chapter 7 bose and fermi statistics. §7-1 the statistical expressions of thermodynamic quantities 1...

71
Chapter 7 Bose and Fermi statistics

Upload: maximillian-doyle

Post on 18-Jan-2018

230 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

Chapter 7 Bose and Fermi statistics

Page 2: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

§7-1 The statistical expressions of thermodynamic quantities

1 、 Bose systems:

1 le

ll

1l

lll l

Ne

Define a macrocanonical partition function:

Page 3: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition
Page 4: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition
Page 5: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

1 lnYy

ln ln 1 ll

l

e

1l

l

l ll

l l

Yy e y

1 lnpV

Now, let’s see the entropy and Lagrange Variable factor

Page 6: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

ln lndU Ydy d dyy

lnU

1 lnYy

ln ln lnlnd d d dyy

Because: ln ln 1 ll

l

e

Page 7: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

ln lndU Ydy d dyy

ln ln lnlnd d d dyy

ddddyy

lnlnlnln

ddddYdydU

lnlnlnln

lnlnlnlnln

ln

ddddd

dYdydU

Page 8: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition
Page 9: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

So that,

lnlnln ddd

NdYdydU

kT

,

lnlnln dddk

dS

lnlnlnkS

NUk ln

Page 10: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

lnlnlnkS

ln ln 1 ll

l

e

l ll

llEB !1!

!1.

lnS k

Boltzmann relation

Page 11: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

2 、 Fermi system

1 ll

ll l

e

1 le

ll

1 ll

ll l

e

ln ln 1 ll

l

e (Bose)

ln ln 1 ll

l

e

Page 12: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

lnN

1 le

aN l

lll

ln ln 1 ll

l

e

l

l

ll ll

l

eee

111ln

lnU

Page 13: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

lnN

lnU

1 lnYy

1 lnpV

ln ln lnS k

lnS k

Boltzmann relation

Page 14: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

Addition:

Define a new thermodynamic quantity –grand potential

NFJ

NTSUJ It is of great importance for the statistical treatment of thermodynamic problems.The total differential reads

NdPdVSdTNddNSdTTdSdUdJ

The remaining thermodynamic quantities can be calculated by differentiating the grand potential:

Page 15: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

VTTV

JNVJp

TJS

,,,

NTSUJ Because of Euler’s equation:

NpVTSU

The grand potential is identical with -pV

pVJ

Page 16: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

lnJ kT

NTSUJ

NUk ln

lnlnlnkS

NUkTTS ln

NUkTTS ln

Because:

Page 17: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

§7-2 Bose and Fermi weak degeneracy ideal gas

1 e

non-degeneracy condition:

13 nNow, we consider a condition, just as and is small ,but can not be neglected. We called this weak degeneracy condition.

e 3n

Under this condition, we want to deal with the Bose ideal gas and Fermi ideal gas respectively.

Page 18: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

2 2 21 ( )2 x y zp p pm

V d

3 2 1 23

2( ) (2 )VD d g m dh

rl

h

Here g is the degeneracy caused by the particle’s spin.

l

laN Photon g=2

Electron g=2

Page 19: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

1 le

ll

1 le

ll

Bose

Fermi

1/ 23 2

3 0

2 (2 )1

V dN g mh e

3 2 1 23

2( ) (2 )VD d g m dh

This equation can be used to determine the Lagrange factor .

