal of disinfection is to achieve a desired level of pathogen destruction in a reasonable length of time with the least amount of disinfectant. Because of the nonspecific side reactions that occur, it is important to distinguish between halogen dose and halogen residual after a given contact period in evaluating the disinfection process.

Table 6-23 provides a summary of halogen residual-contact time informa- tion for a variety of organisms (43). These are average values taken from a number of studies and should be used with caution. Relationships developed between disinfectant residual, contact time, and efficiency are empirical. They may be linear for certain organisms, but are often more complex. Thus, it is not necessarily true that doubling the con- tact time will halve the halogens residual requirements for destruction of certain pathogens. In the absence of sufficient data to make these judgements, conservative values are normally employed for residual-dose requirements.

The enteric bacteria are more sensitive to the halogens than cysts or virus. Thus, the use of indicator organisms to judge effective disin- fection must be cautiously employed.

Temperature effects also vary with pathogen and halogen, and the general rule of thumb indicates that there should be a two to threefold decrease in rate of kill for every loo C decrease in temperature within the limits of 5 to 30' C.

166

TABLE 6-23

PERFORMANCE OF HALOGENS AND OZONE AT 25°C [After (43)1

Halogen

Necessary Residual After 10 Min. to Achieve 99.999% Destruction (mg/l)

Amoebic tnteric Entenc cysts Bacteria Vi rus

HOC1 (Predominates (h pH (7.5)

3.5 0.02 0.4

OCL- (Predominates Q pH >7.5)

40 1.5 100

NH2Cla 20 4 20

12 (Predominates 8 pH (7.0)

3.5 0.2 15

HIO/IO- (Predominates 7 0.05 0.5 8 8.0>pH>7.0)

03 0.3->1.8 0.2-0.3 0.2-0.3

a NHC12:NH2Cl Efficiency = 3.5~1

6.5.2.4 Design Criteria

The design of disinfection processes requires the determination of the wastewater characteristics, wastewater temperature, pathogen to be de- stroyed, and disinfectant to be employed (20). From this information, the required residual-concentration relationship may be developed and disinfectant dose may be calculated.

Wastewater characteristics dictate both halogen demand and the species of the disinfectant that predominates. In effluents from sand filters, chlorine demands would be low and, depending upon pH, hypochlorous acid or hypochlorite would prevail if chlorine is used. (The effluent would be almost completely nitrified, leaving little ammonia available for reaction). At pH values below 7.5, the more potent free chlorine form,

167

HOC1 , would predominate. It is clear from Table 6-23 that pH plays an important role in the effectiveness of chlorine disinfection against virus and cysts (10 to 300 fold differences).

The effect of temperature is often ignored except to ensure that conser- vatively long contact times are selected for disinfection. Temperature corrections are necessary for estimating iodine doses if a saturator is employed, since the solubility of iodine in water decreases dramatically with decreased temperature.

Design of onsite wastewater disinfection systems must result in conser- vative dose-contact time values, since careful control of the process is not feasible. Guidelines for chlorine and iodine disinfection for on- site applications are presented in Table 6-24. These values are guide- lines only, and more definitive analysis may be warranted in specific cases.

TABLE 6-24

HALOGEN DOSAGE DE SIGN GUIDELINES

Dosea Septic Tank Package Biological Sand Filter

Disinfectant Effluent Process Effluent Effluent Wl mgfl w/l

Chlorine -pH 6 PH 7 pH 8

Iodi neb pH 6-8

35-50 15-30 2-10 40-55 20-35 10-20 50-65 30-45 20-35

300-400 go-150 10-50

a Contact time = 1 hour at average flow and 20°C; increase contact time to 2 hours at 10°C and 8 hours at 5°C for similar efficiency.

b Based upon very small data base, assuming iodine demand from 3 to 7 times that of chlorine.

168

The sizing of halogen feed systems is dependent upon the form of the halogen used and the method of distribution. presented below.

Sample calculations are

Sample calculations:

Estimate of sodium hypochlorite dose - liquid feed

Halogen: NaOCl - trade strength 15% (150 g/l) Dose required: 20 mg/l available chlorine Wastewater flow: 200 gpd average

1. Available chlorine =

(150 g/l) x (3.785 l/ga

2. Dose required =

(20 mg/l) x (3.785 l/ga

= 1.67 x 10s4 lb/gal

3. Dose required =

(1.67 x 1O-4

4. NaOCl dose =

(3.34 x 1o-2

) x (1.0 lb/453.6 g) = 1.25 lb/gal

) x (1 lb/453.6 g) x (10m3 g/mg)

b/gal) x (200 gal/d) = 3.34 x 10m2 lb/d

b/d) + (1.25 lb/gal) = 0.027 gal/day

Estimate of haloqen desian - tablet feed

Halogen: Ca(OCL) tablet - 115 g; commercial strength 70% Dose Required: 29 mg/l available chlorine Wastewater Flow: 200 gpd (750 l/d)

1. Available chlorine in tablet = 0.7 x 115(g) = 80.5 g/tablet

2. Dose required = 20 (mg/l) x 750 (l/d) = 15 g/d

3. Tablet consumption = B 15 (g/d) . 5 ( g,tab,et] = 0.19 tab1 ets/day

or: 5.4 days/tablet

169

6.5.2.5 Construction Features

a. Feed Systems

There are basically three types of halogen feed systems commercially available for onsite application: stack or tablet feed systems, liquid feed systems, and saturators. Tablet feed devices for Ca(OCl)2 tablets (Figure 6-13) are constructed of durable, corrosion-free plastic or fiberglass, and are designed for in-line installation. Wastewater flows past the tablets of Ca(OCl)2, dissolving them in proportion to flow rate (depth of immersion). Tablets are added as requried upon manual inspection of the unit. One commercial device provides 29-115 g/tablet per tube which would require refilling in approximately 155 days (5.4 days/tablet x 29).

Halogens may also be fed to the wastewater by an aspirator feeder or a suction feeder. The aspirator feeder operates on a simple hydraulic principle that employs the use of the vacuum created when water flows either through a venturi tube or perpendicular to a nozzle. The vacuum created draws the disinfection solution from a container into the disin- fection unit, where it is mixed with wastewater passing through the unit. The mixture is then injected into the main wastewater stream. Suction feeders operate by pulling the disinfection solution from a container by suction into the disinfection unit. The suction may be created by either a pump or a siphon.

The storage reservoir containing the halogen should provide ample volume for several weeks of operation. A l-gal (4-l) storage tank would hold sufficient 15% sodium hypochlorite solution for approximately 37 days before refill (see sample computation). A 2-gal (8-l) holding tank would supply 50 days of 10% sodium hypochlorite. A 15% sodium hypochlorite solution would deteriorate to one-half its original strength in 100 days at 25°C (49). The deterioration rate of sodium hypochlorite decreases with decreased strength; therefore, a 10% solution would decrease to one-half strength in about 220 days.

If liquid halogen is dispersed in this fashion, care must be taken to select materials of construction that are corrosion-resistant. This includes storage tanks, piping, and appurtenances as well as the pump.

Iodine is best applied to wastewater by means of a saturator whereby crystals of iodine are dissolved in carriage water subsequent to being pumped to a contact chamber (Figure 6-14). Saturators may be con- structed or purchased commercially. The saturator consists of a tank of fiberglass or other durable plastic containing a supporting base medium

170

FIGURE 6-13

STACK FEED CHLORINATOR

R FeedTubes

“"i 1

-I I \ Water Outlet

Water Inlet

171

e

Wastewater

FIGURE 6-14

IODINE SATURATOR

Tank

t

Iodine Solution

Iodine Crystals

172

and iodine crystals. fed to the saturator.

