chapter 7 referencesshodhganga.inflibnet.ac.in/.../14/14_references.pdf · gold nanotriangles...

32
172 CHAPTER 7 REFERENCES Adlim, M., Abu Bakar, M., Liew, K. W. and Ismail, J. 2004. Synthesis of chitosan- stabilized platinum and palladium nanoparticles and their hydrogenation activity. J. Mol. Catal. A: Chem. 212:141–149. Agnihotri, M., Joshi, S., Kumar, A. R., Zinjarde, S. and Kulkarni, S. 2009. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mat. Lett. 63:1231–1234. Ahmad, A., Senapati, S., Khan, M. I., Kumar, R. and Sastry, M. 2003a. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553. Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., Ramani, R., Srinivas, V. and Sastry, M. 2003b. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnol. 14a:824–828. Ahmad, A., Senapati, S., Khan, M. I., Kumar, R. and Sastry, M. 2005. Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J. Biomed. Nanotechnol. 1:47–53. Ahmad, A., Mukherjee, P., Senapathi, S., Mandal, D., Khan, M. I., Kumar, R. and Sastry, M. 2003c. Extracellular biosynthesis of silver nanoparticles using the fungus, Fusarium oxysporum. Coll. Surf. B: Biointerf. 28:313–318. Albrecht, M. and Hodges, G. eds. 1988. Biotechnology and Bioapplications in Colloidal Gold, Scanning Microscopy International, Chicago, IL.

Upload: others

Post on 07-Jul-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

172

CHAPTER 7

REFERENCES

Adlim, M., Abu Bakar, M., Liew, K. W. and Ismail, J. 2004. Synthesis of chitosan-

stabilized platinum and palladium nanoparticles and their hydrogenation activity. J. Mol.

Catal. A: Chem. 212:141–149.

Agnihotri, M., Joshi, S., Kumar, A. R., Zinjarde, S. and Kulkarni, S. 2009. Biosynthesis of

gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mat.

Lett. 63:1231–1234.

Ahmad, A., Senapati, S., Khan, M. I., Kumar, R. and Sastry, M. 2003a. Extracellular

biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete,

Thermomonospora sp. Langmuir 19:3550–3553.

Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., Ramani, R., Srinivas, V. and Sastry, M.

2003b. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant

actinomycete, Rhodococcus species. Nanotechnol. 14a:824–828.

Ahmad, A., Senapati, S., Khan, M. I., Kumar, R. and Sastry, M. 2005. Extra-/intracellular

biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J.

Biomed. Nanotechnol. 1:47–53.

Ahmad, A., Mukherjee, P., Senapathi, S., Mandal, D., Khan, M. I., Kumar, R. and

Sastry, M. 2003c. Extracellular biosynthesis of silver nanoparticles using the fungus,

Fusarium oxysporum. Coll. Surf. B: Biointerf. 28:313–318.

Albrecht, M. and Hodges, G. eds. 1988. Biotechnology and Bioapplications in Colloidal

Gold, Scanning Microscopy International, Chicago, IL.

Page 2: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

173

Alexander, M. 1994. Effect of chemical structure on biodegradation. In: Biodegradation and

Bioremediation, Academic Press, San Diego, CA, p. 159.

Anastas, P. T. and Warner, J. C. 1998. Green Chemistry: Theory and practice, Oxford

University Press, New York, p. 30.

Andreeva, D. 2002. Low temperature water gas shift over gold catalysts, Gold Bull. 35:82–

88.

Ankamwar, B., Chaudhary, M. and Sastry, M. 2005b. Gold nanotriangles biologically

synthesized using tamarind leaf extract and potential application in vapor sensing. Synth.

React Inorg. Metal-Org. Nanometal. Chem. 35:19–26.

Ankamwar, B., Chinmay, D., Absar, A. and Murali, S. 2005a. Biosynthesis of gold and

silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and

transmetallation in an organic solution. J. Nanosci. Nanotechnol. 5:1665–1671.

Anshup, Venkataraman, J. S., Subramaniam, C., Kumar, R. R., Priya, S., Kumar, T. R.

S., Omkumar, R. V., John, A. and Pradeep, T. 2005. Growth of gold nanoparticles in

human cells. Langmuir 21:11562–11567.

