chapter 6. single-stage integrated-circuit...

24
Biomedical Telecommunication Systems Lab. Pusan National University Chapter 6. Single-stage integrated-circuit amplifier Introduction 6.1 IC design philosophy 6.2 Comparison of the MOSFET and the BJT 6.3 IC biasing-current - sources, mirrors and steering circuits 6.4 High-frequency response-general consideration 6.5 The common-source and common-emitter amplifiers with active loads 6.6 High-frequency response of the CS and CE amplifiers 6.7 The common-gate and common-base amplifiers with active loads 6.8 The cascode amplifier 6.9 The CS and CE amplifiers with source (emitter) 6.10 The source and emitter followers 6.11 Some useful transistor pairings 6.12 Circuit-mirror circuits with improved 6.13 The SPICE MOSFET model

Upload: lyduong

Post on 22-Jun-2018

251 views

Category:

Documents


1 download

TRANSCRIPT

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

Chapter 6. Single-stage integrated-circuit amplifier

Introduction

6.1 IC design philosophy

6.2 Comparison of the MOSFET and the BJT

6.3 IC biasing-current - sources, mirrors and steering circuits

6.4 High-frequency response-general consideration

6.5 The common-source and common-emitter amplifiers with active loads

6.6 High-frequency response of the CS and CE amplifiers

6.7 The common-gate and common-base amplifiers with active loads

6.8 The cascode amplifier

6.9 The CS and CE amplifiers with source (emitter)

6.10 The source and emitter followers

6.11 Some useful transistor pairings

6.12 Circuit-mirror circuits with improved

6.13 The SPICE MOSFET model

Biomedical Telecommunication Systems Lab. Pusan National University

담당교수(instructor)

연도(year)

학기(semester)

교과목번호(course number)

교과목명(course name)

분반(section)

권혁숭 2011 1 BC27899 전자회로(II)

담당교수 메일 또는 연락처 :[email protected], 055-350-5411, 010-9384-1372상담가능시간 : 수:13:00~15:00

1. 교수목표및 강의개요(Course objectives & Description)1) 교수목표1. 차동증폭기, 다단증폭기, OP-Amp.의 동작 특성과 주파수 응답특성 등을 분석, 설계할 수 있는 능력을 배양시킨다.2. Feedback, Active filter, Tuned amplifier 및 신호 발생기(발진기) 전력증폭기 등 다양한 응용분야를 학습한다.3. P-Spice simulation을 이용하여 회로의 동작과 특성을 분석하고 설계하는 능력을 키운다.

2) 강의개요1. BJT, MOSFET와 같은 개별소자를 이용한 여러가지 응용회로와 귀환, 발진, 필터회로 등을 학습하고, 주파수 특성에 따른 응답을 확인한다.2. OP-Amp.(741IC, CMOS IC)의 기본적인 구조와 특성을 DC해석과 소신호 해석을 통해 파악한다. 또한 이를 이용한 다양한 회로와응용분야를 학습한다.3. 전자회로 시스템의 주요분야 중하나인 Active filter와 tuned 증폭기, 신호발생기, 함수발생기, 전력증폭기 등의 동작 특성과 이론을 학습한다.

2. 주교재(Required textbook)교재: :Microelectronics Circuits" 5th Ed.교재:저자: Adel S. Sedra/ Kenneth C. Smith출판사: "Oxford University Press 2004"

3. 평가방법(Requirements & Grading)중간고사: 30%기말고사: 30%Quiz: 20%Homework: 10%출석: 10%(subject to change if necessary)

Biomedical Telecommunication Systems Lab. Pusan National University

4. 주별 강의계획(Schedule)

주 별 강의 및 실험․실기내용 과제 및 기타 참고사항

제1주ch. 6 Single-stage Intergrated-Circuit Amp.[표절 등 학술적

부정행위 예방교육 실시]

제2주ch. 6 Single-stage Intergrated-Circuit Amp.[표절 등 학술적

부정행위 예방교육 실시]

제3주 ch. 6 Single-stage Intergrated-Circuit Amp.

제4주 ch. 7 Differential and multistage Amp.