Pretreated wastewater is split, and one stream is The dissolution of iodine is dependent upon water

temperature, ranging from 200 to 400 mg/l (Table 6-21). The iodine solution from the saturator is subsequently blended with the wastewater stream, which is discharged to a contact chamber. saturator size and dosage requirements,

Depending upon replenishment of iodine every 1

to 2 yr may be required (assumes a dosage of 50 mg/l for 750 l/day using a 0.2-cu-ft saturator).

b. Contact Basin

Successful disinfection depends upon the proper mixing and contact of the disinfectant with the wastewater. If good mixing is achieved, a contact time of 1 hour should be sufficient to achieve most onsite dis- infection objectives when using doses presented in Table 6-24. Where flows are low (e.g., under 1,000 gal per day) (3,785 1 per day), contact basins may be plastic, fiberglass, or a length of concrete pipe placed vertically and outfitted with a concrete base (Figure 6-15). A 48-in. (122-cm) diameter concrete section would theoretically provide 6 hr of wastewater detention for an average flow of 200 gal per day (757 1 per day) if the water depth were only approximately 6 in. (15 cm). A 36-in. (91-cm) diameter pipe section provides 6 hr detention at approximately 12 in. (30 cm) of water depth for the same flow. Therefore, substanti- ally longer theoretical detention times than necessary for ideal mixing conditions are provided using 36- or 48-in. (91- or 122-cm) diameter pipe. This oversizing may be practically justified for onsite applications, with low flows, since good mixing may be difficult to achieve.

Contact basins should be baffled in order to prevent serious short- circuitinq within the basin. One samole baffling arrangement is illus- trated in"Figure 6-15.

6.5.2.6 Operation and Mainten

The disinfection system should be des maintenance requirements, yet insure operation and maintenance of premixed consists of replacing chemicals, adjust

nce

gned to minimize operation and reliable treatment. Routine

liquid solution feed equipment ng feed rates, and maintaining

the mechanical components. Tablet feed chlorination devices should require less frequent attention, although recent experience indicates that caking of hypochlorite tablets occurs due to the moisture in the chamber. Caking may result in insufficient dosing of chlorine, but may also produce excessive dosage due to cake deterioration and subsequent spillage into the wastewater stream. Dissolution of chlorine may also be erratic, requiring routine adjustment of tablet and liquid elevation

173

(experience with some units indicates that dissolution rates actually increase with decreased flow rates). Routine maintenance of iodine saturators includes replacing chemicals, occasionally adjusting feed rates, redistributing iodine crystals within the saturator, and maintaining mechanical components.

FIGURE 6-15

SAMPLE CONTACT CHAMBER

Wastewater with

Disinfectant

/ConcretePipeSection

LWooden Baffles

Process control is best achieved by periodic analysis of halogen resid- uals in the contact chamber. The halogen residuals can be measured by unskilled persons using a color comparator. Periodic bacteriological analyses of treated effluents provide actual proof of efficiency. Skilled technicians are required to sample and analyze for indicator organisms or pathogens.

174

It is estimated that tablet feed chlorinators could be operated with approximately 6 unskilled man-hr per yr including monthly chlorine re- sidual analyses. Iodine saturator systems and halogen liquid feed sys- tems may require 6 to 10 semi-skilled man-hr per yr. Electrical power consumption would be highly variable depending upon other process pump- ing requirements, as well as the use of metering pumps and controls. Chemical requirements will vary, but are estimated to be about 5 to 25 lb (2 to 11 kg) of iodine and 5 to 15 lb (2 to 7 kg) of available chlorine per yr for a family of four.

6.5.2.7 Other Considerations

In making a final decision on halogen disinfection, other considerations "' must be included in addition to cost, system effectiveness, and relia-

bility. Without a dechlorination step, chlorine disinfection may be ruled out administratively. Currently, there is no evidence that iodine or its compounds are toxic to aquatic life.

6.5.3 Ultraviolet Irradiation

6.5.3.1 Description

The germicidal properties of ultraviolet (UV) irradiation have been rec- ognized for many years (50)(51). UV irradiation has been used for the disinfection of water supplies here and abroad, and currently finds widest application for small water systems for homes, commercial estab- lishments, aboard ship, and in some industrial water purification sys- tems. The use of UV irradiation for wastewater disinfection has only recently been seriously studied (52)(53).

Ultraviolet is germicidal in the wave length range of 2,300 to 3,000 w, its greatest efficiency being at 2,540 A. Currently, high-intensity, low-pressure mercury vapor lamps emit a major percentage of their energy at this wave length, making them most efficient for use. The primary mode of action of UV is the denaturation of nucleic acids, making it especially effective against virus.

In order to be effective, UV energy must reach the organism to be destroyed. Unfortunately, UV energy is rapidly absorbed in water and by a variety of organic and inorganic molecules in water. Thus, the trans- mittance or absorbance properties of the water to be treated are criti- cal to successful UV disinfection. To achieve disinfection, the water to be treated is normally exposed in a thin film to the UV source. This may be accomplished by enclosing the UV lamps within a chamber, and

175

directing flow through and around the lamps. It may also be accom- plished by exposing a thin film of water flowing over a surface or weir to a bank of lamps suspended above and/or below the water surface.

The lamps are encased within a clear, high transmittance, fused quartz glass sleeve in order to protect them. This also insulates the lamps so as to maintain an optimum lamp temperature (usually about 105’ F or 41" C). To ensure maintenance of a very high transmittance through the quartz glass enclosure, wipers are usually provided with this equip- ment. Figures 6-16 and 6-17 depict a typical UV disinfection lamp arrangement currently being used. .There are a number of commercially available units that may be applicable to onsite wastewater applica- tions.

6.5.3.2 Applicability

Site conditions should not restrict the use of UV irradiation processes for onsite application, although a power source is required. The unit must be housed to protect it from excessive heat, freezing, and dust. Wastewater characteristics limit the applicability of UV equipment since energy transmission is dependent upon the absorbance of the water to be treated. Therefore, only well-treated wastewater can be disinfected with UV.

6.5.3.3 Factors Affecting Performance

The effectiveness of UV disinfection is dependent upon UV power, contact time, liquid film thickness, wastewater absorbance, process configura- tion, input voltage, and temperature (50)(51)(52).

The UV power output for a lamp is dependent upon the input voltage, lamp temperature, and lamp characteristics. Typically, UV output may vary from as low as 68% of rated capacity at 90 volts to 102% at 120 volts. Lamp temperatures below and above about 104" F (40' C) also results in decreased output. The use of quartz glass enclosures normally ensures maintenance of optimum temperature within the lamp.

Since disinfection by UV requires that the UV energy reaches the organ- isms, a measure of wastewater absorbance is crucial to proper design. Transmissability is calculated as an exponential function of depth of penetration and the absorption coefficient of the wastewater:

176

c--r u U

FIGURE 6-16

TYPICAL UV DISINFECTION UNIT

Mounting Brackets for Easy Installation Vertical or Horizontal

1 l-L Flow Control Valve \ c)..-,..,,LI,

Power Supply /

nar~~uveau~e

Flanged head

1-1 f6l ” r -1 I

Sterlizing Chamber (see Figure 6-l 7) In TiY?I

I I

I

I--!, P-L- fir ra11-3a~t: lvlonitor

Warning

I

/ Solenoid Shut Off Valve LJ

Extension t Inlet

a

Drain Plug

FIGURE 6-17

TYPICAL UV STERILIZING CHAMBER

Baffles force the water to travel tangetially through the chamber in a spinning motion around quartz sleeves.

Sterlizing Chamber

Ultraviolet light rays are emitted from high intensity ultraviolet lamps and pass through the quartz sleeves.

Typical sterilizers employ one to twelve lamps per sterilizing chamber.

178

whe e I:

T is the draction transmitted, a is the absorption coefficient in cm' at 2,537 A, and d is the depth in cm. Typically, a very high- quality distilled water will have an absorption coefficient of 0.008, where tap water would normally vary from 0.18 to 0.20. Wastewaters pol- ished with sand filtration should produce absorption coefficients of from 0.13 to 0.20, whereas septic tank effluents may be as high as 0.5. Currently, rule of thumb requirements for UV application indicate that turbidities should be less than 10 JTU and color less than 15 mg/l. (1 Jackson Turbidity Unit [JTU] is about equivalent to 1 Formazin Turbidity Unit [FTU]).

The relationship between UV power and contact time is still uncertain. Empirical relationships have been used to express the performance of UV equipment. Currently the empirical term, microwatt seconds per square centimeter (mw sec/cn?), is used (50)(51).

The required contact time for a given exposure is dictated by the waste- water absorbance, film thickness, and the pathogen to be destroyed. Typical values of UV dosage for selected organisms appear in Table 6-25.