Armendariz, V., Jose-Yacaman, M., Moller, A. D., Peralta-Videa, J. R., Troiani, H.,

Herrera, I. and Gardea-Torresdey, J. L. 2004. HRTEM characterization of gold

nanoparticles produced by wheat biomass. Revista Mexicana De Fisica 50 Supplemento

1:7–11.

Ascencio, J. A., Mejia, Y., Liu, H. B., Angeles, C. and Canizal, G. 2003. Bioreduction

synthesis of Eu-Au nanoparticles. Langmuir 19:5882–5886.

Page 3: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

174

Astruc, D. Lu, F. and Aranzaes, J. R. 2005. Nanoparticles as recyclable catalysts: the frontier

between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 44:7852–

7872.

Atlas, R. M. 1993. Alphabetical listing of media. In L. C. Parks (ed.), Handbook of

Microbiological Media. CRC Press, Boca Raton, Florida, USA. P. 10–59.

Awadalla, F. T. and Pesic, B. 1992. Biosorption of cobalt with the AMT metal removing

agent. Hydrometallurgy 28:65–80.

Bakar, N. H. H. A., Ismail, J. and Bakar, M. A. 2007. Synthesis and characterization of

silver nanoparticles in natural rubber. Mater. Chem. Phys. 104:276–283.

Balaji, D. S., Basavaraja, S., Deshpande, R., Mahesh, B. D., Prabhakar, B. K. and

Venkataraman, A. 2009. Extracellular biosynthesis of functionalized silver

nanoparticles by strains of Cladosporium cladosporioides fungus. Coll. Surf. B:

Biointerf. 68:88–92.

Bansal, V., Poddar, P., Ahmad, A. and Sastry, M. 2006. Room-temperature biosynthesis of

ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc. 128:11958–11963.

Bansal, V., Rautaray, D., Ahmad, A. and Sastry, M., 2004. Biosynthesis of zirconia

nanoparticles using the fungus Fusarium oxysporum. J. Mater. Chem. 14:3303–3305.

Bansal, V., Rautaray, D., Bharde, A., Ahire, K., Sanyal, A., Ahmad, A. and Sastry, M.

2005. Fungus-mediated biosynthesis of silica and titania particles. J. Mater. Chem.

15:2583–2589.

Bao, C., Jin, M., Lu, R., Zhang, T. and Zhao, Y. Y. 2003. Preparation of Au nanoparticles in

the presence of low generational poly(amidoamine) dendrimer with surface hydroxyl

groups. Mat. Chem. Phys. 81:160–165.

Page 4: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

175

Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., De, S. P. and Misra, A. 2009a. Green

synthesis of silver nanoparticles using latex of Jatropha curcas. Coll. Surf. A:

Physicochem. Eng. Aspects 339:134–139.

Bar, H., Bhui, D. Kr., Sahoo, G. P., Sarkar, P., Pyne, S. and Misra, A. 2009b. Green

synthesis of silver nanoparticles using seed extract of Jatropha curcas. Coll. Surf. A:

Physicochem. Eng. Aspects 348:212–216.

Barik, S., Siddaramappa, R. and Sethunathan, N. 1976. Metabolism of nitrophenols by

bacteria isolated from parathion-amended flooded soil. Antonie Van Leeuwenhoek

42:461–470.

Bartz, M., Kuther, J., Seshadri, R. and Tremel, W. 1998. Colloid-bound catalysts for ring-

opening metathesis polymerization: A combination of homogeneous and heterogeneous

properties. Angew. Chem. Int. Ed. Engl. 37:2466–2468.

Barud, H. S., Barrios, C., Regiani, T., Marques, R. F. C., Verelst, M., Dexpert-Ghys. J.,

Messaddeq, Y. and Ribeiro, J. L. 2008. Self-supported silver nanoparticles containing

bacterial cellulose membranes. Mat. Sci. Eng. C 28:515–518.

Basavaraja, S., Balaji, S. D., Lagashetty, A., Rajasab, A. H. and Venkataraman, A. 2008.

Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum.

Mat. Res. Bull. 43:1164–1170.