Page 20: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

3 2 1 23

2( ) (2 )VD d g m dh

ll

lU 1

le

ll

x 3 2

3 23 0

2 (2 )1x

V x dxU g mkT kTh e

1 23 2

3 0

2 (2 )1x

V x dxN g mkTh e

1/ 23 2

3 0

2 (2 )1

V dN g mh e

0

2/32/3

3 122

e

dmh

VgU

Page 21: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

1 11 (1 )x x xe e e

3 23 2

3 0

2 (2 )1x

V x dxU g mkT kTh e

1 23 2

3 0

2 (2 )1x

V x dxN g mkTh e

1 e

1 xe

So that, we expand the into: 11 xe xe 1

xxxx n

111 2

Page 22: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

1 23 2

3 0

2 (2 )1x

V x dxN g mkTh e

3 22 3 2

2 1( ) [1 ]2

mkTN g Ve eh

0

2/122

0

2/12/33 22 dxxedxxemkT

hVgN xx

0

2/122/32/33 22222 xdxeeemkT

hVgN x

1 11 (1 )x x xe e e

22

222 2/32/3

3 eemkT

hVgN

Page 23: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

3 22 5 2

3 2 1( ) [1 ]2 2

mkTU g VkTe eh

3 23 2

3 0

2 (2 )1x

V x dxU g mkT kTh e

1 (1 )1

x xx e e

e

0

2/322

0

2/32/33 22 dxxedxxekTmkT

hVgU xx

0

2/322/52/33 222

4322 xdxeekTemkT

hVgU x

432

4322 2/52/3

3 ekTemkTh

VgU

Page 24: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

3 1[1 ]2 4 2

U NkT e

3 22 5 2

3 2 1( ) [1 ]2 2

mkTU g VkTe eh

3 22 3 2

2 1( ) [1 ]2

mkTN g Ve eh

In the equation, the first term is the energy calculated according to the Boltzmann distribution, and the second term is the correlation energy caused by the quantum statistics.

Page 25: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

l

lle 1lnln

demh

Vg 2/1

0

2/33 1ln22ln

3 2 1 23

2( ) (2 )VD d g m dh

ex 1ln

2/3

32 y

d

eeede

132

321ln1ln 2/3

00

2/32/1

0

Page 26: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

2/33 22 m

hVgA

d

eeeA13

2321lnln 2/3

00

2/3

0

de

eA

132ln 2/3

0

de

A1

132ln 2/3

0

Page 27: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

de

A1

132ln 2/3

0

1 (1 )1

x xx e e

e

1 11 (1 )x x xe e e

deeA

132ln 2/3

0

x

Page 28: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

deeA

132ln 2/3

0

dxeeA xx

132ln 2/3

0

x

dxexexA xx 222/32/3

0

2/3

32

dxexedxexeA xx

0

22/3

0

2/32/3

32

0

2/32/52/3 2132 dxexeeA x

Page 29: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

0

2/32/52/3 2132ln dxexeeA x

43

0

2/3 dxex x

2/52/3 2121ln eeA

2/33 22 m

hVgA

2/52/3

2 212ln

ee

hmgV

Page 30: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition
Page 31: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

2/52/3

2 212ln

ee

hmgV

1 lnpV

lnlnlnkS

Page 32: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

§7-3 Bose-Einstein conglomeration

From this section, we can see that when equals or is more than 2.612, the unique Bose-Einstein conglomeration phenomenon will appear.

3n

( ) / 1l

ll kTe

1 le

ll

1l

kTe

Because the can not be negative, So that la

Page 33: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

0 1

l

kTe

That is ,here is the lowest energy level of Bose particles.0

0 If we assume the lowest energy of the Bose particle is 0, then,

11l

lkT

l

N nV e V

( /)From the equation

We can see that, the chemical potential is the function of temperature T and the density of particle number n .

Page 34: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

1

3 22

3 0

2 21kT

dm nh

e

11l

lkT

l

N nV e V

( /)

If we substitute integration for the summation, there is

1322

3

2 2V m dh d —V

Page 35: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

1

3 22

3 0

2 21kT

dm nh

e

If the n is fixed, according to the equation above, we can see that the higher temperature, the smaller chemical potential. When the temperature reduces to a critical value Tc ,the chemical potential will reach its highest value 0.

0

1

3 22

3 0

2 21ckT

dm nh

e

Because:

Page 36: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

c

xkT

1

3 22

3 0

2 21ckT

dm nh

e

1

3 22

3 0

2 21c x

x dxmkT nh e

12

02.612

1 2x

x dxe

2 23

23

2

2.612cT n

mk

Page 37: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

Then, if the temperature keep on reduces from Tc, what will happened?