This tabulation indicates that a wide spectrum of organisms are about equally sensitive to UV irradiation. There are exceptions to this, ho!- ever; Bacillus spores require dosages in $ xcess of 220,000 mw set/cm., and protozoan as high as 300,000 mw set/cm .

One characteristic trait of UV disinfection of water has been the photo- reactivation of treated organisms within the wastewater. Exposure of the wastewater to sunlight following UV disinfection has produced as much as 1.5 log increase in organisms concentration. This phenomena does not always occur, however, and recent field tests indicate that photoreactivation may not be of significant concern (52).

6.5.3.4 Design

There has been little long-term experience with wastewater UV disinfec- tion (2)(52)(53). Therefore, firm design criteria are not available. One may draw upon water supply disinfection criteria, however, for con- servative design (50)(51).

179

TABLE 6-25

UV DOSAGE FOR SELECTED ORGANISMS

Organism Dosage for 99% Kill at a = 0.0

IIW sec/cm2

Shigella 4,000

Salmonella 6,000

Poliovirus 6,000

IH Viral Form 8,000

E. Coli 7,000

Protozoan 180-300,OOOa

Fecal Coliform 23,000b

a For 99.9% inactivation.

b Field studies corrected to a = 0; 99.96% inactivation.

Wastewater should be pretreated to a quality such that turbidity is less than 10 JTU and color is less than 15 mg/l. Intermittent sand filtered effluent quality will generally not exceed these limits when properly managed. It would be desirable to provide measurement of UV transmit- tance in the wastewater on a continuous basis to ensure that sufficient UV power reaches the organism to be treated. Dosage values should be conservative until more data are available. mum UV dose of, 16,000 mw sec/cm2 or kw set/m J

herefore, a desired mini- should be applied at all

points throughout the disinfection chamber. A maximum depth of penetra- tion should be limited to about 2 in. (5 cm) to allow for variation in wastewater absorption. The UV lamps should be enclosed in a quartz glass sleeve and appropriate-automatic cleaning devices should be pro- vided. A UV intensity meter should be installed at a point of greatest water depth from the UV tubes,.and an alarm provided to alert the owner when values fall below on acceptable level.

180

6.5.3.5 Construction Features

Commercially available UV units sold primarily for water supply disin- fection are applicable for onsite wastewater disinfection. Most of these units are self-contained and employ high-intensity UV irradiation over a thin film of water for short contact times.

The self-contained unit should be installed following the last treatment process in the treatment sequence, and should be protected from dust, excessive heat, and freezing. It should be accessible for maintenance and control. As described in the previous section, the unit should be equipped with a cleaning device (manual or automatic) and an intensity meter that is properly calibrated. Flow to the unit should be main- tained relatively constant. This is often achieved by means of a pres- sure compensated flow control valve.

Some larger UV modules are available that consist of a series of lamps encased within quartz glass enclosures. The module may be placed within the flow stream such that all water passes through the module. UV lamps positioned over discharge weirs, and therefore out of the water, are also available. These systems are not as efficient as flow through units since only a fraction of the lamp arc intercepts the water. Con- trol of the water film over the weir plate (V-notch or sharp crested) is difficult to maintain unless upstream flows are carefully regulated. Cleaning and metering devices are required for both of these systems.

Depending on upstream processes and the UV unit employed, the UV system may be operated on a continuous flow or intermittent basis. For small flows, self-contained tubular units and intermittent flow would be employed. Influent to the unit could be pumped to the UV system from a holding tank. In order to obtain full-life expectancy of the UV lamps, they should be operated continuously regardless of flow arrangement. Where UV modules are employed, continuous flow through the contact chamber may be more practical.

6.5.3.6 Operation and Maintenance

Routine operational requirements include quartz glass enclosure clean- ing, lamp replacement, and UV intensity meter reading. Since UV disin- fection does not produce a residual, the only monitoring required would be periodic bacterial' analyses by skilled technicians. Periodic mainte- nance of pumping equipment and controls, and cleaning of quartz jackets during lamp replacement, would also be required.

181

Cleaning of quartz glass enclosures is of paramount importance since UV transmittance is severely impaired by the accumulation of slimes on the enclosures. Cleaning is required at least 3 to 4 times per year at a minimum, and more often for systems employing intermittent flow. If automatic wipers are employed, the frequency of manual cleaning may be reduced to twice per year. Expected lives of lamps are variable, nor- mally ranging from 7,000 to 12,500 hours. It is good practice, however, to replace lamps every 10 months, or when metered UV intensity falls be- low acceptable values. A complete cleaning of quartz glass enclosures with alcohol is required during lamp replacement. Based on limited operational experience, it is estimated that 10 to 12 man-hr per yr are required to maintain the UV system. Power requirements for the UV system for design flow rates up to 4 gpm (0.25 l/ set) are approximately 1.5 kWh/day.

6.5.4 Ozonation

6.5.4.1 Description

Ozone, 0 , 1

a pale blue gas with pungent odor, is a powerful oxidizing agent. t is only slightly soluble in water, depending upon tempera- ture, and is highly unstable. Because of its instability, ozone must be generated on site.

Ozone is produced by the dissociation of molecular oxygen into atomic oxygen with subsequent formation of 0 .

?I It is produced commercially by

passing an oxygen-containing feed gas etween electrodes separated by an insulating material (54)(55). In the presence of a high-voltage, high- frequency discharge, ozone is generated from oxygen in the electrode gap-

Ozone is a powerful disinfectant against virus, protozoan cysts, and vegetative bacteria (54)(55)(56)(57). It is normally sparged into the water to be treated by means of a variety of mixing and contact devices. Because of its great reactivity, ozone will interact with a variety of materials in the water, resulting in an ozone demand. The short half- life of ozone also results in the rapid disappearance of an ozone resid- ual in the treated water.

6.5.4.2 Applicability

Ozone is currently used to disinfect water supplies in the United States and Europe, and is considered an excellent candidate as an alternate wastewater disinfectant (54)(55)(56)(57). The major drawback to its

182

widespread use to date has been the expense of generation. There is no documented long-term field experience with ozone disinfection onsite.

Since ozone is a highly corrosive and toxic gas, its generation and use onsite must be carefully monitored and controlled. The generator requires an appropriate power source, and must be properly housed to protect it from the elements. Wastewater characteristics will have an impact on ozone disinfectant efficiency and must be considered in the evaluation of this process.

Data on the effectiveness of ozone residuals against pathogens are scant. Employing the same criteria as used for halogens, ozone appears to be more effective against virus and amoebic cysts than the halogens (Table 6-23).

The literature indicates that ozone action is not appreciably affected by pH variations between 5.0 and 8.0 (58). Turbidity above values of 5 JTU has a pronounced effect upon ozone dosage requirements, however (47)(58). Limited field experience indicates that ozone requirements may approximately double with a doubling of turbidity to achieve comparable destruction of organisms (47).

Currently, with very limited operating data, prescribed ozone applied dosages recommended for wastewater disinfection vary from 5 to 15 mg/l depending upon contactor efficiencies and pathogen to be destroyed.

6.5.4.3 Construction Features

The ozone disinfection system consists of the ozone gas generation equipment, a contactor, appropriate pumping capacity to the contactor and controls. There are two basic types of generating equipment. The tube-type unit is an air-cooled system whereby ozone is generated between steel electrode plates faced with ceramic. Oxygen-containing feed gas may be pure oxygen, oxygen-enriched air, or air. The gas is cleaned, usually through cartride-type inpingement filters, and com- pressed to about 10 psi. The compressed gas is subsequently cooled and then dried prior to being reacted in the ozone contacting chamber. Dry- ing is essential to prevent serious corrosion problems within the gener- ator.

The generated ozone-enriched air is intimately mixed with wastewater in a contacting device. Ozone contactors include simple bubble diffusers in an open tank, packed columns, and positive pressure injection (PPI) devices. Detention times within these systems range from 8-15 min in

283

the bubble diffuser units to lo-30 set in packed columns and PPI systems (59)(60). Limited data are currently avail able on long-term use of these contactor devices for onsite systems. There are relatively few field-tested, small-capacity systems commercially available.

