chapter 6 vector calculus - computational...

95
ME 501, Mechanical Engineering Analysis, Alexey Volkov 1 Chapter 6 Vector Calculus Reading: Kreyszig, Advanced Engineering Mathematics, 10th Ed., 2011 Selection from chapters 9 and 10 Prerequisites: Kreyszig, Advanced Engineering Mathematics, 10th Ed., 2011 Vector quantities. Dot and cross products: Sections 9.19.3 Double integral: Section 10.3 Triple integral: Section 10.7

Upload: others

Post on 12-May-2020

43 views

Category:

Documents


0 download

TRANSCRIPT

ME 501, Mechanical Engineering Analysis, Alexey Volkov 1

Chapter 6Vector Calculus

Reading:Kreyszig, Advanced Engineering Mathematics, 10th Ed., 2011Selection from chapters 9 and 10

Prerequisites:Kreyszig, Advanced Engineering Mathematics, 10th Ed., 2011 Vector quantities. Dot and cross products: Sections 9.1‐9.3 Double integral: Section 10.3  Triple integral: Section 10.7

ME 501, Mechanical Engineering Analysis, Alexey Volkov 2

Contents6.1. Vector physical quantities6.2. Vector calculus: Motivation and applications6.3. Linear vector space. Dot, cross, and triple products6.4. Scalar and vector fields and their derivatives6.5. Curves6.6. Surfaces6.7. Line integrals of scalar and vector fields6.8. Gradient, divergence, and curl6.9. Path‐independent line integrals6.10. Double integrals6.11. Triple integrals6.12. Surface integrals of scalar and vector fields6.13. Green’s theorem for a plane6.14. Stokes’s theorem6.15. Gauss divergence theorem

Topics for self‐studying: Sections 6.3, 6.10, 6.11

3

6.1. Vector physical quantities Notion of a vector is inspired by the existence of physical quantities that are characterized by

both magnitude and direction, e.g., velocity and force. In physics The scalar is a quantity that is determined by its magnitude (temperature). The vector is a quantity that is represented by a directed line segment, and thus, has

magnitude | | (absolute value, length, or norm of the vector) and direction (velocity,Force, angular momentum).

Two vectors and are equal to each other, = , if they have the same length anddirection even if their initial and terminal points are different. We say that any vector is a freevector if translation (displacement without rotation) does not change the vector.

Two basic operations on vector physical quantities are the vector addition andscalar multiplication . Since physical vectors are defined geometrically, we introducesuch operations also geometrically as

Vector addition Scalar multiplication:   | |

ME 501, Mechanical Engineering Analysis, Alexey Volkov

ME 501, Mechanical Engineering Analysis, Alexey Volkov 4

6.1. Vector physical quantitiesAnd assume that they posses the following properties

, , , 0

, , , 1

Here:

is the zero vector, | | 0. has the same length as , but opposite direction. Existence of allows one to determine the vector subtraction: ≡ . The unit vector is a vector of unit length, | | 1.

A whole set of objects (vectors) on which we can perform vector addition and scalarmultiplication with properties given by Eqs. (6.1.1) is called the (linear) vector space.

The idea behind the vector calculus is to utilize vectors and their functions for analyticalcalculations, i.e. calculations without geometrical considerations.

It is possible if any vector is completely represented it terms of numbers, not directed linesegments.

(6.1.1)

6.2. Vector calculus: Motivation and applicationsMotivation:  Calculation of work‐type quantities

Work = force x distance

What if the path is complex and/or force is not aligned with the velocity?

Trajectory of a chaotic pendulum

For general description of thework‐type quantities we need: Mathematical description

of curves Line integrals

Line integrals are the ultimategeneralization of equations

Work = force x distancefor work‐type quantities

ME 501, Mechanical Engineering Analysis, Alexey Volkov

6.2. Vector calculus: Motivation and applicationsMotivation:  Calculation of flux‐type quantities

Flux of a physical quantity is the amount ofthis quantity transferred through a given area(surface) per unit time

For general description of the flux‐typequantities we need: Mathematical description of surfaces Surface integrals Relationships between flux‐ and work‐

type quantities (integral theorems)

ME 501, Mechanical Engineering Analysis, Alexey Volkov

Surface integral is the ultimategeneralization of equation

 for flux‐type quantities

ME 501, Mechanical Engineering Analysis, Alexey Volkov 7

6.2. Vector calculus: Motivation and applicationsApplications of the vector calculus: All science and engineering fields where problems areformulated in terms of PDEs or require analysis of vector fields in multidimensional spaces. Formulation of physical laws in terms of scalar, vector, and tensor fields. General mathematical properties of such mathematical models .Fluid mechanics and gas dynamics, combustion

ME 501, Mechanical Engineering Analysis, Alexey Volkov 8

6.2. Vector calculus: Motivation and applicationsSolid mechanics Electromagnetic theory

Computer graphics/CAD Mapmaking Optimization

Statistical physics, Quantum mechanics, Rarefied gas dynamics, .............

ME 501, Mechanical Engineering Analysis, Alexey Volkov 9

6.3.  Linear vector space. Dot, cross, and triple productsThe idea behind using the vector quantities in calculus is that any vector can be represented by afew numbers that are called components of the vector. It allows us to perform all operation onvectors algebraically, i.e. without any geometrical considerations. Let's consider how we canintroduce components of vectors.

First, let's introduce the geometrical projection of avector onto an axis and postulate the existence ofglobal 3D Cartesian coordinates

Let's consider a vector and some axis (line withgiven direction). The direction of the axis can becharacterized by a unit vector placed along theline and having the same direction. Then we cangeometrically define the vector projection andscalar projection

cos ,  =(6.3.1)

Then every vector can be uniquely represented in the form of asum of its projections onto vectors of the Cartesian basis

where , , and are called Cartesian components of vector. If the Cartesian coordinates are fixed, every vector (element of

the vector space) is just a unique ordered triple of real numbers

, , 

Components , ,  of vector are determined by the basis, , and if Cartesian coordinates change, the components orevery vector change as well.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 10

6.3. Linear vector space. Dot, cross, and triple products

Based on observations and our experience we can postulate that the physical space in theclassical mechanics is Euclidean, i.e. we can introduce the Cartesian coordinate system, which iscomposed of three mutually perpendicular axis , , and . Next we can fix an arbitrarylinear scale and introduce three unit vectors , , , directed along every axis, which we call the(Cartesian) basis.

(6.3.2)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 11

6.3. Linear vector space. Dot, cross, and triple productsBased on the Pythagorean theorem we see that thenorm or length of the vector is now defined as

A vector is called the unit vector if 1.The cosine of angle between vectors and (0

) is equal to the scalar projection of the unitvector along onto the unit vector along .

The dot (inner, scalar) product · of two vectorsand is the number (scalar) defined as

· cos .

Obviously, · 1, · 0, etc., so that

·and

·

Two vectors and are called orthogonal if · 0.

(6.3.3) Properties of the dot product:

1. · 0,if · 0 then

1. · ·2. · · ·3. · ·

(6.3.4)

... ...

The cross (vector) product of vectors andis the vector that1. Is equal to zero vector if | | 0or | |0.

2. Is orthogonal to and .3. Has the length

| sin |where is the angle between and .

4. Has such direction that , , andis the right‐handed triplet, i.e. rotationfrom to from the top of occurs in thecounter‐clockwise direction.

Then, ,

ME 501, Mechanical Engineering Analysis, Alexey Volkov 12

6.3. Linear vector space. Dot, cross, and triple products

(6.3.10)

Right‐handedCartesian coordinates

Left‐handedCartesian coordinates

| sin |= area of parallelogram

The triple product , , of vectors , , andis the scalar calculated as

, , ·

The physical meaning of the triple product:The triple product is equal to the signedvolume of a parallelepiped with edgesalong vectors , , and :

· cos

All other properties of the triple productcan be easily derived from properties of dotand cross products.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 13

6.3. Linear vector space. Dot, cross, and triple products

(6.3.11)

Example:  Let's consider a plane given by two non‐parallel vectors  and  lying in this plane and a point with the position vector  . Then the equation of this plane is  · 0.