1

3 22

3 0

2 21kT

dm nh

e

0

cT T 0

But, when cT T

Tne

dmh

kT

0

21

23

3

122

c

kT

Tn

e

dmh

c

0

21

23

3

1

22

Page 38: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

There is a contradiction in it, because :

1

3 22

3 0

2 21kT

dm nh

e

11l

lkT

l

N nV e V

( /)

1322

3

2 2V m dh

Tne

dmh

kT

0

21

23

3

122

c

kT

Tn

e

dmh

c

0

21

23

3

1

22

cT T ckTkT ee

<

Page 39: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

1322

3

2 2V m dh

0 0l

1

3 22

3 0

2 21kT

dm nh

e

cT T

13 22

0 3 0

2 21kT

dn T m nh

e

Here n0(T) is the density of particle number on the energy level , when temperature is T( ), .

0 cT T 0

Page 40: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

Tne

dmh

kT

0

21

23

3

122

kTx

Tne

dxxmkTh x

0

21

23

3 122

1

3 22

3 0

2 21ckT

dm nh

e

c

xkT

1

3 22

3 0

2 21c x

x dxmkT nh e

32

0 1c

Tn T nT

Page 41: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

32

0 1c

Tn T nT

When ,Bose particles will accumulate on the energy level rapidly, and the density of particle number reach the same order of magnitude with the total particle number density n .This phenomenon is just the Bose-Einstein conglomeration.

cT T0

0n

Page 42: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

0 Tc is called conglomeration temperature, on the energy level of ,we can see that the momentums of Bose particles are also 0, so, Bose-Einstein conglomeration is also called momentum conglomeration.

cT T

3

3 22

3 /0

2 21kT

V dU mh e

xkT

3

3 5 22 2

3 0

2 21x

V x dxU m kTh e

32

0.770c

TU NkTT

Page 43: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

32

1.925VV c

U TC NkT T

32

0.770c

TU NkTT

CT T 3/ 2VC T

CT T 1.925VC Nk

32VC NkcTT

Page 44: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

2 23

23

2

2.612cT n

mk

3

3 2.6122 c

hn nmkT

3 2.612n

Page 45: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

§7-4 Photon gas

T: N(t) const.

According to the idea of particles, we can regard the photon field in the cavity as a photon gas.

h

khp

2

k

Page 46: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

h

khp

cp

Bose statistics:

1 le

ll

.constNal

l

1

lel

l

Page 47: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

1

lel

l

Here,r

ll h

dpppV

dpph

V 23

4

Because the spin degeneracy of photon is 2 (1.-1),

dpph

Vh r

l 23

8

Page 48: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

cp

cp d

cdp

dpph

Vh r

l 23

8

Substitute for the equation

dV

dc

V

dcch

Vh r

l

232

2

3

8

Page 49: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

1

lel

l

dc

Vh r

l 232

1

232

kT

l

e

dc

V

UdV :

lladTU ,

d

ec

V

kT 1

3

32

The equation above is called Planck’s formulation.

Page 50: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

de

cVdTU

kT 1,

3

32

Integrating the equation above, we can obtain the total energy of the cavity.

d

ec

VUkT 1

3

032

dxe

xkTc

VU x 1

3

0

4

32

xkT

15

44

32

kTc

V 433

42

15VT

ck

Page 51: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

We can also use another solution:

l

lle 1lnln

llel

1

l

l e 1ln

d

cV

h rl 2

32

dec

V 1lnln

0

232

Page 52: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

dec

V 1lnln

0

232

x

dxexc

V x

1ln1ln

0

23

32

dxe

exexdxex x

xxx

13

1ln3

1ln0

3

0

3

0

2

dxe

x x 11

31

0

3

45

4

Page 53: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

451ln

43

32

c

V

3

3

2 145

cV

lnU

4

3

3

2 13145

c

V

433

24

15T

cVk

It is the same with what we have obtained before.

Page 54: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

1 lnpV

3

3

2 145

ln

cV

433

24

45T

ck

4

33

2 145

c

433

24

15T

cVkU

VUp

31

lnlnkS VTc

k 433

24

454

Page 55: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

§7-5 The free-electron gas in the metal

A further, very useful model system is that of a noninteracting non relativistic gas of Fermi particles. Nucleons in atoms, as well as electrons in metals, can be regard as an ideal Fermi gas to first approcimation. The case T= 0 has here a special importance.