제5주 ch. 7 Differential and multistage Amp. Homework 1

제6주 ch. 2. 9 Op-Amp. and Data converter circuits

제7주 ch. 2. 9 Op-Amp. and Data converter circuits

제8주 ch. 2. 9 Op-Amp. and Data converter circuits Mid Exam.

제9주 ch. 8 Feedback

제10주 ch. 8 Feedback Homework 2

제11주 ch. 12 Filter and tuned amp.

제12주 ch. 12 Filter and tuned amp./ Quiz

제13주 ch. 13 Signal genterators and waveform shaping circuit.

제14주 ch. 13 Signal genterators and waveform shaping circuit.

제15주 ch. 14. Power Amp.

제16주 ch. 14. Power Amp./ Final Exam.

5. 참고문헌(References)교재명:"전자회로": 저자 :Boylestad, 김수원 외 , 출판사: 사이텍미디어

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

6.1 IC design philosophy

Noise Power

* Analog/RF design hexagon

Linearity Frequency

Supply voltage Gain

* Almost any two of the six parameters tradeoff with each other to some extent

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

6.1 IC design philosophy

•Technology choice-. Performance, Cost, Time-to-market three critical factors-. Level of integration, form factor, prior (successful integration) experience-. Current technologies (CMOS / BiCMOS / GaAs etc)

RF section

AntennaT/R Duplexer

Modulator/DemodulatorLNA/PA/Filters

Frequency synthesizer

GaAs MESFETGaAs HBT

SiGeBJT

CMOS

DSP section

CodingMultiplexer

Access ControlEcho/Fade

Power control

CMOS

I/O section

Battery managementDisplayVoice

Interface

CMOS

* Semiconductor IC technologies for wireless communication

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

6.1 IC design philosophy

conditions talenvironmen severeunder y reliabilithigh .-currentsoutput -high .-

currentscircuit -printedon .-amp.-OPquality -high .-

eperformanc alone-standin MOSFETn better tha still is BJT 130for 80 NMOS 180for 40 .-

2.0 usual , 1 .-process) 90nm popular,:m2007(0.13 length, channel minimum m 0.1 below .-

chnologyCurrent te

chip IC same on the devices ofnumber large a packing .-ratio size desired a with matched becan rs transistoofarray .-

tsrequiremendesign for selected becan length, andth their widrs, transistoMOS of size the.-freedomdesign IC

onlycapacitor MOS small andr transistoMOS using possible as required functions theofmany as realize .- terminalschip thereduce tominimized also is capacitors external ofnumber the.-

area chip thereduce tocapacitors and resistors large avoid .-sconstraintdesign IC