Note: All properties of the vector product can be derived from the definition. It is important that,      

ME 501, Mechanical Engineering Analysis, Alexey Volkov 14

6.4. Scalar and vector fields and their derivativesLet’s consider 3D physical space. Based on experimental observations, in the classical mechanicswe make the following assumption about properties of the physical space:The physical space is a Euclidean three‐dimensional (3D) space that means we can introduce(global, unique for the whole space) 3D Cartesian coordinates such that the distancebetween any two points , , and , , is given by

For every point we can introduce the position vectorstarting from the origin of the coordinates and ending at point .We can introduce three mutually orthogonal unit basic vectors , ,and connecting the origin with points (1,0,0), (0,1,0) and(0,0,1) at the axes.The the position vector can be represented in the form

where  , , are coordinates and the scalar (dot) product is·

Relative position of point with respect to point is characterized by the relative positionvector ∆ with the length ∆ · ∆ .

ME 501, Mechanical Engineering Analysis, Alexey Volkov 15

6.4. Scalar and vector fields and their derivativesLet’s consider some domain  , which can be1. One‐dimensional (1D): set of points at the real  ‐axis 2. Two‐dimensional (2D): Set of points in  ‐plane3. Three‐dimensional (3D): Set of points in  ‐space. We assume that we introduce a Cartesian coordinates  with the global basis  , , In every case we can characterize a point  of  with the position (radius) vector  In 3D, we will consider only right‐hand coordinates 

1D                                                     2D                                                 3D

Assume that for every point from we define a number

The function is called the scalar field.1D:  is a function2D:  , is a 2D (planar) scalar field3D:  , , is a 3D scalar field

(6.4.1)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 16

6.4. Scalar and vector fields and their derivativesThe surface , , is called the isosurface of the scalar field .In 2D case, curve defined by the equation , is called the isoline or contour line.

The isosurfaces and isolines are used to visualize scalar fields.

Example: Spherically symmetric gravitational fieldThe potential energy of a point mass in the spherically symmetric field of mass with centerin point , , is equal to

, ,

Isosurfaces are spheres with center at  , , .Contour lines at  ‐plane are circles with centers at  , .

ME 501, Mechanical Engineering Analysis, Alexey Volkov 17

6.4. Scalar and vector fields and their derivativesNow let’s assume that in every point of we define a vector . Then is calledthe vector field:

1D: 2D:  , , ,3D:  , , , , , , , ,

The curve at every point of which the vector field is tangent to the curve is called the field lineof the vector field . Field lines are used for visualization of vector fields.

Example 1: Potential flow field around a cylinder in a cross‐flow., are polar coordinates ( cos , sin )Scalar field: Velocity potential

, cos

Vector field: Fluid velocity

1 sin cos cos sin

White curves: Contour lines of the velocity potentials Black curves: Field lines of the velocity fields. In fluid mechanics, field lines of the velocity field are called the streamlines. 

(6.4.2)

2

ME 501, Mechanical Engineering Analysis, Alexey Volkov 18

6.4. Scalar and vector fields and their derivatives

Example 2: Scalar temperature field                Example 3: Vector velocity field in the flow over     a circular cylinder

Local velocity vectors

Field lines of velocity field = streamlines

ME 501, Mechanical Engineering Analysis, Alexey Volkov 19

6.4. Scalar and vector fields and their derivatives

Example 4: Electric field lines of a dipole Example 5: Magnetic field lines over the Sun

ME 501, Mechanical Engineering Analysis, Alexey Volkov 20

6.4. Scalar and vector fields and their derivativesWe can define derivatives of scalar and vector fields, e.g., with respect to 

lim∆ →

∆ , , , ,∆

lim∆ →

∆ , , , ,∆

lim∆ →

∆ , , ∆ , , ∆ , , , , , , , ,∆

The basic property of any such derivative is the linearity ( and  are constants):

Many rules valid for ordinary derivatives also hold for derivatives of the dot and cross products,in particular

· · ·

These properties remain valid because  ·are represented in the form of sums, 

where every term is a product of two functions, e.g.  · .

(6.4.3)

(6.4.4)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 21

6.5. CurvesLet’s consider a 3D space with Cartesian coordinates and a vector in this space, whichevery coordinate is a function of some parameter :

, is called the vector function of parameter . Functions , , and are called the

coordinate functions of the vector function .If is the position vector, then Eq. (6.5.1) determines a set of point in 3D space that form acurve. In this case Eq. (6.5.1) is called the parametric representation of a curve.Note: In 2D space, e.g., on the plane , we can use theparametric representation of a plane (2D) curve in the form

Plane curve is a particular case of twisted (3D) curves.Curve given by Eq. (6.5.1) is called oriented since anincrease of the parameter defines the direction of motionalong , is the initial point, is the terminal point.Example 1: Parametric representation of a straight line in 3D

Example 2: Parametric representation of a circle in 2Dcos sin

Example 3: Parametric representation of a helix curvecos sin /2

(6.5.1)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 22

6.5. CurvesSimple curve is a curve without multiple points, that is, withoutpoints at which the curve intersects or touch itself.A curve is called smooth in point (or at value of itsparameter), if its coordinate functions have derivatives of anyorder in . A curve is called smooth if it is smooth in every pointof , .A curve is called piecewise smooth if it consists of finitely manysmooth curves, i.e. can be represented as a set of a finitenumber of smooth curves and can be divided into aset of disjoint subintervals and for every subinterval is smooth.If curve is smooth in point , we can define the vector function

lim∆ →

∆∆

If | ′| 0, then vector ′ takes the limiting position with respectto the chord vector ∆ along the tangent to thecurve in point and is called the tangent vector to the curvein the point .Example: If is time, is the trajectory of a point mass, then

is the velocity of the point mass.

Curves with multiple points

Piecewise smooth curve

(6.5.2)

The parametric representation of the tangent to the curve is

Tangent vector

ME 501, Mechanical Engineering Analysis, Alexey Volkov 23

6.5. CurvesLet’s consider the arc (part of the curve) that corresponds to theinterval of the parameter , , and divide the arc bypoints

, a ⋯into a large set of curves ∆ . For every pair of neighbor points,we can introduce the line segment with the chord vector ∆

, which approximates curve ∆ .Let ∆ max |∆ | ). The smaller ∆ , the betterapproximation of the arc by the broken line of chords withendpoints . Then it is reasonable to call the following limit

lim∆ →

|∆ | lim∆ →

|∆∆ |∆

the arc length. is the curve length.

Definition (6.5.3) shows us that / and

, ′

i.e. differential of the parameter corresponds to theincrement of the arc length called the linearelement of .

∆∆

(6.5.3)

Since is an increasing function, then can be used as another parameter. For this purpose,we can resolve equation with respect to ). Then :

, 0where , etc. For every curve there is a specific parameterization whereparameter is the arc length. For this parameterization

′ ′ ′ ′ ′ ′ ′where

1

Thus,

| | 1

i.e. if the parameter is the arc length, the tangent vector is the unit tangent vector .Theorem: If a vector function has unit length, 1, then the tangent vector isorthogonal to , i.e. · 0.