Beveridge, T. J. and Murray, R. G. E. 1980. Sites of metal deposition in the cell wall of

Bacillus subtilis. J. Bacteriol. 141:876-887.

Beveridge, T. J., Hughes, M. N., Lee, H., Leung, K. T., Poole, R. K., Savvaidis, I., Silver,

S. and Trevors, J. T. 1997. Metal-microbe interactions: contemporary approaches. Adv.

Microb. Physiol. 38:177–243.

Page 5: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

176

Bhainsa, K. C. and D’Souza, S. F. 2006. Extracellular biosynthesis of silver nanoparticles

using the fungus Aspergillus fumigates. Coll. Surf. B: Interf. 47:160–164.

Bharde, A., Rautaray, D., Bansal, V. and Ahmad, A. 2006. Extracellular biosynthesis of

magnetite using fungi. Small 1:135–141.

Bhatte, K. D., Tambade, P. J., Dhake, K. P. and Bhanage, B. M. 2010. Silver nanoparticles

as an efficient, heterogeneous and recyclable catalyst for synthesis of β-enaminones.

Catal. Commun. 11:1233–1237.

Birla, S. S., Tiwari, V. V., Gade, A. K., Ingle, A. P., Yadav, A. P. and Rai, M. K. 2009.

Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against

Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett. Appl.

Microbiol. 48:173–179.

Bo, L. L., Zhang, Y. B., Quan, X. and Zhao, B. 2008. Microwave assisted catalytic oxidation

of p-nitrophenol in aqueous solution using carbon-supported copper catalyst. J. Hazard.

Mater. 153:1201–1206.

Bohren, C. F. and Huffman, D. R. 1983. Absorption and scattering of light by small

particles, New York, Wiley.

Borchert, H., Shevchenko, E.V. Robert, A., Mekis, I., Kornowski, A., Grubel, G. and

Weller, H. 2005. Determination of nanocrystal sizes: A comparison of TEM, SAXS, and

XRD studies of highly monodisperse CoPt3 particles. Langmuir 21:1931–1936.

Bruins, R. M., Kapil, S. and Oehme, S. W. 2000. Microbial resistance to metals in the

environment. Ecotoxicol. Environ. Saf. 45:198–207.

Burda, C., Chen, X., Narayanan, R. and El-Sayed, M. A. 2005. Chemistry and properties of

nanocrystals of different shapes. Chem. Rev. 105:1025–1102.

Page 6: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

177

Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A. and Sastry, M. 2006. Synthesis

of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol.

Prog. 22:577–583.

Chien, S. W. C., Wang, M. C., Huang, C. C. and Seshaiah, K. 2007. Characterization of

humic substances derived from swine manure-based compost and correlation of their

characteristics with reactivities with heavy metals. J. Agric. Food Chem. 55:4820–4827.

Chen, J. C., Lin, Z. H. and Ma, X. X. 2003. Evidence of the production of silver

nanoparticles via pretreatment of Phoma sp. 32883 with silver nitrate. Lett. Appl.

Microbiol. 37:105–108.

Chen, S. C., Wu, Y. C., Mi, F. L., Lin, Y. H., Yu, L. C. and Sung, H. W. 2004. A novel pH-

sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate crosslinked by

genipin for proten drug delivery. J. Cont. Rel. 96:285–300.

Corma, A. and Serna, P. 2006. Chemoselective hydrogenation of nitro compounds with

supported gold catalysts. Science 313:332–334.

Creighton, J.A. and Eadon, D.G. 1991. Ultraviolet-visible absorption spectra of the colloidal

metallic elements. J. Chem. Soc. Faraday Trans. 87:3881–3891.

Cui, H., Zhang, Z. F., Shi, M. J., Xu, Y. and Wu, Y. L. 2005. Light emission of gold

nanoparticles induced the reaction of bis(2,4,6-trichlorophenyl) oxalate and hydrogen

peroxide. Anal. Chem. 77:6402–6406.

Daniel, M. C. and Astruc, D. 2004. Gold nanoparticles: Assembly, supramolecular chemistry,

Quantum-size-related properties, and applications towards biology, catalysis and

nanotechnology. Chem. Rev. 104: 293–346.