6.5.4.4 Operation and Maintenance

The ozone disinfection system is a complex series of mechanical and electrical units, requiring substantial maintenance, and is susceptible to a variety of malfunctions. Since data on long-term experience are relatively unavailable, it is not possible to assess maintenance re- quirements on air cleaning equipment, compressors, cooling and drying equipment, and contactors. It is estimated that 8 to 10 kWh/lb of ozone generated will be required (54). Monitoring requirements are similar to those for UV disinfection, including occasional bacterial analyses and routine ozone monitoring.

6.6 Nutrient Removal

6.6.1 Introduction

6.6.1.1 Objectives

Nitrogen and phosphorus may have to be removed from wastewaters under certain circumstances. Roth are plant nutrients and may cause undesir- able growths of plants in lakes and impoundments. Nitrogen may also create problems as a toxicant to fish (free ammonia), as well as to ani- mals and humans (nitrates). In addition, the presence of reduced nitro- gen may create a significant oxygen demand in surface waters.

Nitrogen may be found in domestic wastewaters as organic nitrogen, as ammonium, or in the oxidized form as nitrite and nitrate. The usual forms of phosphorus in domestic wastewater include orthophosphate, poly- phosphate, pyrophosphate, and organic phosphate. Sources of wastewater nitrogen and phosphorus from the home are presented in Table 4-4.

The removal or transformation of nitrogen and phosphorus in wastewaters has been the subject of intensive research and demonstration over the past 15 to 20 yr. Excellent reviews of the status of these treatment processes can be found in the literature (61)(62). As discussed in Chapter 7, the soil may also. serve to remove and/or transform the nitrogen and phosphorus in wastewaters percolating through them.

284

The treatment objective for nitrogen and phosphorus in wastewater is dependent upon the ultimate means of disposal. Surface water quality objectives may require limitations of total phosphate, organic and ammonia nitrogen, and/or total nitrogen. Subsurface water quality objectives are less well developed, but may restrict nitrate-nitrogen and/or total phosphate.

6.6.1.2 Application of Nutrient Removal Processes to Onsite Treatment

There are a number of nutrient removal processes applicable to onsite wastewater treatment, but there are very little data on long-term field applications of these systems. In-house wastewater management through segregation and household product selection appears to be the most practical and cost-effective method for nitrogen and phosphorus control onsite. Septic tanks may remove a portion of these nutrients as flot- able and settleable solids. Other applicable chemical, physical, or biological processes may also be employed to achieve a given level of nutrient removal. Although these supplemental processes may be very effective in removing nutrients, they are normally complex and energy and labor intensive.

Since the state-of-the-art application of onsite nutrient removal is limited, the discussion that follows is brief. Processes that may be successful for onsite application are described. Acceptable design, construction, and operation data are presented where they are available.

6.6.2 Nitrogen Removal

6.6.2.1 Description

Table 6-26 outlines the potential onsite nitrogen control options. In many instances, these options also achieve other treatment objectives as well, and should be evaluated as to their overall performance. The removal or transformation of nitrogen within the soil absorption system is described fully in Chapter 7.

6.6.2.2 In-House Segregation

Chapter 4 provides a detailed description of the household wastewater characteristics and sources of these wastewaters. Between 78 and 90% of the nitrogen in the wastewater discharged from the home is from toilets. Separation of toilet wastewaters would result in average nitrogen levels

185

Option

In-House Segregation

Biological Nitri fication

Biological Denitrifi cation

Ion Exchange

TABLE 6-26

POTENTIAL ONSITE NITROGEN CONTROL OPTIONSa

Description

Separate toilet wastes from other wastewater

Granular Filters

Aerobic package plants

Anaerobic processes following nitrification

Cationic exchange-NH4

Anionic exchange-NO3

Effectiveness

78-90% removal of N in blackwater

>90% conversion to nitrate

85-95% conversion to nitrate

80-95% removal of N

>99% removal of NH: or NO2

Comments

Management of residue required

Achieves high level of BOD and solids removal

May achieve good levels of BOD and solids removal; labor/energy intensive; residue management

Requires carbon source; labor intensive; high capital cost

Very high operation costs

Onsite Technology

Status

Good

Good

Good

Tentative

Tentative

a Not including the soil absorption system--see Chapter 7.

of about 0.004 lb/cap/day (1.9 mg/cap/day) or 17 mg/l as N in the re- maining graywater (Tables 4-4 and 4-5). Chapter 5 describes the process features, the performance, and the operation and maintenance of low- water carriage and waterless toilet systems. The resultant residuals from toilet segregation, whether they be ash, compost, chemical sludge, or blackwater, must be considered in this treatment strategy. A dis- cussion of residuals disposal is presented in Chapter 9.

The success of this method of nitrogen removal is dependent upon appro- priate management of the in-house segregation fixtures and the disposal of the residues from them. These devices must be considered a part of the treatment system when developing appropriate authority for institu- tional control.

6.6.2.3 Biological Processes

Nitrogen undergoes a variety of biochemical transformations depending upon its form and the environmental conditions (61). Organic nitrogen in domestic wastewaters readily undergoes decomposition to ammonia in either aerobic or anaerobic conditions. In an aerobic environment, a select group of bacteria oxidize ammonia to nitrite and ultimately nitrate. Nitrates may be reduced by a variety of organisms to various nitrogen gas under anaerobic conditions. Depending upon the treatment objectives, one or several of these processes may be employed to achieve the desired end product.

a. Applicability

A number of biological processes for nitrogen conversion are applicable to onsite treatment. Domestic wastewater characteristics should not limit application of these processes, provided the nitrogen is in the appropriate for-m for conversion. Since biological processes are tem- perature-sensitive, such systems should be covered and insulated in cold climates. Covering also contains odors, should problems occur.

b. Process Performance

Although data are sketchy, about 2 to 10% of the total nitrogen from the home may be removed in the septic tank with septage (63)(64). Approxi- mately 65 to 75% of the total nitrogen in septic tank effluents is in the ammonia-nitrogen form, indicating a significant level of decomposi- tion of organic nitrogen (2).

187

Nitrification of septic tank effluents occurs readily within intermit- tent sand filters (see Section 6.3). Field expfrience ingicstes that intermittent sand filters loaded up to 5 gpd/ft (0.02 cm /m /d), and properly maintained to avoid excessive ponding (and concomitant anaero- bic conditions), converts up to 99% of the influent ammonia to nitrate- nitrogen (2). Aerobic biological package plants also provide a high degree of nitrification, provided solids retention times are long and sufficient oxygen is available (see Section 6.6).

The biological denitrification (nitrates to nitrogen gases) of waste- water follows a nitrification step (61). There has been little experi- ence with long-term field performance of onsite denitrification pro- cesses. Ideally, total nitrogen removal in excess of 90% should be achievable, if the system is properly operated and maintained (61).

C. Design- and Construction Features

Septi;*Tanis: There are no septic tank design requirements specifically estab lshe to enhance high levels of nitrogen removal. Designs that provide excellent solid-liquid separation ensure lower concentrations of nitrogen associated with suspended solids.

Nitrification: Biological nitrification is achieved by a select group of aerobic ml'croorganisms referred to as nitrifiers (61). These organ- isms are relatively slow-growing and more sensitive to environmental conditions than the broad range of microorganisms found in biological wastewater treatment processes. The rate of growth of nitrifiers (and thus the rate of nitrification) is dependent upon a number of parame- ters, including temperature, dissolved oxygen, pH, and certain toxi- cants. The design and operating parameter used to reflect the growth rates of nitrifiers is the solids retention time (SRT). Details of the impact of temperature, dissolved oxygen, pH, and toxicants on design SRT values for nitrification systems are outlined in reference (61). In brief, biological nitrification systems are designed with SRT values in excess of 10 days; dissolved oxygen concentrations should be in excess of 2.0 mg/l; and pH values should range between 6.5 and 8.5. Toxicants known to be troublesome are discussed in reference (61).

Details of the design and construction of intermittent sand filters and aerobic package plants are found in Sections 6.3 and 6.4. In general, designs normally employed for onsite application of these processes to remove BOD and solids are sufficient to encourage nitrification as well.