Proof: Assume 1. Then differentiation of the this equation results in:2 2 2 ′2

· 0

ME 501, Mechanical Engineering Analysis, Alexey Volkov 24

6.5. Curves

ME 501, Mechanical Engineering Analysis, Alexey Volkov 25

6.5. CurvesConsequence:If the parameter is the arc length then

· · 0If | | 0, then is called the principal normalvector, /| | is called the unit principalnormal vector, and is called the unitbinormal vector.Vectors , , and form the local trihedron ofmutually orthogonal vectors in a point of a curve.Planes , , , , and , are calledosculating, normal, and rectifying planes.Two major numerical properties of a twisted curve are the curvature and torsion :

| ′| · | ′|Note: is parallel to , since ′, i.e. is orthogonalto both and .Meaning of curvature: It shows how fast the curve deviates from its tangent direction in thepoint (for a straight line and 0; 1/ the radius of a circle).Meaning of torsion: It shows how fast the curve deviates from a plane curve in the osculatingplane (for a plane curve and 0).Note: With exception of the following example, we will not use the curvature and torsion.  

(6.5.4)

Here all derivatives are calculated for  , i.e.  , 

ME 501, Mechanical Engineering Analysis, Alexey Volkov 26

6.5. CurvesExample: Properties of a helix curve.Parametric representation of the helix curve around axis of radius and pitch :

cos sin 2

sin cos 2

| | 2 ⟹

cos sin 2

sin cos 2cos sin

′| ′| cos sin

Curvature and torsion of the helix curve:

2

1 1

1 2

, /2

2 sin 2 cos

2 cos 2 sin

On the other hand, Eq. (6.6.2) shows that locallythe surface can be represented parametrically as

, ,where , denotes a radius vector of a point atthe surface. Eq. (6.6.3) shows that a surface is atwo‐dimensional set of points, since we need twoparameters ( and ) to describe it parametrically.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 27

6.6. SurfacesThe surface in 3D space is a set of points that can be given by an equation

, , 0Example: is the sphere of radius with the center in thepoint , , .Locally, we can resolve Eq. (6.6.1) with respect to one of coordinates , , and obtain, e.g.

,For instance, at any point of the sphere, where , we can write

Equation in the form (6.6.2) may be not valid, however, for the whole surface, since given andmay correspond to a few different at the surface (e.g., for a sphere given and correspond

to two points on the sphere surface).

(6.6.1)

(6.6.2)

(6.6.3)

,

,

,

,

ME 501, Mechanical Engineering Analysis, Alexey Volkov 28

6.6. SurfacesIn general, parameters do not need to coincide with Cartesian coordinates, so one can introducethe general parametric representation of a surface in the form

, , , , where and vary in some region on ‐plane.Eq. (6.6.4) describes the parametricmapping of the plane region into3D surface.

In order to define any surface parametrically, we need to1. Introduce three functions: , , , , and , .2. Define region on ‐plane where and varies.Example: Parametric representation of a cylinder and a sphere

(6.6.4)

Mapping

cos sin sin cos sin sin cos

0 20

0 2

ME 501, Mechanical Engineering Analysis, Alexey Volkov 29

6.6. SurfacesIf we fix either or , Eq. (6.6.4) gives the parametric representation of a curve. Thus, theparametric representation (6.6.4) defines two families of curves on the surface:‐curves ( ) :

, , ,‐curves ( ) :

, , ,‐ and ‐curves are called the grid lines.

If both and have derivatives over and inpoint , then we can introduce in this point two vectors

,

, ,

These vectors are tangents in point to the correspondinggrid lines.If 0, then we can plot a unique plane, containingthe point and vectors and . This plane is called thetangent plane to the surface in point .If tangent plane exists in point , then vectoris called the normal to the surface at point P ( is normalto both and ). Vector /| | /| |is called the unit normal.

,,,

(6.6.5)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 30

6.6. SurfacesSurface is called smooth in a point if in this point the surface has a unique tangent plane (i.e.

and exist and | | 0).Surface is called smooth if it is smooth in every its point.Surface is called piecewise smooth if it can be represented as a set of adjoin smooth surfaces.Physical meaning of the tangent plane: If we perform calculation of surface properties in aninfinitesimal vicinity of point , we can perform all calculation on the tangent plane. Let’s usethis rule in order to calculate the area of the surface that corresponds to increments and .Let’s assume that we consider point at the surface when parameters are equal to and andwe give them infinitesimal increments and . These increments correspond to the surfaceelement of infinitesimal area . Question: How is related to and ?On the tangent plane, and correspond to the parallelogram of area

| | | | | |For the future consideration, we will also need areas of projections of this parallelogram ontocoordinate planes , , , , and , . Let’s introduce the direction cosines for the unitnormal cos cos cos , where is an angle between normal and ‐axis ( ·cos ), etc. Then the are of projection of onto , , , is equal to

cos ··

| | | | | · |

cos · | · |cos · | · |

(6.6.6)

(6.6.7)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 31

6.6. SurfacesThe parametric representation

, , , , actually define two surfaces that are different in everypoint by the direction of the normal: one surface hasnormal , another has normal .If we choose a unique direction of the normal in everypoint of the surface, we say we choose orientation of thesurface.A smooth surface is called orientable if the normaldirection given at an arbitrary point of can be continuedin a unique and continuous way to the entire surface.A piecewise smooth surface is called orientable if wecan orient every smooth piece of so that along eachcurve ∗, which is a common boundary of two piecesand , the positive direction of ∗ relative to isopposite to the direction of ∗ relative to .

Example: Möbius strip is the nonorientable surface:

ME 501, Mechanical Engineering Analysis, Alexey Volkov 32

6.7. Line integrals of scalar and vector fields

≡ , , ′ ′ ′

The line integral of a vector field over the curve is the integral

· ≡ ·

The curve is called the path of integration. If , then is the closed path and the

line integral of a vector field is called circulation of the vector field and denoted as ∮ · .

Let’s consider an oriented curve given by the parametricrepresentation:

, aWe assume that is a smooth curve, so / existsin a any point of and the linear element is

′ ′ ′ .The line integral of a scalar field over the curve isthe integral

(6.7.1)

(6.7.2)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 33

6.7. Line integrals of scalar and vector fieldsNote: Direction that corresponds to increasing parameter is called positive.Example: Let’s consider motion of a point mass in a force field (e.g. gravitational field).

Then the line integral over the trajectory · · is the work done byforce .

Properties of the line integral:1. Linearity

· · ·

2. Additivity

· · ·

3. Additivity allows one to extent definition of the line integral to any piecewise smooth curve

· ·

ME 501, Mechanical Engineering Analysis, Alexey Volkov 34

6.7. Line integrals of scalar and vector fieldsTheorem:For a given vector field and curve , all parametric representations of curve that give thesame positive direction on yield the same value of the line integral.Proof:Let’s consider another parameterization of curve with some parameter : ∗ ∗∗ ∗ , ∗ ∗. Since it is the representation of the same curve, . Then

∗ · ∗ ∗ ∗ ∗∗

∗ ∗ ∗

·

Example 1: 0 0 . Let’s calculate line integral over a straight path.Parametric representation of the path:

·

2

, ,

, ,0 1

∗ ′

Example 2: ,Line integral over the helix curve.Parametric representation of a helix curve around axis :

cos sin 3 , 0 2′ sin cos 3

· ′ 3 cos sint · sin cos 33 sin cos 3 sin

· 3 sin cos 3 sin 7

Example 3: If 1, then is the length of curve .

Example 4: if , , , where is the linear density of the curve (massper unit length) and is the distance from the point to the axis , then

is themoment of inertia of curve about ‐axis.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 35

6.7. Line integrals of scalar and vector fields

Radius 1Pitch 6

ME 501, Mechanical Engineering Analysis, Alexey Volkov 36

6.8. Gradient, Divergence, and CurlGradient

Let’s consider a scalar field , , . Gradient of this field is the vector field grad :

grad

Calculation of grad can be considered as an application of the differential operator (nabla)

to the scalar field  . Differential operator  can be viewed as a symbolic vector.