μm.GHz,μm.GHzfVVVV

T

odDD

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

6.2 Comparison of the MOSFET and the BJT

1. Typical values of MOSFET parameters

0.8µm 0.5 µm 0.25 µm 0.18 µm

Parameter NMOS PMOS NMOS PMOS NMOS PMOS NMOS PMOS

tox(nm) 15 15 9 9 6 6 4 4

Cox(fF/µm2) 2.3 2.3 3.8 3.8 5.8 5.8 8.6 8.6

µ(cm2/V·s) 550 250 500 180 460 160 450 100

µCox(µA/V2) 127 58 190 68 267 93 387 86

Vt0(V) 0.7 -0.7 0.7 -0.8 0.43 -0.62 0.48 -0.45

VDD(V) 5 5 3.3 3.3 2.5 2.5 1.8 1.8

|V′A|(V/µm) 25 20 20 10 5 6 5 6

Coυ(fF/µm) 0.2 0.2 0.4 0.4 0.3 0.3 0.37 0.33

0.18µm0.8µm 0.5µm 0.25µm

0

1times

Extra area

Base on reversed

0.69

2.2 times

0.943

16.5 times

0.981

51.6 times

0.31 0.057 0.019

Biomedical Telecommunication Systems Lab. Pusan National University

Ex.) Intel computer : CPU development

4004 processor

clock speed: 108KHzTransistor: 2,300

technology: 10μm

8086 processor

clock speed: 5MHzTransistor: 29,000technology: 3μm

286 processor

clock speed: 6MHzTransistor: 134,000technology: 1.5μm

386 processor

clock speed: 16MHzTransistor: 275,000technology: 1.5μm

486 processor

clock speed: 25MHzTransistor: 1,200,000

technology: 1μm

pentium processor

clock speed: 66MHzTransistor: 3,100,000technology: 0.8μm

pentium proprocessor

clock speed: 200MHzTransistor: 5,500,000technology: 0.6μm

pentium II processor

clock speed: 300MHzTransistor: 7,500,000technology: 0.25μm

pentium M processor

clock speed: 1.7GHzTransistor: 55,000,000

technology: 90nm

pentium Dual coreprocessor

clock speed: 3.2GHzTransistor: 291,000,000

technology: 65nm

pentium D processorQuad core 2

clock speed: 3.2GHz aboveTransistor: 820,000,000

technology: 45nm

Core i7(Nehalem) 2

clock speed: 3.2GHz aboveTransistor: 1,620,000,000 above

technology: 32nm

1971 1979 1982 1985 1989

1993 1995 1997 2000 2002

2005 2007 2009 2011

pentium 4 processor

clock speed: 1.5GHzTransistor: 42,000,000technology: 0.18μm

Core i..(Sandy Bridge) 2

clock speed: 3.2GHz aboveTransistor: 2,900,000,000 above

technology:22nm

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

Standard High-Voltage Process

Advanced Low-Voltage Process

Parameter npn Lateral pnp npn Lateral pnp

AE(µm2) 500 900 2 2

IS(A) 5×10-15 2×10-15 6×10-18 6×10-18

β0(A/A) 200 50 100 50

VA(V) 130 50 35 30

VCE0(V) 50 60 8 18

τF 0.35ns 30ns 10ps 650ps

Cje0 1pF 0.3pF 5fF 14fF

Cµ0 0.3pF 1pF 5fF 15fF

rx(Ω) 200 300 400 200

2. Typical values of BJTs

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

3. Comparison of important characteristics

NMOS npn

Circuit Symbol

To Operate in the Active Mode, Two

Conditions Have To Be Satisfied

(1) Induce a channel : υGS ≥ Vt , Vt = 0.5 - 0.7 V

Let υGS = Vt + υOV

(2) Pinch-off channel at drain :υGD < Vt

or equivalently,υDS ≥ VOV , VOV = 0.2 - 0.3 V

(1) Forward-bias EBJ :υBE ≥ VBEon , VBEon ≈ 0.5 V

(2) Reverse-bias CBJ :υBC < VBCon , VBCon ≈ 0.4 V

or equivalently,υCE ≥ 0.3V

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

Comparison of the MOSFET and BJT (Continued)

NMOS npn

Current-Voltage Characteristics in the Active Region

Low-Frequency Hybrid-π Model

2

2

1 12

1 120

DSD n ox GS t

A

DSn ox OV

A

G

Wi C VL V

WCL V

i

/ 1

/

BE TV CEC S

A

B c

i I eV

i i

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

Comparison of the MOSFET and BJT (Continued)

NMOS npn

Low-Frequency T Model

Transconductancegm

/ / 2

2

m D OV

m n ox OV

m n ox D

g I V

Wg C VL

Wg C IL

/m C Tg I V

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

Comparison of the MOSFET and BJT (Continued)

NMOS npn

Output Resistancero

Intrinsic GainA0 ≡ gmro

Input Resistance with Source (Emitter)

Grounded ∞

'

/ Ao A D

D

V Lr V I

I /o A Cr V I

0

'

0

'

0

/ / 2

2

2 2

A OV

A

OV

A n ox

D

A V V

V LA

V

V C WLA

I

0 /A TA V V

mr = /g

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

Comparison of the MOSFET and BJT (Continued)

NMOS npn

high-Frequency

Model

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

6.2 Comparison of MOSFET and BJT

• BJT has the advantage over MOSFET of a much higher transconductance gmat same value of DC current. much higher gain per stage

• MOSFET has infinite high input resistance at gate.

• MOSFET provides an excellent implementation of switch.

• MOSFET doesn’t have the thermal run-away.

• MOSFET has very high packing density.

• BiCMOS is a technology that combining high quality BJT and high density CMOS on the same chip.