Denitrification: Biological denitrification is carried out under anoxic conditions in the presence of facultative, heterotrophic microorganisms

188

which conve.rt nitrate to nitrogen gases (61). Numerous microorganisms are capable of carrying out this process, provided there is an organic carbon source available. These organisms are less sensitive to environ- mental conditions than the nitrifiers, but the process is temperature- dependent. Process design and operational details for conventional de- nitrification processes are discussed in reference (61).

Design and operational experience with onsite biological denitrification systems is limited at this time (2)(65)(66). Several systems have been suggested for onsite application, two of which are shown in Figure 6- 18. One employs a packed bed containing approximately 3/8-in. (l-cm) stone that receives, on a batch basis, effluent from a nitrification process. The nitrified wastewater flows to a dosing tank, where it is held until a predetermined volume is obtained. Methanol (or other or- ganic carbon source) is then added to provide a C:N ratio of approxi- mately 3:l. After approximately 15 min, the wastewater is pumped up through the anoxic packed stone bed. Effluent flows from the top of the bed. Liquid retention times in the packed bed (based on void volume) varying from 12 to 24 hours have been employed with good results (2). Pumping may be provided by a l/3-hp submersible pump actuated by a switch float within the sump. A small chemical feed pump controlled by a timer switch may be used to feed the organic carbon source to the sump. A 30% methanol solution may be used as the carbon source. Other organic carbon sources include septic tank effluent, graywater, and molasses. Metering of organic carbon source to the nitrified wastewater requires substantial control to ensure a proper C:N ratio. Insufficient carbon results in decreased denitrification rates, whereas excess carbon contributes to the final effluent BOD (61). The use of an easily ob- tainable, slowly decomposable, solid carbon source could also be con- sidered. Peat, forest litter, straw, and paper mill sludges, for exam- ple, could be incorporated as a portion of the upflow filter. Control of the denitrification process using these solid carbon sources would be difficult.

Another onsite nitrification-denitrification system that has been field tested employs a soil leach field (66) (Figure 6-18). Septic tank ef- fluent is distributed to a standard soil absorption field. An imperme- able shield of fiberglass is placed approximately 5 ft (1.5 m) below the distribution line. The location of this collector should be deep enough to ensure complete nitrification within the overlying unsaturated soil. The nitrified wastewater is collected on the sloped fiberglass shield, and directed to a 24-in. (61-cm) deep bed of pea gravel contained within a plastic liner (denitrifying reactor). The gravel bed is sized deep enough to provide a hydraulic detention time of approximately 10 days (based on void volume). Methanol or other energy source is metered to the gravel bed through a series of distributors. The gravel bed is vented with vertical pipes to allow escape of nitrogen gas evolved in the process. Short-term experience with this system has been good. Total nitrogen concentrations of less than 1 mg/l-N were achievable in

189

FIGURE 6-18

ONSITE DENITRIF ICATION SYSTEMS

Methanol ,-Pump and

Fro N itrifvinn Effluent

0

Float Control

Tank

Batch Denitrification

Pump

Irn Pt ‘ocess

Influe?

Denitrification Tank -

L Impermeable Liner

Nitrification-Denitrification in Soil

190

effluent samples during summer months. Higher values (5-10 mg/l-N) were observed during the colder winter months.

Although no studies have been reported in the literature for onsite applications, intermittent or cycled extended aeration processes are potentially promising (61)(67) for the nitrification-denitrification of wastewater. This process makes use of existing proprietary extended aeration package plants where aeration is cycled to provide both aerobic and anoxic environments. In this mode of operation, sufficient solids retention time (SRT) is provided to insure nitrification, and a suffi- cient period of anoxic holding is provided to insure denitrification. The biomass serves as the energy source for denitrification. The cycle times vary dependent on temperature and wastewater characteristics. A typical cycle, using a SRT of 20 days, aerates 180 min and holds anoxic for 90 min (67). Nitrogen removals in excess of 50% are attainable with this system (2)(67). Operation of the cyclic aeration system requires substantial supervision for a period of time until proper sequences have been selected.

d. Operation and Maintenance

Nitrification Systems: Operation and maintenance requirements to achieve nitrification in either intermittent sand filters or aerobic package units are not significantly different from those discussed in Sections 6.3 and 6.4. In both systems, the process must be maintained in an aerobic condition at all times to ensure effective nitrification.

Denitrification Systems: Operation and maintenance requirements ,.for denitrification systems are normally complex and require semi-skilled labor for proper performance. In addition to routine maintenance of pumping systems, mixers, and timer controls, the addition and balance of a carbon source is required.

Routine analyses of nitrogen compounds and biological solids is also im- portant. Rough estimates for semi-skilled labor for maintenance of an onsite denitrification system varies from 15 to 30 man-hr per yr. If methanol is used as a carbon source, it is estimated that from 33 to 55 lb/yr (15 to 25 kg/yr) are required for a family of four. Power re- quirements for methanol feed and pumping are about 15 to 25 kWh/yr.

6.6.2.4 Ion Exchange

Ion exchange is a process whereby ions of a given species are displaced from an insoluble exchange material by ions of a different species in

191

solution. It can be used to remove either ammonium or nitrate nitrogen from wastewaters. This process has been employed in full-scale water and wastewater treatment plants for several years (61)(67)(68), but there is no long-term experience with the process for nitrogen removal in onsite applications.

Nitrogen removal by ion exchange has potential for onsite application, since it is very effective and is simple to operate. Unfortunately, per- iodic replacement of the exchange media is expensive and regeneration of the media onsite does not appear to be practical at this time. Site conditions and climatological factors should not limit its application.

a. Ammonia Removal

Ammonia removal may be achieved by employing the naturally occurring ex- change media, clinoptilolite, which has a high affinity for the ammonium ion (61). Laboratory experience has shown that packed columns of cli- noptilolite resin (20 x 40 mesh) will effectively remove ammonium ion from septic tank effluent without serious clogging problems (2). Regen- eration with 5% NaCl was successful over numerous trials. BreaktQrough exchange capacity of this resin was found to be about 0.4 meq NH4 /gram in hard water at application rates of 10 bed volumes per hr. (This value will vary, increasing with decreased hardness.) Very large quan- tities of resin are required to treat household wastewaters (approxi- mately 10 lb per day). Treatment of segregated graywaters substantially lower in ammonium concentration decreases the amount of resin needed.

This process employs a packed column or bed of the exchange resin fol- lowing a septic tank. The waste is pumped from a sump to the column in an upflow or downflow mode on a periodic basis. Once the resin has been exhausted, it is removed and replaced by fresh material. Regeneration occurs offsite.

Operation and maintenance of this process requires routine maintenance of the pump and occasional monitoring of ammonium levels from the pro- cess. Replacement of exhausted resin is dictated by wastewater charac- teristics and bed volume. There are insufficient data at this time to delineate labor, power, and resin requirements.

b. Nitrate Removal

Nitrate removal from water may be achieved by the use of strong and weak base ion exchange resins (68)(69). There are very little data available

192

on long-term performance of these nitrate removal systems for waste- water. Numerous anions in water compete with nitrate for sites on these resins; therefore, tests on the specific wastewater to be treated need to be performed.

This process has potential for onsite application, where it would follow a nitrification process such as intermittent sand filters. As with ammonia resins, regeneration is performed off site.

There is insufficient information on nitrate exchange to provide design, construction, operation, and maintenance data at this time.

6.6.3 Phosphorus Removal

6.6.3.1 Description

Table 6-27 outlines the most likely treatment processes available for onsite removal of phosphorus in wastewater. In many instances, these processes will also achieve other treatment objectives as well, and must be evaluated as to their overall performance.

6.6.3.2 In-House Processes

Review of Chapter 4 indicates that the major sources of phosphorus in the home are laundry, dishwashing, and toilet wastewaters. Contribu- tions of phosphorus in the home could be reduced from approximately 4 to 2 gm/cap/day through the use of 0.5% phosphate detergents.

Segregation of toilet wastewaters (blackwater) from household waste- waters reduces phosphorus levels to approximately 2.8 gm/cap/day in the graywater stream. Chapter 4 describes the process features, perfor- mance, and operation and maintenance of low-water carriage and waterless toilet systems that would be employed for this segregation. Note that the resultant residues from these toilet systems must be considered in this treatment strategy. A discussion of residuals disposal appears in Chapter 9.