Let’s consider a 3D scalar field and define some directional vector of unitlength ( 1) and . Then the directional derivative of the scalar fieldin the direction of vector is

≡ lim→

lim→

0

The directional derivative indicates the rate of change of the scalar field in the direction ofvector . Let’s calculate through partial derivatives / etc. using the chain rule:

·

(6.8.1)

(6.8.2)

(6.8.3)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 37

6.8. Gradient, Divergence, and CurlNote: Gradient and directional derivative are easily applied to 2D fields:

grad , ·

Properties of gradient and directional derivatives:1. Direction of indicates the direction of the maximum increase of the scalar field . Thedirection of the maximum increase is given by such for which is maximum. Fromdefinition of the dot product

· cosγ cosγ

where is the angle between and . is maximum, when 0, i.e. is directedalong .

2. If we introduce an isosurface in point , , ,which is defined by the equation , ,

, , , then in this point isdirected along the surface normal vector.

In order to prove it, let’s introduce a curve at theisosurface going through point , , , which isgiven by the vector function

. Since this curve lies on theisosurface, it should satisfy

(6.8.4)

The surface normal vector is perpen‐dicular to the surface tangent plane. 

ME 501, Mechanical Engineering Analysis, Alexey Volkov 38

6.8. Gradient, Divergence, and Curl, ,

Let’s differentiate this equation with respect to in point , , . Then we will have

0 ⟹ · 0

where / / / is the tangent to the curve which lies in thetangent place to the surface. Thus, is orthogonal to any vector lying in the tangent plane,i.e. it is the surface normal vector.

3. Gradient is the physical vector, which retains its direction and length after any coordinatetransformation. The gradient is normal to the isosurface and its absolute value is equal tothe maximum increase of the scalar field. Since these properties of the scalar field donot depend on coordinates, the direction and absolute value of also do not depend onthe choice of coordinates.

Example 1: Potential energy and force of the spherically symmetric gravitational field.The potential energy of a point mass in the spherically symmetric field of mass with centerin a point , , is equal to

, , / , Then

ME 501, Mechanical Engineering Analysis, Alexey Volkov 39

6.8. Gradient, Divergence, and CurlNote: In 2D, the contour lines of the scalar field , and field lines of its gradient

constitute two families of curves that are locally normal to each other in every point.

Example 2: Electric field of a dipole

Contour lines of the electrostatic Potential 

Field lines of the electrical field 

Note: Two families of locally orthogonal curves can be used in order to introduce non‐Cartesianorthogonal coordinates in 2D.

,

ME 501, Mechanical Engineering Analysis, Alexey Volkov 40

6.8. Gradient, Divergence, and CurlExample 3: Potential fluid flow over a cylinder in the cross flow

Contour lines of the flowpotential  white

Field lines of the velocity field (streamlines; black)

These curves can be used in order to introduce orthogonal coordinates.

2

cos , sin

, cos

ME 501, Mechanical Engineering Analysis, Alexey Volkov 41

6.8. Gradient, Divergence, and CurlExample 4: Application of the gradient in the optimization problem

Optimization in , space = finding a maximum of a goal function,

1. Plot contour lines  ,2. grad is normal to contour lines3. grad corresponds to the 

direction of the fastest increase of the goal function

4. Steps along grad lead to a local maximum

DivergenceLet’s consider a 3D vector field , , , , , , , , . Thedivergence of the vector field is the scalar field div , which value is equal to

div ·

Now we see that

div lim∆ →

∆∆

Divergence div defines the ratio of the flux of the vector field through the surface of an(infinitely) small domain to the volume of this domain.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 42

6.8. Gradient, Divergence, and Curl

(6.8.5)

(6.8.6)

Properties of divergence:1. Let’s consider a small parallelepiped of volume ∆

∆ ∆ ∆ . For any face we can define the flux of vectorfield as · ∆ , where is the unit vectornormal to the face and directed outwards and ∆ is theface area. Then the flux through the whole surface is

∆ ∆ , , ∆ ∆ , , ∆ ∆ , ∆ , ∆ ∆ , , ∆ ∆

, , ∆ ∆ ∆ , , ∆ ∆ ∆ div ∆

ME 501, Mechanical Engineering Analysis, Alexey Volkov 43

6.8. Gradient, Divergence, and Curl2. Divergence is the physical scalar, i.e. its value does not change at any coordinate

transformation. Proof is based on Eq. (6.7.6), but also can be performed directly bycalculating div after a coordinate transformation.

Example 1: Divergence of a central vector field. The potential energy of a point mass in thespherically symmetric gravitational field of mass with center in point , , is equal to

, , / , . Then

3 /

· 2

Note: Divergence of any central vector field is a central scalar field.

Example 2: Gradient and divergence of a central field in spherical coordinates.If , , 0, then the scalar field , , depends only on the distance to thecenter of coordinates and, thus, it is spherically symmetric with respect to . Then

, · 2 .

ME 501, Mechanical Engineering Analysis, Alexey Volkov 44

6.8. Gradient, Divergence, and CurlThe divergence is important for models based on the conservation laws: If is a flux density ofsome physical quantity, then div is related density of sources or drains of this quantity.

Example 3: Mass conservation in the fluid flow= ,mass flux density of a fluid, , ∆ ∆ ∆ ∆ ,mass flux through the face ∆ ∆

∆ , mass flux through the whole surface ∆ , fluid mass inside the parallelepiped

Mass conservation law (no sources or drains for mass):

∆ ∆ 0∆∆ 0

div 0 ∶

Steady‐state flow ( / 0): div 0, which means the absence of internal sources ordrains of mass inside the fluid flow.Incompressible flow ( ): div 0.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 45

6.8. Gradient, Divergence, and CurlCurl

Let’s consider a vector field , , . The curl curl of is the vector field

curl

This definition is valid for right‐handed Cartesian coordinates. For left‐handed coordinates, thedefinitions includes the negative sign: curl .Properties of curl:1. The curl is the physical vector, i.e. it does not change at any coordinate transformation

between any right‐handed coordinates.2. Let’s assume that is the velocity field of a rigid body. It is proved in kinematics that the

velocity field in the rigid body with respect to pole at point can be represented in the form

where is the angular velocity vector. Let’s use right‐handed coordinates where .Then

curl

0

2ω 2 ⟹ 12 curl

(6.7.7)

(6.7.8)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 46

6.8. Gradient, Divergence, and CurlDeformable body: Relative positions of points vary in the course of motion

One can show that for arbitrary deformable body (solid, liquid or gaseous), the kinematicformula can be generalized in the form:

12 curl

where is the deformation velocity which describes the change of relative positions ofpoints in the body due to its deformation. Thus, for any body, rigid or deformable, the curl ofthe velocity field describes the part of the motion that corresponds to the rigid rotation.

Deformable body rotation,  0Rigid body rotation,  0

∆Time ∆Time 

ME 501, Mechanical Engineering Analysis, Alexey Volkov 47

6.8. Gradient, Divergence, and Curl3. Circulation of the vector field on the plane

Γ ·′ ′′ ′

Let’s consider a small rectangle in ‐plane that corresponds to increments ∆ and ∆ . We canintroduce the circulation ∆Γ of the vector field along the contour of this rectangle:

ΔΓ , · ∆ ∆ , · ∆ , ∆ · ∆ , · ∆

, ∆ ,∆ ∆ ∆

∆ , ,∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ curl · ∆

Now we see that

curl · lim∆ →

∆Γ∆

i.e. limit of circulation of a vector field over a small contour tothe area bounded by this contour is equal to the componentof the curl normal to the contour.

∆Right hand‐side screw rule 

(6.8.9)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 48

6.8. Gradient, Divergence, and CurlLaplacian

The Laplacian of a scalar field , , is

∆ · div grad

Example: The heat conduction equation in the medium with constant properties is 

· ∆

Common properties of , · , , and : , · , , and are invariant with respect to coordinate transformations. Linearity, e.g., , where and are constants.