Page 7: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

178

De Brabander, M., Geerts, H., Nuyens, R., Nuydens, R. and Cornelissen, F. 1993. Nanovid

microscopy: imaging and quantification of colloidal gold labels in living cells, in

Electronic Light Microscopy: Techniques in Modern Biomedical Microscopy (Shotton,

D., ed.), Wiley-Liss, New York, pp.141–155.

Dickson, D. P. E. 1999. Nanostructured magnetism in living systems – Condens. Matter. J.

Magn. Magn. Mater. 203: 46–49.

Du, L., Jiang, H., Xiaohua, L. and Wang, E. 2007. Biosynthesis of gold nanoparticles

assisted by Escherichia coli DH5α and its application on direct electrochemistry of

hemoglobin. Electrochem. Commun. 9:1165–1170.

Dubey, S. P., Lahtinen, M. and Sillanpaa, M. 2010. Tansy fruit mediated greener synthesis

of silver and gold nanoparticles. Proc. Biochem. 45:1065–1071.

Duran, N., Marcato, P. D., Alves, O. L., De Souza, G. I. H. and Esposito, E. 2005.

Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium

oxysporum strains. J. Nanobiotechnol. 3:8.

Einschlag, F. S. G., Felice, J. I. and Triszcz, J. M. 2009. Kinetics of nitrobenzene and 4-

nitrophenol degradation by UV irradiation in the presence of nitrate and nitrite ions.

Photochem. Photobiol. Sci. 8:953–960.

Elechiguerra, J. L., Burt, J. L., Morones, J. R., Bragad, A. C., Gao, X., Lara, H. H. and

Yacaman, M. J. 2005. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol.

3:6.

Esumi, K., Isono, R. and Yoshimura, T. 2004. Preparation of PAMAM- and PPI-metal

(silver platinum and palladium) nanocomposites and their catalytic activities for

reduction of 4-nitrophenol, Langmuir 20:237–243.

Page 8: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

179

Fayaz, M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T. and Venketesan, R.

2010. Biogenic synthesis of silver nanoparticles and its synergetic effect with antibiotics:

a study against Gram positive and Gram negative bacteria. Nanomedicine 6:103–109.

Fendler, J. H. 1998. (Editors), Nanoparticles and Nanostructured films: Preparation,

characterization and applications, John Wiley & Son

Feng, Y., Yu, Y., Wang, Y. and Lin, X. 2007. Biosorption and bioreduction of trivalent

aurum by photosynthetic bacteria Rhodobacter capsulatus. Curr. Microbiol. 55:402–408.

Fu, J. K., Liu, Y. Y., Gu, P. Y., Tang, D., Lin, Z., Yao, B. and Weng, B. 2000.

Spectroscopic characterization on the biosorption and bioreduction of Ag(I) by

Lactobacillus sp. A09. Acta Phys. Chim. Sin. 16:779–782.

Gade, A. K., Bonde, P. P., Ingle, A. P., Marcato, P., Duran, N. and Rai, M. K. 2008.

Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J. Biobased Mater.

Bioenergy 2:1–5.

Gardea-Torresdey, J. L., Tiemann, K. J., Gamez, G., Dokken, K., Tehuacanero, S. and

Jose-Yacaman, M. 1999. Gold nanoparticles obtained by bio-precipitation from

gold(III) solutions. J. Nanopart. Res. 1:397–404.

Gardea-Torresdey, J. L., Parsons, J. G., Gornez, E., Peralta-Videa, J., Troiani, H. E.,

Santiago, P. and Jose-Yacaman, M. 2002. Formation and growth of Au nanoparticles

inside live alfalfa plants. Nano Lett. 2:397–401.

Gardea-Torresdey, J., Gornez, E., Peralta-Videa, J. R., Parsons, J. G., Troiani, H. and

Jose-Yacaman, M. 2003. Alfalfa sprouts: A natural source for the synthesis of silver

nanoparticles. Langmuir 19:1357–1361.

Page 9: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

180

Gericke, M. and Pinches, A. 2006a. Biological synthesis of metal nanoparticles.

Hydrometallurgy 83:132–140.

Gericke, M. and Pinches, A. 2006b. Microbial production of gold nanoparticles. Gold Bull.