As with any in-house measure to reduce pollutional loads, the success of the process is dependent upon owner commitment and appropriate manage- ment of the alternative plumbing equipment.

193

Option

In-House Laundry detergent Segregation substitution

w co P Chemical

Precipitation: Iron, Calcium and Aluminum Salts

Sorption Processes:

Calcite or Iron

Alumina

TABLE 6-27

POTENTIAL ONSITE PHOSPHORUS REMOVAL OPTIONS

Descriotion

Separate toilet wastes from other wastewaters

Dosing prior to or following septic tanks

Beds or columns

Beds or columns

Effectiveness Comments -

Onsite Technology

Status

50% P removal

0.5% P detergents available

Excellent

20-40% P removal

Management of residues required; achieves significant BOD, SS reduction

Good

up to 90% P removal

Increases quantity of sludge; labor intensive

Fair

up to 90% P removal

Replacement required Tentative

go-99% P removal

High cost for material, labor intensive

Tentative

6.6.3.3 Chemical Precipitation

Phosphorus in wastewater may be rendered insoluble by a selected number of metal salts, including aluminum, calcium, and iron (62). Although the reactions are complex, the net result is the precipitation of an insoluble complex that contains phosphate. Phosphorus precipitation methods normally include the addition of the chemical, high-speed mixing, and slow agitation followed by sedimentation.

There has been little long-term experience with phosphorus removal of wastewaters onsite (21170). Precipitation of phosphates is less easily accomplished for polyphosphates and organic phosphorus than for ortho- phosphate. Therefore, precipitation within the septic tanks, although simpler to manage, may not remove a significant portion of the phos- phate, which is in the poly and organic form. Substantial hydrolysis of these forms may occur in the septic tank, however, producing the ortho- form. Thus, precipitation following the septic tank may achieve higher overall removals of total phosphorus.

Performance is dependent on the point of chemical addition, chemical dosage, wastewater characteristics, and coagulation and sedimentation facilities. Dose-performance relationships must be obtained through experimentation, but one should expect phosphorus removals between 75 and 90%. Improvement in this performance may be achieved if intermit- tent sand filters follow the precipitation/sedimentation process. Side benefits are achieved with the addition of the precipitating chemicals. Suspended and colloidal BOD and solids will be carried down with the precipitate, producing a higher quality effluent than would otherwise be expected.

Chemical precipitation of wastewaters generates more sludge than do conventional systems due to both the insoluble end product of the added chemical and the excess suspended and colloidal matter carried down with it. Estimates of this increased quantity are very crude at this time, but may range from 200 to 300% by weight in excess of the sludge nor- mally produced from a septic tank system.

a. Process Features

The chemicals most often used for phosphate precipitation are aluminum and iron compounds. Calcium salts may also be used, but require pH ad- justment prior to final discharge to the environment. Aluminum is gen- erally added as alum (A12S04'n H20). Ferric chloride and ferric sulfate are the most commonly used iron salts.

195

Anionic polyelectrolytes can be used in combination with the aluminum and iron salts to improve settling, but may overly complicate the onsite treatment system.

The required dosages of aluminum and iron compounds are generally re- ported as molar ratios of trivalent metal salt to phosphate phosphorus. Molar ratios currently used in practice today range from 1.5:1 to 4:1, depending upon wastewater characteristics, point of addition, and de- sired phosphorus removal (20)(62).

Adding aluminum or iron salts to the raw wastewater prior to the septic tank has the advantage of using the existing septic tank for sedimenta- tion (70). Aluminum or iron salts may be metered to the raw wastewater with a chemical feed pump activated by electrical or mechanical impulse. Mixing of the chemical with the wastewater is provided in the sewer line to the septic tank. The quantity of metal salt added to.the wastewater is dependent upon wastewater characteristics. Since the impulse to the feed pump may come from any of a number of household events, it is not possible to precisely adjust metal dosage. An average dose of salt based on estimated phosphorus discharge is most practical.

Addition of iron or aluminum salts following the septic tank may also be considered. A batch -feed system could be employed whereby a preset chemical dose is provided when the wastewater reaches a preset volume in a holding tank. Mixing may be provided by aeration or mechanical mixer, followed by a period of quiescence. Additional raw wastewater flow would be diverted to a holding tank until the precipitation-sedimenta- tion cycle is completed. This system may be employed after the septic tank and preceding the intermittent sand filter.

The processes briefly described above represent a few of the many chemi- cal treatment processes that might be considered for onsite treatment. They may be designed and constructed to fit the specific needs of the site, or purchased as a proprietary device. Storage and holding of chemicals must be considered in the design of these systems. Details on chemical storage, feeding, piping, and control systems may be found elsewhere (20)(62). Attention must be given to appropriate materials selection, since many of the metal salts employed are corrosive in liquid form.

b. Operation and Maintenance

Every effort should be made to select equipment that is easily operated and maintained. Nonetheless, chemical precipitation systems require semi-skilled labor to maintain chemical feed equipment, mixers, pumps,

196

and electronic or mechanical controls. More frequent pumping of waste- water sludge or septage is also required. A rough estimate for semi- skilled labor is 10 to 25 man-hr per yr depending upon the complexity of the equipment. Conservative estimates on sludge accumulation dictate sludge or septage pumping every 0.5 to 2 years for an average home. Chemical requirements would vary widely, but are estimated to range from 22 to 66 lb/yr Al (10 to 30 kg/yr) or 11 to 33 lb/yr Fe (5 to 15 kg/yr) for a family of four.

6.6.3.4 Surface Chemical Processes

Surface chemical processes, which include ion exchange, sorption, and crystal growth reactions, have received little application in treatment of municipal wastewaters, but hold promise for onsite application (62). These types of processes are easy to control and operate; the effluent quality is not influenced by fluctuations in influent concentration; and periods of disuse between applications should not affect subsequent per- formance. Phosphorus removal on selected anion exchange resins has been demonstrated, but control of the process due to sulfate competition for resin sites has discouraged its application (71). Phosphorus removal by sorption in columns or beds of calcite or other high-calcium, iron, or aluminum minerals is feasible; but long-term experience with these mate- rials has been lacking (2)(25)(72). Many of these naturally occurring materials have limited capacity to remove phosphorus, and some investi- gations have demonstrated the development of biological slimes that reduce the capacity of the mineral to adsorb phosphorus. Table 6-28 lists a range of phosphorus adsorption capacities of several materials that may be considered. The use of locally available calcium, iron, or aluminum as naturally occurring materials, or as wastewater products from industrial processing, may prove to be cost-effective; but trans- port of these materials any distance normally rules out their widespread application. Incorporation of phosphate-sorbing materials within intermittent sand filters is discussed more fully in Section 6.3.5.

The use of alumina (Al2O3), a plentiful and naturally occurring material for sorption of phosphorus, has been demonstrated in laboratory studies, but has not yet been employed in long-term field tests (75). Alumina has a high affinity for phosphorus, and may be regenerated with sodium hydroxide. Application of an alumina sorption process is similar to ion exchange, whereby a column or bed would be serviced by replacement on a routine basis. Costs for this process are high.

6.7 Wastewater Segregation and Recycle Systems

Chapter 5 discusses in detail in-house methods that may be employed to modify the quality of the wastewater. These processes are an important

197

component of the onsite treatment system as they remove significant quantities of pollutants from the wastewater prior to further treatment and/or disposal.

TABLE 6-28

PHOSPHORUS ADSORPTION ESTIMATES FOR SELECTED NATURAL MATERIALS (73)(74)(75)a

Media Adsorption (mg P/100 gm media)

Acid Soil Outwash 10 - 35

Calcereous Soil Outwash 5 - 30

Sandy Soils 2 - 20

~-1 Alumina (A1203), 24-48 mesh 700 - 1500

a Based on maximum Langmuir isotherm values.

6.7.1 Wastewater Segregation

Among the wastewater segregation components which significantly alter wastewater quality are the non-water carriage toilets (Table 5-3), and the very low water flush toilets (Table 5-2) with blackwater contain- ment. Impacts of wastewater modification on onsite disposal practices are outlined in Table 5-9.