Special scalar and vector fields: Vector field is called gradient (conservative) field, if there is scalar field , such that

grad . Scalar field is called the potential of the vector field . Vector field is called irrotational field if curl 0. Vector field is called divergence‐free field if div 0. Vector field is called central field if | | /| |.

(6.8.10)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 49

6.8. Gradient, Divergence, and CurlProperties:

Any gradient field is irrotational, i.e. curl grad 0. Curl produces divergence‐free field: div curl 0. Any central field is a gradient field with the potential | | , .

Example: Irrotational fluid flow.

Fluid flow is called irrorational (or potential) if it’s velocity field is irrorational, i.e. curl 0.Now assume that , then curl curl 0. is called the velocity potential.

If fluid flow is incompressible, when the fluid density is constant, and the velocity field isdivergent‐free, · 0.

Then the velocity potential in any irrotational incompressible fluid flow should satisfy theLaplace equation:

· 0or∆ 0.

, ,

, ,

ME 501, Mechanical Engineering Analysis, Alexey Volkov 50

6.9. Path independent line integrals

· , , , , 0

A line integral is said to be path independent in adomain if for every pair of endpoints andin the domain , the line integral has the same valuefor all paths in that begin in and end at .Theorem 1:A line integral for the vector field with continuouscomponents in is path independent in if and onlyif is a gradient field of some potential , i.e. .Proof: We’ll prove only the first part of the theorem. Let's assume that . Then along theintegration path is a function of : , , and

· , , , ,

Thus, the line integral is determined only by values of in the start and end points, i.e. it is pathindependent.Theorem 2:A line integral for the vector field with continuous components in is path independent inif and only if any circulation of (line integral over a closed path in ) is zero.Proof: From Eq. (6.6.5):

(6.9.1)

Consequence 1: If field lines are closed curves in some region, the vector field is non‐conservative (non‐gradient) and line integrals are path dependent in this region.Proof: If the field lines are closed, chose a path of integrationwhich coincides with a close field line. Then in any point of suchline · · 0 and, circulation can not be equal to zero.Consequence 2: Circulation of any gradient field is zero.

Theorem 3:A line integral for the vector field with continuous componentsin is path independent in if and only if the differential form

·is the total differential of some function .Proof: According to theorem 1, the line integral is path independent if and only if . Butthen · , i.e. the differential form (4.6.6) is the total differential of the field potential .

From the theorems 1‐3 we see that the following statements are equivalent:1. Line integral for is path independent.2. is a gradient field.3. Any circulation of is zero.4. Differential form (4.6.6) for is the total differential (Criterion for exactness will be derived

from Stokes's theorem later).

ME 501, Mechanical Engineering Analysis, Alexey Volkov 51

6.9. Path independent line integrals

(6.9.2)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 52

6.9. Path independent line integralsExample: Circular cylinder in cross flow with attached circulation zone (moderate Reynoldsnumbers)

Steady‐state flow: streamlines = trajectories of fluid particles

The circulation zone appears due to action of fluid viscosity which induces the flowdetachment.

For the fluid velocity field, the line integral is path dependent. The fluid velocity field is non‐potential, the theory of potential flows can not be applied.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 53

6.9. Path independent line integralsPath independent integrals of work in mechanics: Existence of potential energy

Let’s consider a point mass that is places into a force field , i.e. in every point with positionvector , the force is exerted on the point mass.The work done by this force along the trajectory of this point mass started in point andended in point is given by the line integral

·

The force (force field) is called conservative if line integral in Eq. (6.9.1) is pathindependent, otherwise is called non‐conservative force.

(6.9.3)

According to theorems 1‐3, we can give the followingalternative definitions of the conservative force: isconservative if1. Line integral for is path independent, i.e. work of

force does not depend on the shape of trajectory, butis determined only by its start and end points.

2. is a gradient field: , where scalar fieldis called the potential energy.

3. Any circulation of is zero, i.e. work W done by atany closed trajectory ( ) is equal to zero.

4. Differential form · is the total differential.For conservative force,

ME 501, Mechanical Engineering Analysis, Alexey Volkov 54

6.9. Path independent line integralsThus, conservative nature of the force is equivalent to the existence of the potential energy

. Then according to Eq. (6.9.1)

, ·

This equation together with Newton’s second law of motion results in the conservation law ofthe total mechanical energy.Components of the potential force depend only on coordinates (position of the point mass) anddo not depend, e.g., on the velocity vector, acceleration vector, time, etc.Conservative force fields play very important role in mechanics. In particular, all“fundamental” interaction forces including Gravity force Electrostatic force Interaction forces between individual atomsare all conservative force.At the same time, friction force are non‐conservative, since it usually depends on velocity.In order to define a conservative forces field, it is sufficient to defined the potential energy ofthis field as a function of coordinates, , , . This approach is widely used, e.g., forformulation of interatomic forces inMolecular Dynamics (MD) simulations.

(6.9.4)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 55

6.10. Double integral“Ordinary" integral  = integral of a function of a single argument over length in 1D domain.Double integral        =  integral of a function of two arguments over area in 2D domain.Triple integral           = integral of a function of three arguments over volume in 3D domain.Let’s consider a two‐dimensional space – ‐plane, a region ‐ set of points and on this plane,and a 2D scalar field , that is defined in every point of .

Let’s do the following steps:1. Divide domain  into  subdomains  ( 1, . . ,  1) of area ∆ .2. Inside every subdomain choose a point  and value of the scalar field  .3. Calculate ∆ max ∆ ).4. Calculate the sum ∑ ∆ .

Then the double integral over domain  is the limit

lim∆ →

In Cartesian coordinates  and

,  

(6.10.1)

(6.10.2)

ME 501, Mechanical Engineering Analysis I, Alexey Volkov, Fall Semester 2013 56

6.10. Double integralBasic properties of the double integral:

1. Linearity ( , )

1. Additivity

 

3.  Mean value theorem: If  is simply connected and  is continuous in  , then there is such point  in  that

where  is the area of  . ( is called simply connected, if any closed curve in  can be continuously shrunk to any point in  without leaving  )

4. Physical meaning of the double integral: If  1, then the double integral is the area of  .

Example of  which is not simply connected

ME 501, Mechanical Engineering Analysis, Alexey Volkov 57

6.10. Double integralCalculation of the double integral by two successive integrations for a simple domain in 

Cartesian coordinatesWe say that is simple with respect to if the boundary of can be described by twoboundary functions and as shown in the figure.Let’s introduce subdivision of with the help of rectangular cells of even size ∆ ∆ ∆ :

, lim∆ ∆ →

, ∆ ∆

lim∆ ∆ →

, ∆ ∆ ,

If  is simple with respect to  , then

, ,

If is not simple, it usually can be represented as a set ofsimple adjoin subdomains, so the double integral can becalculated using (6.10.2) and (6.10.3) and additivity.

(6.10.3)

(6.10.4)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 58

6.10. Double integralNote 1: If domain  is a rectangle  ,  then 

, , ,

Note 2: If domain  is a rectangle  ,  and  , , then 

,

Example: Mass, moment of inertia with respect to ‐axis, and internal energy of a cylindricalbody of length

,

, ,

, , ,

ME 501, Mechanical Engineering Analysis, Alexey Volkov 59

6.10. Double integralChange of variables in the double integral

Let’s introduce new variables , and , . We assume that this transformationof coordinates is non‐degenerate in , so , and , exist. In newcoordinates, domain transforms into domain ∗.Question: How should we change the integrand in order to guarantee that the double integral in old and new coordinates has the same value,  ?