1 le

ll

1

1kT

fe

It stands for the mean particle number on the each quantum state.

Page 56: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

V — d 1322

3

2 2V m dh

However, since the particle possess 2s+1 different spin orientations which are energetically degenerate in the interaction free case, Equation above must be multiplied by an additional degeneracy factor g=2

1322

3

4 2V m dh

l

laN1

kT

ll l

e

We want to rewrite the sums in terms of integrals.

Page 57: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

1

3 22

3 0

4 21kT

V m Nh

e

d

We can also see that the is the function of T and n.

When T=0K 1

1kT

fe

10

ff

0

0

Pauli principle requires an energetically higher state for each new particle, and the is the highest energy level of electrons.

0

Page 58: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

Ndmh

V 0

021

23

3 24

10

ff

0

0

22 32

0 32

Nm V

Is called Fermi energy level.

20

0 2pm

132

0 3 NpV

Is called Fermi momentum, which is the largest momentum.

Page 59: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

33 022

3 0

4 32 05

VU m d Nh

Ndmh

V 0

021

23

3 24

For example: Cu (cuprum)

22 32

0 32

Nm V

18 38.5 10N m

V

120 1.1 10 J

300K0

1260

kT 1 kTee

Page 60: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

T > 0

1

1kT

fe

,21

,21

,21

f

f

f

Page 61: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

1

3 22

3 0

4 21kT

V dN mh

e

3

3 22

3 0

4 21kT

V dU mh

e

0

1kT

I de

kTz

1z

kT

kTzI kTdz

e

0 01 1kT

z z

kTz kTzkT dz kT dz

e e

0

0

11dz

ekTzkTdz

ekTzkT z

kTz

Page 62: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

0 01 1kT

z z

kTz kTzkT dz kT dz

e e

11

11

z

zz

z eee

e

0 0 1z

kTz kTzI d kT dz

e

In the first term

000 11

dze

kTzkTdze

kTzkTdzkTzkTI zkT

zkT

kTz

Page 63: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

2

0 02

1z

zI d kT dze

2

2

0 6d kT

Because the integration comes from ,especially when the z is small. So, we can expand the numerator into power series.

ze

1

3 22

3 0

4 21kT

V dN mh

e

01kT

I de

2/12

2

0

2/12/33 6

24 kTdm

hVN

Page 64: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

2/12

2

0

2/12/33 6

24 kTdm

hVN

2/12

2

0

2/12/33 2

16

24 kTdm

hV

222/32/3

3 8124

32

kTm

hV

22 2 333 1

2 8N kTc

Page 65: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

3

3 22

3 0

4 21kT

V dU mh

e

0

1kT

I de

2

2

0 6d kT

2/32

2

0

2/32/33 6

24 kTdm

hV

2/12

2

0

2/32/33 2

36

24 kTdm

hV

222/52/3

3 85124

52

kTm

hV

Page 66: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

We can also use another method:

llel

1

l

lle 1lnln

1322

3

4 2V m dh

edmh

V 1ln24ln 2/12/33

2/33 24 m

hVA

l

Page 67: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

deA 1lnln 2/1

If we integrate the term in the equation above by parts, it follows that:2/1

de

eA

132 2/3

0

de

AkT

132 2/3

0

01kT

I de

2

2

0 6d kT

Page 68: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

de

AkT

132 2/3

0

2

2

0 6d kT

0

1kT

I de

2

12

2

0

2/3

23

632

kTdA

2

12

225

452

32 kTA

Page 69: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

2

12

225

452

32 kTA

kTkT

2

12

2

25

452

32 kTkTkTA

2

2

25

851

52

32

kTA

2/33 24 m

hVA

Page 70: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

2

2

25

851

52

32ln

kTA

2/33 24 m

hVA

2

2

25

2/3

3 8512

1516ln

mhV

Page 71: Chapter 7 Bose and Fermi statistics. §7-1 The statistical expressions of thermodynamic quantities 1 、 Bose systems: Define a macrocanonical partition

Exercise:

8.3 Request the entropy and pressure of weak degeneracy Bose ideal gas and Fermi ideal gas.