chapter 7 electrodynamics

53
Chapter 7 Electrodynamics .0 Introduction .1 Electromotive Force .2 Electromagnetic Induction .3 Maxwell’s Equations

Upload: charleigh-edwards

Post on 03-Jan-2016

806 views

Category:

Documents


91 download

DESCRIPTION

Chapter 7 Electrodynamics. 7.0 Introduction 7.1 Electromotive Force 7.2 Electromagnetic Induction 7.3 Maxwell’s Equations. 0. 0. 7.0 Introduction. electrostatic. static. magnetostatic. =. conservation of charge. 7.0 (2). Maxwell’s equations:. 7.0 (3). =. Magnetic flux. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chapter 7 Electrodynamics

Chapter 7 Electrodynamics

7.0 Introduction

7.1 Electromotive Force

7.2 Electromagnetic Induction

7.3 Maxwell’s Equations

Page 2: Chapter 7 Electrodynamics

?Et

? 0t

7.0 Introduction

electrostatic static

0

1E

magnetostatic

0B J

conservation of charge

? B

E

00?

0

0 ?B Jt

0

=

0

0E

0B

0Jt

?Et

Page 3: Chapter 7 Electrodynamics

7.0 (2)

Maxwell’s equations:

0E

0B

BE

t

0 0 0B J Et

dJ displacement current

Page 4: Chapter 7 Electrodynamics

7.0 (3)

dE

Magnetic flux

Induced electric field (force)

)(tB

induce

EB

E

=

BE

t

E da B dat t

B da

Page 5: Chapter 7 Electrodynamics

7.0 (4)

E,B fields propagate in vacuum e.g. , BE

, ~ )( wtkxie

• E Bt

0 0B Et

aB

a aE induced by B

b aB induced by E

b bE induced by B

c bB induced by E

wave

Page 6: Chapter 7 Electrodynamics

7.0 (5)

A.C. current can generate electromagnetic waveantennacyclotron massfree electron laser …..

E Bt

0 0 0B J Et

0( , )J x x t

aB

aE

bB

bE

Page 7: Chapter 7 Electrodynamics

7.1 Electromotive Force

7.1.1 Ohm’s Law

7.1.2 Electromotive Force

7.1.3 Motional emf

Page 8: Chapter 7 Electrodynamics

7.1.1 Ohm’s Law

Current density conductivity force per unit charge of the medium

resistivity

0 for perfect conductors

for vk

usually true

but not in plasma; especially, hot.

Ohm’s Law

( a formula based on experience)

J f

1

for f E v B

( )J E v B

J E

Page 9: Chapter 7 Electrodynamics

7.1.1 (2)

Total current flowing from one electrode to the other

V=I R Ohm’s Law (based on experience)

Potential current resistance [ in ohm (Ω) ]

Note : for steady current and uniform conductivity

10E J

Page 10: Chapter 7 Electrodynamics

7.1.1 (3)

Ex. 7.1

sol:

LV

AEAJAI

parallelin

seriesin

AL

R

I=?R=?

uniform

uniform

V

1 2 1 2,L L R R R

211 2

1 1 1,A A

R R R

Page 11: Chapter 7 Electrodynamics

7.1.1 (4)

Ex. 7.3 Prove the field is uniform E

i.e.,

V=0 V=V0A=const =const

ˆ0 0 at the surfaces on the two endsJ J n

ˆ 0E n

0V

n

2 0 Laplace equationV

0( )V z

V zL

0 ˆV

E V zL

Page 12: Chapter 7 Electrodynamics

7.1.1 (5)

L2

)ab(ln

R

Ex. 7.2 V ?Is

2E s

s

: line charge density

0ln ( )

2

a

b

bV E d

a

E V

10

0 02 [ ln ]

bI J da E da L V L

a

2

ln ( )

LV

ba

Page 13: Chapter 7 Electrodynamics

7.1.1 (6)