,

,∗

Obviously , , , , , e.g.if 1, , , then 1/ .Let’s introduce a rectangular mesh of cells on the ‐plane. Then

,∗

lim∆ ∆ →

, ∆ ∆

,

,

For  : , ∆ ∆ , , , ∆

ME 501, Mechanical Engineering Analysis, Alexey Volkov 60

6.10. Double integral, ∆ ∆ , , , ∆

We should calculate ∆ . Every rectangular cell of area ∆ ∆ in ‐plane corresponds to acurvilinear cell of area ∆ in ‐plane. If ∆ and ∆ are sufficiently small then the cell in ‐plane is close to a parallelogram with edges parallel to vectors

, The area of the parallelogram is 

∆ ∆ ∆ ∆ ∆ 0

∆ ∆ 0

| |∆ ∆

where  is the Jacobian determinant, determinant of the 2D Jacobian matrix,

And the rule of the variable change in the double integral is

, , , , | |∗

(6.10.5)

ME 501, Mechanical Engineering Analysis I, Alexey Volkov, Fall Semester 2013 61

6.10. Double integralIf we want to change variables from the old variables  , to the new variables :  , and 

, , we must:1. Find an image  ∗ of the domain  on the  ‐plane.2. Find the inverse transform  , and  , .3. Calculate the Jacobian of the inverse transform.4. Change the integrand according to Eq. (6.10.5).Note: Usually the purpose of the variable change in the double integral is to make the shape ofboundaries of ∗ as geometrically simple as possible.Example: Calculation of the area of the circle.

, where : /2

Let’s perform a transform to polar coordinates:  cos , sin ,  .

In polar coordinates, the image  ∗ is the rectangle: 0 /2, 0 2/

2

ME 501, Mechanical Engineering Analysis, Alexey Volkov 62

6.11. Triple integral“Ordinary" integral  = integral of a function of a single argument over length in 1D domain.Double integral        =  integral of a function of two arguments over area in 2D domain.Triple integral           = integral of a function of three arguments over volume in 3D domain.Assume that we consider a three‐dimensional ‐space, a region ‐ set of points and in thisscape, and a 3D scalar field , , that is defined in every point of .Let’s do the following steps1. Divide domain  into  subdomains  ( 1, . . ,  1) of volume ∆ .2. Inside every subdomain choose a point  and value of the scalar field  .3. Calculate ∆ max ∆ ).4. Calculate the sum ∑ ∆ .Then the triple integral over domain  is the limit

lim∆ →

In Cartesian coordinates  and

, ,

(6.11.1)

(6.11.2)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 63

6.11. Triple integralBasic properties of the triple integral:

1. Linearity ( , )

1. Additivity

3. Mean value theorem: If is simply connected and is continuous in , then there issuch point in that

where is the volume of . ( is called simply connected, if any closed curve in can becontinuously shrunk to any point in without leaving )

4. Physical meaning of the triple integral: If  1, then triple integral is the volume of  .

ME 501, Mechanical Engineering Analysis, Alexey Volkov 64

6.11. Triple integralCalculation of the double integral by three successive integrations for a simple domain in 

Cartesian coordinatesDomain is called simple with respect to some coordinate, e.g., , if the surface of the domaincan be described by two boundary functions , and , , see figure. For thedomain simple with respect to , the triple integral can be calculated by successive integration.Corresponding formulae can be obtained similar to the case of the double integral byintroducing subdivision of with the help of “rectangular” cells of even size ∆ ∆ ∆ ∆ :

, ,

lim∆ ∆ ∆ →

, , ∆ ∆ ∆

lim∆ ∆ →

, , ∆ ∆ ∆

, ,,

,,

(6.11.3)

,

,

,

The double integral can be further calculated with two successiveintegrations if , is simple with respect to either or .

ME 501, Mechanical Engineering Analysis, Alexey Volkov 65

6.11. Triple integral

, , , ,,

,

Note 1: If domain  is the bar  ,  , then 

, , , ,

Note 2: If domain is the bar , , and , , , then

, ,

Example: Mass and moment of inertia of a 3D body with respect to  ‐axis

, ,

, , , ,

(6.11.4)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 66

6.11. Triple integralChange of variables in the triple integral

Let’s introduce new variables , , , , , , and , , . We assumethat this transform of coordinate is non‐degenerate in , so , , , , , , and

, , exist. In new coordinates, the domain transforms into domain ∗.Question: How should we change the integrand  in order to guarantee that the triple integral in old and new coordinates has the same value,  ?

, , , , ,∗

Let’s introduce a rectangular mesh of cellsin the ‐space. Then

, ,∗

lim∆ ∆ ∆ →

, , ∆ ∆ ∆

, ,

, ,

For    :      , , ∆ ∆ ∆ , , , , , , , , ∆

ME 501, Mechanical Engineering Analysis, Alexey Volkov 67

6.11. Triple integral, , ∆ ∆ ∆ , , , , , , , , ∆

We should calculate ∆ . Every rectangular cell of volume ∆ ∆ ∆ in ‐space corresponds toa curvilinear cell of volume ∆ in ‐space. If ∆ , ∆ , and ∆ are sufficiently small then thecell in ‐space is close to a parallelepiped with edges parallel to vectors

, ,

The volume of the parallelepiped is 

∆ ∆ · ∆ ∆

∆ ∆ ∆

∆ ∆ ∆

∆ ∆ ∆

| |∆ ∆ ∆

where  is the Jacobian determinant, the determinant of the 3D Jacobian matrix,

ME 501, Mechanical Engineering Analysis, Alexey Volkov 68

6.11. Triple integralAnd the rule of the variable change in the triple integral is

, , , , , , , , , , | |∗

If we want to change variables from the old variables , , to the new variables , , ,, , , , we must:

1. Find an image  ∗ of the domain  in the  ‐space.2. Find the inverse transform  , , ,  , , , and  , , .3. Calculate the Jacobian determinant of the inverse transform.4. Change the integrand according to Eq. (6.11.5).Note: Usually the purpose of the variable change in the triple integral is to make the shape ofboundaries of ∗ as geometrically simple as possible.Example: Calculation of the volume of a sphere.

, where : /2

Transform to spher. coordinates:  cos , sin cos ,  sin sin ,  sin .In spherical coordinates, image  ∗ is the bar: 0 /2, 0 , 0 2

/

sin43 2

(6.11.5)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 69

6.12. Surface integrals of scalar and vector fieldsLet’s consider some surface given by the parametric representation:

, , , ,where , vary over a region on the ‐plane.Let’s assume that is piecewise smooth, so that has a normal vector and a unitnormal vector /| | at every point except perhaps some edges or cusps. In every point,where exists, .For a given scalar field , , and surface , the surface integral of the scalar field is definedas

≡ ,

Note: Since the RHS in Eq. (6.12.1) depends only on | |, Eq. (6.12.1) provides a unique valueindependently on the surface orientation and, in particular, is valid for a nonorientable surface.For a given vector field , , and oriented surface , the surface integral of the vector fieldis defined as

· ≡ , · ,

Note: Since RHS in Eq. (6.12.2) depends on , surface integral (6.12.2) changes its sign when theorientation of the surface changes.

(6.12.1)

(6.12.2)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 70

6.12. Surface integrals of scalar and vector fieldsProperties of the surface integrals:1. If we introduce direction cosines for the surface normal such that cos cos

cos , then cos , cos , and cos , so that·

and the surface integral can be calculated as

·

2. Linearity

· · ·

3. Additivity

· · ·

4. Surface integral of the scalar field 1 gives the area of the surface

ME 501, Mechanical Engineering Analysis, Alexey Volkov 71

6.12. Surface integrals of scalar and vector fields5. Definition of the surface integral in terms of the sum limit.

Let’s consider a smooth surface given by the parametric representation , andlet’s divide it (e.g., by grid lines and ) into a large number ofsubsurfaces ∆ . For every subsurface, let’s define a point , which belongs to thesubsurface, is the unit normal to the surface in point , ∆ is the area of the subsurface,and ∆ max ). Then

· ∆ ∆ →→

·

Example 1: Flux density and flux.In applications, the vector field often has the meaning of the flux density of some physicalquantity, i.e. amount of the physical quantity transferred through the surface of unit areaperpendicular to the field vector per unit time.