The graywater resulting from toilet segregation practices normally re- quire some treatment prior to ,disposal (Tables 4-4 and 4-5 - "Basins, Sinks, and Appliances"). Treatment methods for graywater are similar to those employed for household wastewaters (Sections 6.2 to 6.6 and Figure 5-2), but performance data are lacking.

198

Residuals resulting from the treatment or holding of segregated waste streams must be considered when evaluating these alternatives. Details of the characterization and disposal of these residuals appear in Chapter 9.

6.7.2 Wastewater Recycle

In-house wastewater recycle systems are treatment systems employed to remove specific pollutants from one or more wastewater streams in order to meet a specific water use objective (for example, graywater may be treated to a quality that is acceptable for flushing toilets, watering lawns, etc.). These systems are summarized in Table 5-6.

The impact of recycle systems on the quality of wastewater to be ulti- mately disposed is difficult to assess at this time owing to the absense of long term experience with these systems. It is likely that substan- tial pollutant mass reduction will occur in addition to flow reduction. As with segregated systems, the disposal of residuals from these pro- cesses must be considered in system evaluation.

6.8

1.

2.

3.

4.

5.

6.

References

Jones, E. E. Septic Tank - Configuration versus Performance. Pre- sented at the 2nd Pacific Northwest On-Site Wastewater Disposal Short Course, University of Washington, Seattle, March 1978.

Small Scale Waste Management Project, University of Wisconsin, Madison. Management of Small Waste Flows. EPA 600/Z-78-173, NTIS Report No. PB 286 560, September 1978. 804 pp.

Weibel, S. R., C. P. Straub, and J. R. Thoman. Studies on House- hold Sewage Disposal Systems, Part I. NTIS Report No. PB 217 671, Environmental Health Center, Cincinnati, Ohio, 1949. 279 pp.

Salvato, J. A. Experience with Subsurface Sand Filters. Sewage and Industrial Wastes, 27(8):909, 1955.

Bernhart, A. P. Wastewater from Homes. University of Toronto, Toronto, Canada, 1967.

Laak, R. Wastewater Disposal Systems in Unsewered Areas. Final Report to Connecticut Research Commission, Civil Engineering Department, University of Connecticut, Storrs, 1973.

199

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Brandes, M. Characteristics of Effluents from Separate Septic Tanks Treating Gray and Black Waters from the Same House. J. Water Pollut. Control Fed., 50:2547-2559, 1978.

Weibel, S. R., T. W. Bendixen, and J. B. Coulter. Studies on Household Sewage Disposal Systems, Part III. NTIS Report No. PB 217 415, Environmental Health Center, Cincinnati, Ohio, 1954. 150 PP.

Plews, G. D. The Adequacy and Uniformity of Regulations for On-Site Wastewater Disposal - A State Viewpoint. In: National Conference on Less Costly Wastewater Treatment SystKs for Small Communities. EPA 600/9-79-010, NTIS Report No. PB 293 254, April 1977. pp. 20-28.

Manual of Septic Tank Practices. NTIS Report No. PB 216 240, Public Health Service, Washington, D.C., 1967. 92 pp.

Baumann, E. R., E. E. Jones, W. M. Jakubowski, and M. C. Notting- ham. Septic Tanks. In: Proceedings of the Second National Home Sewage Treatment Symposium, Chicago, Illinois, December 1977. American Society of Agricultural Engineers, St. Joseph, Michigan, 1978. pp. 38-53.

Weibel, S. R. Septic Tanks: Studies and Performance. Agric. Engo, 36:188-191, 1955.

Harris, S. E., J. H. Reynolds, D. W. Hill, D. S. Filip, and E. J. Middlebrooks. Intermittent Sand Filtration for Upgrading Waste Stabilization Pond Effluents. J. Water Pollut. Control Fed. 49:83- 102, 1977.

Schwartz, W. A., T. W. Bendixen, and R. E. Thomas. Project Report of Pilot Studies on the Use of Soils as Waste Treatment Media; In- house Report. Federal Water Pollution Control Agency, Cincinnati, Ohio, 1967.

Metcalf, L., and H. P. Eddy. American Sewerage Practice. 3rd ed., Volume III. McGraw-Hill, New York, 1935. 892 pp.

Boyce, E. Intermittent Sand Filters for Sewage. Munic. Cty. Eng., 72:177-179, 1927.

Recommended Standards for Sewage Works. Great Lakes-Upper Missis- sippi River Board of State Sanitary Engineers, Albany, New York, 1960. 138 pp.

Filtering Materials for Sewage Treatment Plants. Manual of Engi- neering Practice No. 13, American Society of Civil Engineers, New York, 1937. 40 pp.

200

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Salvato, J. A., Jr. Experience With Subsurface Sand Filters. Sew. Ind. Wastes, 27:909-916, 1955.

Wastewater Treatment Plant Design. Manual of Practice No. 8, Water Pollution Control Federation, Washington, D.C., 1977. 560 p.

Clark, H. W. and S. Gage. A Review of Twenty-One Years of Experi- ments upon the Purification of Sewage at the Lawrence Experimental Station. 40th Annual Report, State Board of Health of Massachu- setts, Wright E. Potter, Boston, Massachusetts, 1909. 291 pp.

Brandes, M. Effect of Precipitation and Evapotranspiration on Fil- tering Efficiency of Wastewater Disposal Systems. Publication No. W70, Ontario Ministry of Environment, Toronto, Canada, May 1970.

Emerson, D. L., Jr. Studies on Intermittent Sand Filtration of Sewage. Florida Engineering and Industrial Experimental Station Bulletin No. 9, University of Florida College of Engineering, Gainesville, 1954.

Hines, J., and R. E. Favreau. Recirculating Sand Filter: An Alternative to Traditional Sewage Absorption Systems. In: Pro- ceedings of the National Home Sewage Disposal Symposium, Chicago, Illinois, December 1974. American Society of Agricultural Engi- neers, St. Joseph, Michigan, 1975. pp. 130-136.

Brandes, M., N. A. Chowdhry, and W. W. Cheng. Experimental Study on Removal of Pollutants From Domestic Sewage by Underdrained Soil Filters. In: Proceedings of the National Home Sewage Disposal Symposium, Chicago, Illinois, December 1974. American Society of Agricultural Engineers, St. Joseph, Michigan, 1975. pp. 29-36.

Teske, M. G, Recirculation - An Old Established Concept Solves Same Old Established Problems. Presented at the 51st Annual Con- ference of the Water Pollution Control Federation, Anaheim, Cali- fornia, 1978.

Bowne, W. C. Experience in Oregon With the Hines-Favreau Recircu- lating Sand Filter. Presented at the Northwest States Conference on Onsite Sewage Disposal, 1977.

Chowdhry, N. A. Underdrained Filter Systems - Whitby Experiment Station. Ministry of the Environment Interim Report Part 2. Toronto, Canada, 1973.

Kennedy, J. C. Performance of Anaerobic Filters and Septic Tanks Applied to the Treatment of Residential Wastewater. M.S. Thesis, University of Washington, Seattle, 1979.

201

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Bernhart, A. P. Wastewater From Homes. University of Toronto, Toronto, Canada, 1967.

Voell, A. T. and R. A. Vance. Home Aerobic Wastewater Treatment Systems - Experience in a Rural County. Presented at the Ohio Home Sewage Disposal Conference, Ohio State University, Columbus, 1974.

Tipton, D. W. Experiences of a County Health Department with Indi- vidual Aerobic Sewage Treatment Systems. Jefferson County Health Department, Lakewood, Colorado, 1975.

Brewer, W. S., J. Lucas, And G. Prascak. An Evaluation of the Performance of Household Aerobic Sewage Treatment Units. Journal of Environmental Health, 41:82-85, 1978.

Glasser, M. B. Garrett County Home Aeration Wastewater Treatment Project. Bureau of Sanitary Engineering, Maryland State Department of Health and Mental Hygiene, Baltimore, 1974.

Hutzler, N. J., L. E. Waldorf, and J. Fancy. Performance of Aero- bic Treatment Units. In: Proceedings of the Second National Home Sewage Treatment Symposium, Chicago, Illinois, December 1977. American Society of Agricultural Engineers, St. Joseph, Michigan, 1978. pp. 149-163.