The physics of Ohm’s Law and estimation of microscopic

the charge will be accelerated by before a collision

time interval of the acceleration is

E

a

2,

vmint mfp

thermal

mfp

mean free path

2

21

tamfp typical casefor very strong field and long mean free path

Page 14: Chapter 7 Electrodynamics

2 thermalave

nfq FJ n f q v

v m

7.1.1 (7)The net drift velocity caused by the directional acceleration is

molecule density e charge

free electrons per molecule

Eq

=

mass of the molecule

RIVIP 2Power is dissipated by collision

Joule heating law

1

2 2 thermalave

av at

v

2

2 thermal

nf qJ E

mv

Page 15: Chapter 7 Electrodynamics

b bab s sa aV E d f d f d

sf d f d

7.1.2 Electromotive Force

The current is the same all the way around the loop.

force electrostatic

electromotive force

0dE )0( E

outside the source

Produced by the charge accumulationdue to Iin > Iout

sourcef f E

E V

0f

sE f

Page 16: Chapter 7 Electrodynamics

7.1.3 motional emf

,,

mag vmag v

Ff vB

q

B

,mag vF qvB

, causesmag vf d vBh u

Page 17: Chapter 7 Electrodynamics

( ) ( )dx d d

vBh Bh Bhxdt dt dt

7.1.3 (2)

h

cossin

dd

=

sin)

cos)((

huBdf pull

cossin

uv

vBh

Work is done by the pull force, not . B

magnetic flux

pullf uB for equilibrium

Page 18: Chapter 7 Electrodynamics

7.1.3 (3)

magnetic flux

for the loop

flux rule for motional emf

B da Bhx

d dxBh vBh

dt dt

d

dt

Page 19: Chapter 7 Electrodynamics

( ) magw B d f d

7.1.3 (4)

a general proof

dtd

ribbon

( ) ( )d t dt t

ribbonB da

( )da v d dt

( ) ( )d

B v d B w ddt

magf

Page 20: Chapter 7 Electrodynamics

7.1.3 (5)

Ex. 7.4

=?

0

a

magf ds

0

awsB ds

2

2

wBa

2

R 2

wBaI

R

ˆ( )magf v B ws w B

ˆwsB s

Page 21: Chapter 7 Electrodynamics

7.2 Electromagnetic Induction

7.2.1 Faraday’s Law

7.2.2 The Induced Electric Field 7.2.3 Inductance

7.2.4 Energy in Magnetic Fields

Page 22: Chapter 7 Electrodynamics

7.2.1 Faraday’s Law M. Faraday’s experiments

Induce induce induce

Faraday’s Law (integral form)

Faraday’s Law (differential form)

loop moves B moves B Area ,

[ ]I v B

[ ]I E

[ ]I E

( )emfd

E d E dadt

d

B da B dadt t

BE

t

Page 23: Chapter 7 Electrodynamics

Lenz’s law : Nature abhors a change in flux ( the induced current will flow in such a direction that the flux it produces tends to cancel the change. )

7.2.1 (2)

A changing magnetic field induces an electric field.

(a) (b) & (c) induce that causesE

I

drive I

, notv B E

Page 24: Chapter 7 Electrodynamics

7.2.1 (3)

sol:ˆ MnMKb

MB

0

at center , spread out near the ends

2

0max aM

Ex. 7.5

Induced ? )(t

ˆz r

loop

Page 25: Chapter 7 Electrodynamics

7.2.1 (4) Ex. 7.6

Plug in, why ring jump?rI

Plug in, induces

B

B F

F

F

ring jump.

sI

I

B

induces rB I

v B

v B

Page 26: Chapter 7 Electrodynamics

7.2.2 The Induced Electric Field

0 encB d I

dtd

dE

BE

t

0B J

0 ( 0)E

0B

Page 27: Chapter 7 Electrodynamics

7.2.2 (2)

induced = ?E

sol:

dtBd

stBsdtd

dtd

dE

22 )]([ sE 2

=

2 dtBds

E

E

B

Ex. 7.7

Page 28: Chapter 7 Electrodynamics

7.2.2 (3)

dtdB

adtd

dE 2

0BB

The charge ring is at rest

0B

What happens?sol:

torque on d ˆ( ) ( )dN r F b d E z b Ed

2 2ˆ ˆ [ ]dB dB

N dN zb E d zb a b adt dt

the angular momentum on the wheel

zbBaBdabdtNB ˆ0

202

0

Ex. 7.8. z

Page 29: Chapter 7 Electrodynamics

7.2.2 (4)

sol:

Induced ?)( sE

quasistatic

z

B

( )I t

0 ˆ2

IB

s

Page 30: Chapter 7 Electrodynamics

7.2.2 (5)

=

Constant K( s , t )

0 '2 '

Id dE d B da ds

dt dt s

0( ) ( )E s E s

0

0 1'

2 '

s

s

dIds

dt s

00 (ln ln )

2

dIs s

dt

0 ˆ( ) [ ln ]2

dIE s s K z

dt

s << c = I / (dI/dt)

Page 31: Chapter 7 Electrodynamics

7.2.3 Inductance

121212 IMadB

21)( adA

mutual inductance

1 2A d

0 11 1 12

ˆ

4

d RB I I

R

0 1 124

I dd

R

0 1 11 4

I dA

R

Page 32: Chapter 7 Electrodynamics

7.2.3 (2)

Neumann formula

The mutual inductance is a purely geometrical quantity

0 1 221 4

d dM

R

M21 = M12 = M 1 = M12 I2

1 = 2 if I1 = I2

Page 33: Chapter 7 Electrodynamics

7.2.3 (3)

Ex. 7.10

sol:B1 is too complicated… 2 = ?

Instead, assume I running through solenoid 2

20 1 2M a n n

III 12

?

?2

M

n2 turns per unit length

n1 turns per unit length

2

1 I given

assume I too.

1 1 1, per turmn 21 2

20 1 2 2

20 1 2

2 2 1( )

n a B

a n n I

a n n I

I I I

2 0 2 2B n I

Page 34: Chapter 7 Electrodynamics

7.2.3 (4)

• )(1 tI

dtdI

Mdtd 12

2

changing current in loop1, induces current in loop21I

• self inductance

)(tI

self-inductance (or inductance )

[ unit: henries (H) ]A

VoltH

sec11

• back emf

L I

will reduce it.dI

L Idt

Page 35: Chapter 7 Electrodynamics

7.2.3 (5)

Ex. 7.11

sol: adBN

sNI

B

20

b

adss

hNI

N1

20

20 ln ( )2

N h bL

a

L(self-inductance)=?

b

a

N turns

20 ln ( )2

N Ih b

a

Page 36: Chapter 7 Electrodynamics

7.2.3 (6)

Ex. 7.12

sol:

IRdtdI

L 0

0( )Rt

LI t keR

particular solution

)1()1()( 00 tt

LR

eR

eR

tI

R0

( ) ?I t

0if (0) 0 ,I kR

time constantL

R

general solution

Page 37: Chapter 7 Electrodynamics

7.2.4 Energy in Magnetic Fields

From the work done, we find the energy

in , E

dEdVWe20

2)(

21

But, does no work.B

In back emf

In E.S.

test charge

q

21( )2B

d dI dW I L I LI

dt dt dt

21 1

2 2BW LI I 21

( )2kW mv

( )s s loopB da A da A d

1 1

( )2 2B loop loop

W I A d A I d

WB = ?

Page 38: Chapter 7 Electrodynamics

7.2.4 (2)In volume

1( )

2B VW A J d

dBAV )(

21

0

dBAdBVV )(

21

21

0

2

0

)()()( BAABBA

B

2B

s

adBA )(

s0

dBWspaceallB 2

021

dEdVWelec20

2)(

21

dBdJAWmag2

021

)(21

Page 39: Chapter 7 Electrodynamics

7.2.4 (3)

Ex. 7.13

sol:

bsasI

B ˆ2

0

< < 0B

20

0

1( ) (2 )

2 2B BI

W dW sdss

)length(

?BW

s as b

20 ln( )4

I b

a

21

2BW L I

0 ln ( )2

bL

a

20

4

b

a

I ds

s

Page 40: Chapter 7 Electrodynamics

7.3 Maxwell’s Equations

7.3.1 Electrodynamics before Maxwell 7.3.2 How to fix Ampere’s Law 7.3.3 Maxwell’s Equations

7.3.4 Magnetic Charge

7.3.5 Maxwell’s Equation in Matter

7.3.6 Boundary Conditions

Page 41: Chapter 7 Electrodynamics

7.3.1 Electrodynamics before Maxwell

0)()()(

B

ttB

E

but

?)()( 0 JB

=0

Ampere’s Law fails because 0 J

0E

0B

BE

t

0B J

(Gauss Law)