: Mass flux density in the fluid flow.: Heat flux density.

Then the surface integral of a such vector field has meaning of the flux, i.e. the amount of thephysical quantity transferred through a whole surface S:

· ∶ Massflux; · ∶ Heatflux

ME 501, Mechanical Engineering Analysis, Alexey Volkov 72

6.12. Surface integrals of scalar and vector fieldsExample 2: Moment of inertia of a surface about ‐axis.In order to calculate the moment of inertia of a surface (thin shell) with respect to ‐axis, we canintroduce the scalar field , where is the surface mass density (massof the thin shell per unit area of the shell). Then

, , ,

Example 2a: Moment of inertia of a homogeneous spherical shell ( ) withrespect to an axis going through the sphere center.Parametric representation of the sphere:

sin cos sin sin cos, sin cos, sin sin

sin

sin

2π coscos3 0

23 4

23

0 20

ME 501, Mechanical Engineering Analysis, Alexey Volkov 73

6.13. Green’s theorem for a planeGreen’s theorem:Let be a closed bounded region in the ‐plane whoseboundary consists of piecewise smooth curves. For everyclosed path we choose direction such that is on the leftas we advance in the direction of integration.Let , and , be functions that are continuous andhave continuous derivatives / and / everywherein some domain containing . Then

Proof:We’ll divide the proof of Green’s theorem in two stages.1. At the first stage, let’s prove the theorem for a specialregion whose boundary is a single closed path. Then

, ,

, ,

(6.13.1)

Counter‐clockwise

clockwise

ME 501, Mechanical Engineering Analysis, Alexey Volkov 74

6.13. Green’s theorem for a plane

, ,

, ,

The sum of two obtained equation gives us Eq. (6.13.1).2. Now let prove Eq. (6.13.1) for arbitrary regionwhose boundary consists of a few closed paths. In thiscase the region can be divided into a set ofsubregions , , etc., such that the boundary of everysubregion is a simple closed path. Then we can applyalready proved Green’s formula to every subregion

Sum of all these equation for all gives us Green’sformula for the whole region: On the left we havedouble integral for the whole region (additivity), andon the right all parts of the paths that are counted twicewill cancel each other due to their different directions.

ME 501, Mechanical Engineering Analysis, Alexey Volkov 75

6.13. Green’s theorem for a planeConsequence 1:  is the full differential if and only if (recall first‐order exact ODEs)

0

This is a particular case of the general theorem proved in the Section 6.14.Consequence 2: Let , be the vector field, which has a curl. Then

curl curl ·

Then Green’s theorem, Eq. (6.13.1), says that 

curl ·

i.e. circulation of the 2D vector field is equal to the double integral of the ‐component of thecurl over the region bounded by the integration path.Consequence 3: Consider two evenly oriented paths, which can becontinuously transforms one to another in  . Then for a 2D gradient field, circulations these two paths are equal to each other if the region between them does not contain singular points   of  (i.e. if is continuous in  ). Proof: Since curl 0, Eq. (6.13.2) reduces to

(6.13.2)

· · · 0 ⟹ · ·

ME 501, Mechanical Engineering Analysis, Alexey Volkov 76

6.13. Green’s theorem for a plane

Property  · · does not hold even if curlF = 0 if 

1. Field has a singular point in .2. Paths cannot be continuously transform one to another.These cases are very important for potential flows in fluid mechanics.Example 1a: 2D inviscid vortex: Flow field with zero curl , but with non‐zero circulation

Flow potentialΓ2 arctan , Flow velocity

Γ2

Γ2

· 0, ·Γ2

1

· Γ, but · 0∗

Example 1b: Irrotational flow potential flow overa cylinder with non‐zero circulation: One canconsider the flow field from the previousexample in the domain : outside acylinder of radius .Now does not contain asingular point, but circulation over is notequal to zero. ∗

cos sin

ME 501, Mechanical Engineering Analysis, Alexey Volkov 77

6.13. Green’s theorem for a planeVortexes develop in many natural and industrial flows:

Von Karman vortex street

Tornado       Sink

Vortex wake behind a plane

Flows can be considered as composed of discrete vortexes

behind a circular cylinder

behind an island

ME 501, Mechanical Engineering Analysis, Alexey Volkov 78

6.13. Green’s theorem for a planeRed spot on Jupiter: a giant vortex

Tornado       Sink

behind a circular cylinder

ME 501, Mechanical Engineering Analysis, Alexey Volkov 79

6.13. Green’s theorem for a planeExample 2: Calculation of the area of a region on ‐plane. If we introduce , and ,such that / / 1, then the LHS in Green’s theorem gives the area of the region. We can use, e.g. and 0 or 0and . Then Green’s theorem reduces to

12

Example 2a: Area of a triangle given by vertex coordinates

12

12

12

Calculation of geometrical properties of triangles is a routine operation in

,,

,

Computer graphics Meshing domains by triangulation for numerical solution of PDEsMapmaking/GPS

Consequence 4: Divergence theorem in 2D.Assume that LHS in Eq. (6.13.1) is the divergence of some vector field  , , i.e. 

and  , so  / / div . Then in the RHS of Eq. (6.13.1) we have

·

ME 501, Mechanical Engineering Analysis, Alexey Volkov 80

6.13. Green’s theorem for a plane

Eq. (6.13.3) is the divergence theorem in 2D: Double integral of divergence over region isequal to the line integral of the normal component of the vector field over the boundary.

where / / is the external unit normal (normal directed tothe exterior of : if / / is the tangent, then is the normal since ·0).

Thus

(6.13.3) div ·

ME 501, Mechanical Engineering Analysis, Alexey Volkov 81

6.13. Green’s theorem for a planeExample 4: Mass flux through the plane nozzle.In a steady‐state flow,  is a divergence‐free field ( and  are fluid density and velocity): 

· 0

Then applying Eq. (6.13.3) to a region between two cross sections of a planar Laval nozzle, one can conclude that the mass flux  is constant for any cross section

, ,

ME 501, Mechanical Engineering Analysis, Alexey Volkov 82

6.13. Green’s theorem for a plane (optional)Example 4: Double integral of the 2D Laplacian.In many application, the Laplacian of a scalar field  , appears

∆ · div grad

For instance: The heat conduction equation in a medium with constant properties is 

Then we can apply our 2D divergence theorem:

∆ div ·

For 2D heat conduction equation:

or , , ·

where is the heat flux. Eq. (6.13.5) is the mathematical representation of the energyconservation law for a 2D finite volume of a quiescent medium.

(6.13.4)

(6.13.5)

Let's assume that we have an oriented surface with normal , whose boundary is a simpleclosed curve with a given direction. We say that the orientation of the surface and direction ofsatisfy the right hand‐side screw rule (or corkscrew rule) if motion along in the positive

direction corresponds to the anti‐clockwise rotation when seen from the top of .

Stokes’s theorem:Let be a piecewise smooth oriented surface in space and let the boundary of be piecewisesmooth simple closed curve. Let be a unit normal vector to and orientation of anddirection of satisfy the right hand‐side screw rule.Let , , be a continuous vector field that has continuous first partial derivatives in adomain in space containing . Then

curl · ·

or, in components

ME 501, Mechanical Engineering Analysis, Alexey Volkov 83

6.14. Stokes’s theorem

curl(6.14.1)

Proof:1. We can represent the vector field in the form

where 0 0 , etc. If we prove that Stokes’s theorem holds for , , andindividually, then it holds for which is easy to prove using linearity of the curl and line andsurface integrals. Obviously, it is enough to prove theorem only for , proofs for and willbe analogues.2a. First, let’s prove the theorem for a special surface that can be represented in the form

, . The idea of the following proof is to reduce the problem to the Green’s theorem.Setting and , we have

, ,

,

1 0 /0 1 /

curl · ∗ ∗

Here ∗ is the region on the ‐plane bounded by the curve ∗ and we can apply Green’stheorem for this region.ME 501, Mechanical Engineering Analysis, Alexey Volkov 84

6.14. Stokes’s theorem

(6.14.2)

3. The sum of Eqs. (6.14.4) for all cells in the limit max ∆ → 0 gives Eq. (6.14.1), since the lineintegrals along all "internal" edges of cells cancel each other.