Operation of Wastewater Treatment Plants. Manual of Practice No. 11, Water Pollution Control Federation, Washington, D.C., 1976. 547 pp.

Tsugita, R. A., D. C. W. Decoite, and L. Russell. Process Control Manual for Aerobic Biological Wastewater Treatment Facilities. EPA 430/g-77-006, NTIS Report No. PB 279 474, James M. Montgomery Inc., 1977. 335 pp.

Process Design Manual, Wastewater Treatment Facilities for Sewered Small Communities. EPA-625/l-77-009, U.S. Environmental Protection Agency, Cincinnati, Ohio, 1977.

Craun, C. F. Waterborne Disease - A Status Report Emphasizing Out- breaks in Ground Water Systems. Ground Water, 17:183-191, 1979.

Craun, C. F. Disease Outbreaks Caused by Drinking Water. J. Water Pollut. Control Fed., 50:1362-1375, 1978.

Jakubowski, W., and J. C. Hoff, eds. Waterborne Transmission of Giardiasis. EPA 600/9-79-001, NTIS Report No. PB 299 265, U. S. Environmental Protection Agency, Health Effects Research Labora- tory, Cincinnati, Ohio, June 1979. 306 pp.

Berg, G., ed. Transmission of Viruses by the Water Route. Wiley, New York, 1967. 502 pp.

202

43. Chang, S. L. Modern Concept of Disinfection. J. Sanit. Eng. Div., . Am. Sot. Civil Eng., 97:689-707, 1971.

44. White, G. C. Handbook of Chlorination. Van Nostrand Reinhold, New York, 1972. 751 pp.

45. Morris, J. C. Chlorination and Disinfection: State of the Art. J. Am. Water Works Assoc., 63:769-774, 1971.

46. McKee, J. E. Report on the Disinfection of Seattle Sewerage. Cali- fornia Institute of Technology, Pasadena, California, April 1957.

47. Budde, P. E., P. Nehm, and W. C. Boyle. Alternatives to Wastewater Disinfection. J. Water Pollut. Control Fed., 49:2144-2156, 1977.

48. Black, A. P. Better Tools for Treatment. J. Am. Water Works Assoc., 58:137-146, 1966.

49. Baker, R. J. Characteristics of Chlorine Compounds. J. Water Pollut. Control Fed., 41:482-485, 1969.

50. Jepson, J. D. Disinfection of Water Supplies by Ultraviolet Irra- diation. Water Treat. Exam., 22:175-193, 1973.

51. Huff, C. B., H. F. Smith, W. 0. Boring, and N. A. Clarke. Study of Ultraviolet Disinfection of Water and Factors in Treatment Effi- ciency. Pub. Health Rep., 80:695,705, 1965.

52. Scheible, 0. K., G. Binkowski, and T. J. Mulligan. Full Scale Evaluation of Ultraviolet Disinfection of a Secondary Effluent.

: Progress in Wastewater Disinfection Technology, EPA 600/9-79- g8 NTIS Report No. PB 299 338, Municipal Environmental Research Labiratoty, Cincinnati, Ohio, 1979. pp. 117-125.

53. Kreissl, J. F., and J. M. Cohen. Treatment Capability of a Physi- cal Chemical Package Plant. Water Res., 7:895-909, 1973.

54. Rosen, H. M. Ozone Generation and Its Economical Application in Wastewater Treatment. Water Sew. Works, 119:114-120, 1972.

55. Johansen, R. P., and D. W. Terry. Comparison of Air and Oxygen Recycle Ozonation Systems. Presented at the Symposium on Advanced Ozone Technology, Toronto, Canada, November 1977.

56. Majumdar, S. B., and 0. J. Sproul. Technical and Economic Aspects of Water and Wastewater Ozonation: A Critical Review. Water Res., 8~253-260, 1974.

57. McCarthy, J. J., and C. H. Smith. A Review of Ozone and Its Appli- cation to Domestic Wastewater Treatment. J. Am. Water Works Assoc., 66:718-725, 1974.

203

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Poynter, S. F., J. S. Slade, and H. H. Jones. The Disinfection of Water with Special Reference to Viruses. Water Treat. Exam., 22: 194-208, 1973.

Scaccia, C., and H. M. Rosen. Ozone Contacting: What is the Answer? Presented at the Symposium on Advanced Ozone Technology, International Ozone Institute, Toronto, Canada, November 1977.

Venosa, A. D., M. C. Meckes, E. J. Opatken, and J. W. Evans. Comparative Efficiencies of Ozone Utilization and Microorganism Reduction in Different Ozone Contactors. In: Progress in Wastewater Disinfection Technology, EPA 600/9-79-m8, NTIS Report No. PB 299 338, MERL, Cincinnati, Ohio, 1979. pp. 141-161.

Process Design Manual for Nitrogen Control. EPA 625/l-75-007, United States Environmental Protection Agency, Center for Environmental Research Information, Cincinnati, Ohio, October 1975. 434 pp.

Process Design Manual for Phosphorus Removal. EPA 625/l-76-001, United States Environmental Protection Agency, Center for Environmental Research Information, Cincinnati, Ohio, April 1976.

Brandes, M. Accumulation Rate and Characteristics of Septic Tank Sludge and Septage. J. Water Pollut. Control Fed., 50:936-943, 1978.

Laak, R., and F. J. Crates. Sewage Treatment by Septic Tank. In: Proceedings of the Second Home Sewage Treatment Symposium, Chica=, Illinois, December 1977. American Society of Agricultural Engi- neers, St. Joseph, Michigan, 1978. pp. 54-60.

Sikora, L. J., and D. R. Keeney. Laboratory Studies on Stimulation of Biological Denitrification. In: Proceedings of the National Home Sewage Disposal Symposium, mcago, Illinois, December 1975, American Society of Agricultural Engineers, St. Joseph, Michigan, 1975. pp. 64-73.

Andreoli, A., N. Bartilucci, R. Forgione, and R. Reynolds. Nitro- gen Demand in a Subsurface Disposal System. J. Water Pollut. Con- trol Fed., 51:841-854, 1979.

Goronszy, M. C. Intermittent Operation of the Extended Aeration Process for Small Systems. J. Water Pollut. Control Fed., 51:274, 1979.

Clifford, D. A., and W. J. Weber, Jr. Multicomponent Ion Exchange: Nitrate Removal Process with Land Disposal Regenerant. Ind. Water Eng., 15~18-26, 1978.

204

69. Beulow; R. W., K. L. Kropp, 3. Withered, and J. M. Symons. Nitrate Removal by Anion Exchange Resins. Water Supply Research Labora- tory, National Environmental Research Center, Cincinnati, Ohio, 1974.

70. Brandes, M. Effective Phosphorus Removal by Adding Alum to Septic Tank. J. Water Pollut. Control Fed., 49:2285-2296, 1977.

71. Midkiff, W. S., and W. J. Weber, Jr. Operating Characteristics of Strong Based Anion Exchange Reactor. Proc. Ind. Waste Conf., 25:593-604, 1970.

72. Erickson, A. E., J. M. Tiedje, B. G. Ellis, and C. M. Hansen. A Barriered Landscape Water Renovation System for Removing Phosphate and Nitrogen from Liquid Feedlot Waste. In: Livestock Waste Man- agement Pollution Abatement; Proceedings 3 the International Sym- posium on Livestock Wastes, St. Joseph, Michigan, 1971. pp. 232- 234.

73. Ellis, B. G., and A. E. Erickson. Movement and Transformation of Various Phosphorus Compounds in Soils. Michigan Water Resources Commission, Lansing, 1969.

74. Tofflemire, T. J., M. Chen, F. E. Van Alstyne, L. J. Hetling, and D. B. Aulenbach. Phosphate Removal by Sands and Soils. Research Unit Technical Paper 31, New York State Department of Environmental Conservation, Albany, 1973. 92 pp.

75. Detweiler, J. C. Phosphorus Removal by Adsorption on Alumina as Applied to Small Scale Waste Treatment. M.S. Report. University of Wisconsin, Madison, 1978.

205