(no name)

(Faraday’s Law)

(Ampere’s Law)

Page 42: Chapter 7 Electrodynamics

7.3.1

an other way to see that Ampere’s Law fails for nonsteady current

encIdB 0

they are not the same.

loop 1

2

For loop 1, Ienc = 0For loop 2, Ienc = I

Page 43: Chapter 7 Electrodynamics

7.3.2 How to fix Ampere’s Law

)(][ 00 tE

Ett

J

continuity equations, charge conservation

such that, Ampere’s law shall be changed to

tE

JB

000

A changing electric field induces a magnetic field.

Jd displacement current

Page 44: Chapter 7 Electrodynamics

7.3.2

adtE

JadB

)( 000

adtE

IdB enc

000

=

for the problem in 7.3.1

between capacitorsAQ

E00

11

IAdt

dQAt

E

00

11

IIdBloop 0

01 00

10

IIdBloop 02 0 0

loop 1

2

Page 45: Chapter 7 Electrodynamics

7.3.3 Maxwell’s equations

0 B

Et

JB

000

tB

E

0 E

Gauss’s law

Faraday’s law

Ampere’s law with Maxwell’s correction

Force law

continuity equationt

J

( the continuity equation can be obtained from Maxwell’s equation )

( )F q E v B

Page 46: Chapter 7 Electrodynamics

7.3.3

0 B

JEt

B

000

0tB

E

0 E

Since , produce , J

E

B

),( trJ

E

B

Page 47: Chapter 7 Electrodynamics

7.3.4 Magnetic Charge

Maxwell equations in free space ( i.e., , )0e 0eJ

symmetric

BE

EB

00

With and , the symmetry is broken.If there were ,and .

e eJ

m mJ

mB 0

tB

JE m

0

tE

JB e

000 symmetric

tJ ee

t

J mm

and

So far, there is no experimental evidence of magnetic monopole.

0E

0B

Et

0B

0 0B Et

0

eE

Page 48: Chapter 7 Electrodynamics

7.3.5 Maxwell’s Equation in Matter

bound charge bound current

Pb MJb

0 no correspondingbJ

tP

tb

polarization currentPJ

0

Pb Jt

da

tda

tdI b )(

daJadtP

P

Pb

Q

surface charge

Page 49: Chapter 7 Electrodynamics

7.3.5 (2)

Pfbf

Pt

MJJJJJ fPbf

0

1Gauss's law ( )fE P

fDor

PED

0

Et

Pt

MJB f

000 )(

Ampere’s law ( with Maxwell’s term )

)()( 0000 PEt

JMB f

Dt

JH f

MBH

0

1

Page 50: Chapter 7 Electrodynamics

7.3.5 (3)

In terms of free charges and currents, Maxwell’s equationsbecome

fD

Dt

JH f

0 B

tB

E

displacement current, and , are mixed.D H E B

one needs constitutive relations: ( , ) and ( , )D E B H E B

Page 51: Chapter 7 Electrodynamics

for linear dielectric.

7.3.5 (4)

orExP e

0

ED

HxM m

BH

1

)1(0 ex

)1(0 mx

0 B

fE

tB

E

tE

JB f

Page 52: Chapter 7 Electrodynamics

7.3.6 Boundary Condition

Maxwell’s equations in integral form

Over any closed surface S

for any surface bounded by the S closed loop L

L s

dE d B da

dt

,f encsD da Q

0

sB da

fencL s

dH d I D da

dt

1 1,D B

2 2,D B

Page 53: Chapter 7 Electrodynamics

7.3.6

aaDaD f 21

0S 021 adB

dtd

EE

fDD 21

021 BB

021 EE

= =

)nK()n(KHH ff

21

nKHH f ˆ21 = =

nKBB f ˆ11

22

11

= =

fEE 2211