1. We can divide the surface S into large number of smalland almost planar cells ‐ surfaces ∆ bounded by curves∆ keeping for every orientation of the original and .2. For every subsurface, considering it as plane withnormal , we can apply Green's theorem in the form ofEq. (6.13.2):

Now let’s calculate RHS in Eq. (6.14.1) for the vector field :

· , , ,∗ ∗

Now we see that the RHSs in Eqs. (6.14.2) and (6.14.3) are the same and it proves Stokes’stheorem for in the case of a special surface represented in the form , .2b. Now let’s consider a surface that can be divided into a finitely many parts, where every partcan be represented in the form , . Then we can apply the previous proof to everyindividual part and then use the additivity of the surface and line integrals.3. In order to proof the theorem for an arbitrary surface, we need to remember definitions ofthe surface and line integrals as the sum limits:

ME 501, Mechanical Engineering Analysis, Alexey Volkov 85

6.14. Stokes’s theorem

(6.14.3)

curl ·∆

·(6.14.4)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 86

6.14. Stokes’s theoremConsequence 1: Criterion for the path independence of the line integral.Reminder: Line integral is said to be path independent in a domain if for every pair ofendpoints and in the domain , the line integral has the same value for all paths in thatbegin in and end at . We have proved in Section 6.9 that the following statements areequivalent:1. Line integral for is path independent.2. is a gradient field.3. Any circulation of is zero.4. Differential form (6.14.2) for is exact

·Now let's find the criterion for exactness of (6.14.4) based on Stokes's theorem:

Theorem: Criterion of exactness and path independence.Assume that components of have continuous first derivatives in . Then1. If the differential form (6.14.2) is exact, then curl 0, i.e.

, ,

2. If curl 0 (i.e. (6.14.5) holds) in and domain is simply connected, then (6.11.4) is exactin .

(6.14.5)

(6.14.4)

ME 501, Mechanical Engineering Analysis, Alexey Volkov 87

6.14. Stokes’s theoremProof:

1. if (6.14.4) is exact, then , and thus,curl 0 since it holds for any gradient field.

2. Let be a closed path in . Since issimply connected, we can find in boundedby . If curl 0 , then, according toStokes's theorem, circulation of is zero forany closed path in . Thus, line integral for ispath independent and the form given by Eq.(6.11.2) is exact (see theorems in Section 6.6).

Consequence 2: Helmtholtz's theorems for vortex tubesLet's consider the vector field of vorticity curl ,where is the fluid velocity field.Field lines of  are called the vortex lines.Let's consider some closed curve not coinciding withany vortex line. The vortex tube for the curve is theregion bounded by all vortex lines going through pointson the curve .

Vortex lines

· 0

ME 501, Mechanical Engineering Analysis, Alexey Volkov 88

6.14. Stokes’s theorem1st Helmholtz's theorem:Circulation of fluid velocity over any contour boundingthe vortex tube is constant.Proof: Let's choose two contours and and applyStokes's theorem to the closed contour composed of

, , , and ( corresponds to the lateralsurface of the tube between and ):

· curl · 0, · · 0, · · Γ

, 0

If the tube ends inside the fluid, the length of the circumference of (and surface area of ) atthe tube end becomes zero and velocity and vorticity will be infinite. Thus, and can not becontinuous at the end.

2nd Helmholtz's theorem:If and are continuous fields, then a vortex tube cannot end in a fluid, itmust extend to the boundaries of the fluid or form a closed path.Proof: According to the 1st Helmholtz's theorem

· curl · Γ

ME 501, Mechanical Engineering Analysis, Alexey Volkov 89

6.14. Stokes’s theoremConsequence of the 2nd Helmholtz's theorem: Tornado

Vortex tubes

· curl · Γ

Tornado starts at the surface. At the surface: Minimum circumference, maximum fluid velocity. Long lifetime, propagation to large distances

ME 501, Mechanical Engineering Analysis, Alexey Volkov 90

6.14. Stokes’s theoremConsequence of the 2nd Helmholtz's theorem: Vortex ring and mushroom vortex

Vortex ring is the toroidal (“donut‐type”) closed vortex tube

Smoke in air                                Water in air

ME 501, Mechanical Engineering Analysis, Alexey Volkov 91

6.14. Stokes’s theoremConsequence of the 2nd Helmholtz's theorem: Vortex gun

As long as the effects of viscosity and diffusion are negligible, the fluid in a moving vortex iscarried along with it. In particular, the fluid in the core (and matter trapped by it) tends toremain in the core as the vortex moves about. Thus vortices (unlike surface and pressure waves)can transport mass, energy and momentum over considerable distances compared to their size,with surprisingly little dispersion.

See https://en.wikipedia.org/wiki/Vortex.

Momentum transfer to large distances by vortex rings is used in vortex guns.

Gauss divergence theorem gives a connection between the tripleintegral of the divergence of a vector field over a closed boundeddomain and the surface integral of this vector field over the surfaceof this domain.Gauss divergence theorem:Let be a closed bounded region in 3D space whose boundary is apeecewise smooth orientable surface . Let be a vector field thathas continuous components and continuous partial derivatives ofcomponents in some domain containing . Then

div ·

where is external unit normal surface vector with respect to , or, incomponents

cos cos cos

ME 501, Mechanical Engineering Analysis, Alexey Volkov 92

6.15. Gauss divergence theorem

(6.15.1)

Proof:The Gauss divergence theorem can be easily proved for special domain which is simple withrespect to , , and (see section 4.7). Then every triple integral of an individual term, e.g.

/ , can be reduced by successive calculation to the double integral that finally reduces tothe surface integral of . See the proof in Kreyszig's textbook, pages 454‐456.

Another approach is to divide into a set of small cells and apply Eq. (6.8.6) to every cell. Thenthe sum over all individual cells in the limit of infinitely small cell gives the Gauss theorem.

Application of Gauss divergence theoremThe major application of the Gauss divergence theorem in mechanics and heat transfer is thederivation of the differential equations based on conservation laws initially formulated in theintegral form, i.e. applied to a finite volume of medium.

Heat conduction equation Navier‐Stokes and Euler equations in fluid mechanics Maxwell equations of electromagnetic field

ME 501, Mechanical Engineering Analysis, Alexey Volkov 93

6.15. Gauss divergence theorem

Example 1: Derivation of differential heat conduction equationConservation law for internal energy in a quiescent medium:

·

Now we can apply the Gauss divergence theorem:

· div ⇒ div

div 0

This equation should be valid for any . It is possible only if

div 0

Eq. (6.15.3) is the heat conduction equation (energy equation in a quiescent medium).This is the differential form of the energy conservation law (1st law of thermodynamics).

ME 501, Mechanical Engineering Analysis, Alexey Volkov 94

6.15. Gauss divergence theorem

(6.15.3)

(6.15.2)

Rate of change of internal energy in 

Flux of internal energythrough the boundary of 

ME 501, Mechanical Engineering Analysis, Alexey Volkov 95

6.15. Gauss divergence theoremExample 2: Flow of incompressible fluid through a pipe.

For incompressible fluid (density  , the velocity field if divergence free:div 0

Let’s integrate this equation over a volume  between two cross sections  and  :

div 0

Let’s apply the Gauss theorem:

div · · · · 0

Then the mass flux (mass flow rate) through any cross‐section of the tube will be the same nomatter how complex the flow velocity field is:

· ·

This integral is equal to zero, because the pipe walls are 

impenetrable for the fluid and thus  · 0