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

6.3 IC Biasing – Current Sources, Current Mirrors and Current-Steering Circuits

• A constant DC current (reference current) is generated at one location and is replicated at various other locations for IC biasing (current steering)

211

2

2

2

'2

1

2

1

'1

ifmirror current : )/()/(

sourcecurrent ofcurrent output :

)(21

) IC of outside are , ( sourcecurrent :

)(21

Q QLWLW

II

I

VVL

WkII

RVR

VVII

VVL

WkI

REF

O

O

tnGSnDO

DD

GSDDREFD

tnGSnD

Current Mirror

Current Transfer Ratio

6.3.1 The basic MOSFET current source

Q1

Q2

따른다 결합구조에 Tr. 관계는I 와I REFo

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

saturationin for : 2QVVVV OVtGSO

22

22

ofeffect Early : QVI

VrIVR

A

O

Ao

O

OO

21

2

11

22

1

2 1)/()/(

)/1()/1(

)/()/(

A

GSO

ADS

ADS

REF

O

VVV

LWLW

VVVV

LWLW

II

2

12

2

1

2

2

2

1

2

2

11

22 1111)/1()/1(

A

DSDS

A

DS

A

DS

A

DS

A

DS

ADS

ADS

VVV

VV

VV

VV

VV

VVVV

Effect of Vo on Io

)(rresistancedrain ofEffect : short,Drain -Gate:

02

1

QQ

AV

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

132

132

1

33

1

22

321

,or ,,

region saturation in theoperation ensure To

)/()/(

,)/()/(

OVSSDD

tnGSSSDD

REFREF

GSGSGS

VVVVVVVVV

LWLW

IILWLWII

VVV

||)/()/(,

55

4

54534

54

OVDDD

GSGS

VVVLWLWIIII

VV

Current sink(pull) from load

Current source(push) to load

6.3.2 MOS current-steering circuits

PMOS

thGD

thDG

thGD

VVVVVV

VV

)( 11 SGGS VVV

• Q1, together with R determine the reference current IREF

• Transistors Q1, Q2 and Q3 form a two output current mirror

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

6.3.3 BJT Circuits

21 Assume QQ AAASSS VVVIII 212121 ,,

AV&)1(

REFOBEBE

VVSECO

VVSCREFBB

IIVVeIIII

eIIIIITBE

TBE

21

/22

/121

2

10

1REF

O

II

AV&)2(

CCO

CCC

CBBCREF

CCCBEBE

VVSC

VVSC

III

IIIIIIII

IIIVVeIIeII TBETBE

2

211

2121

/2

/1

2

, 21

/211

2

REF

O

II

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

BJT Circuits

AV&)3(

2

22/

21

11/

1 ,1,,1 21 CB

A

CEVVSC

CB

A

CEVVSC

IIV

VeIIIIV

VeII TBETBE

A

CE

A

CE

A

CE

A

CE

A

CE

A

CE

A

CE

A

CE

A

CE

A

CE

A

CE

A

CE

A

CE

A

CE

A

CE

CCC

C

BBC

C

REF

O

VV

VV

VV

VV

VVV

V

VV

VV

VV

VV

VV

VV

VV

VV

VV

IIII

IIII

II

1212

1

2

11

2

1

2

211

2

211

2

211

2

1/21

111/21

1

1

1

21

121

1

21

121

1

121

1

)/()/(

A

BEO

REF

O

VVV

II 1

/211

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

ratioansfer current tr : ,, 122121

mmIIVVV SSAAA

AV&)1(

AV&)2(

/)1(1

mm

II

REF

O

AV&)3(

A

BEO

REF

O

VVV

mm

II 1

/)1(1

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

A Simple Current Source

REF

A

O

Aoo

A

BEOREFO

BECCREF

IV

IVrR

VVVII

RVVI

2

1/21

Current Steering

REF

REF

REF

BEEBEECCREF

IIII

IIIR

VVVVI

32

4

3

21

21

Biomedical Telecommunication Systems Lab. Pusan National University Biomedical Telecommunication Systems Lab. Pusan National University

AV&

REFREFN

CCC

BNBBBREFCREFREF

IN

IN

III

ININI

IIIIII

/)1(11

1

11

21

21