39:22–28.

Ghosh, S.K. Mandal, M. Kundu, S. Nath, S. and Pal, T. 2004. Bimetallic Pt-Ni

nanoparticles can catalyze reduction of aromatic nitro compounds by sodium

borohydride in aqueous solution. Appl. Catal. A 268:61–66.

Gole, A., Dash, C., Soman, C., Sainkar, S. R., Rao, M. and Sastry, M. 2001. On the

preparation, characterization, and enzymatic activity of fungal protease-gold colloid

bioconjugates. Bioconj. Chem. 12:684–690.

Gorontzy, T., Kuver, J. and Blotevogel, K. H. 1993. Microbial transformation of

nitroaromatic compounds under anaerobic conditions. J. Gen. Microbiol. 139:1331–1336.

Grisel, R., Weststrate, K. J., Gluhoi, A. and Nieuwenhuys, B. E. 2002. Catalysis by gold

nanoparticles. Gold Bull. 35:39–45.

Gupta, A. and Silver, S. 1998. Molecular genetics: Silver as a biocide: Will resistance

become a problem? Nat. Biotechnol. 16:888.

Hallas, L. E. and Alexande, M. 1983. Microbial transformation of nitroaromatic compounds

in sewage effluent. Appl. Environ. Microbiol. 45:1234–1241.

Haratifar, E. A. D., Shahverdi, H. R., Shakibaie, M., Moghaddam, K. M., Amini, M.,

Montazeri, H. and Shahverdi, A. R. 2009. Semi-biosynthesis of magnetite-gold

composite nanoparticles using an ethanol extract of Eucalyptus camaldulensis and study

of the surface chemistry. J. Nanomat. 962021.

Page 10: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

181

Haruta, M. 1997. Size- and support-dependency in the catalysis of gold. Catal. Today

36:153–166.

Haverkamp, R. G., Marshall, A. T. and van Agterveld, D. 2007. Pick your carats:

nanoparticles of gold-silver-copper alloy produced in vivo. J. Nanopart. Res. 9:697–700.

He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J. and Gu, N. 2007. Biosynthesis of gold

nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater. Lett. 61:3984–

3987.

He, S., Zhang, Y., Guo, Z. and Gu, N. 2008. Biological synthesis of gold nanowires using

extract of Rhodopseudomonas capsulata. Biotechnol. Prog. 24:476–480.

Herrera, I., Gardea-Torresdey, J. L., Tiemann, K. J., Peralta-Videa, J. R., Armendariz,

V. and Parsons, J. G. 2003. Binding of silver(I) ions by alfalfa biomass (Medicago

sativa): Batch pH, time, temperature, and ionic strength studies. J. Haz. Substance Res.

4:1–16.

Hirsch, L. R., Jackson, J. B., Lee, A., Halas, N. J. and West, J. L. 2003. A whole blood

immunoassay using gold nanoshells. Anal. Chem. 75:2377–2381.

Hosea, M., Greene, B., Mcpherson, R., Henzl, M., Alexander, M. D. and Darnall, D. W.

1986. Accumulation of elemental gold on the alga Chlorella vulgaris. Inorganics

Chimica Acta. 123:161–165.

Hua, I., Hochemer, R. H. and Hoffmann, R. 1995. Sonochemical degradation of p-

nitrophenol in a parallel-plate near-field acoustical processor. Environ. Sci. Technol.

29:2790–2796.

Page 11: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

182

Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N.,

Hong, J. and Chen, C. 2007. Biosynthesis of silver and gold nanoparticles by novel

sundried Cinnamomum camphora leaf. Nanotechnol. 18:105104–105114.

Huang, J., Lin, L., Li, Q., Sun, D., Wang, Y., Lu, Y., He, N., Yang, K., Yang, X., Wang,

H., Wang, W. and Lin, W. 2008. Continuous-flow biosynthesis of silver nanoparticles

by Lixivium of sundried Cinnamomum camphora leaf in tubular microreactors. Ind. Eng.

Chem. Res. 47:6081–6090.

Huang, Q., Wang, L. and Han, S. 1995. The geno-toxicity of substituted nitrobenzenes and

the quantitative structure-activity relationship studies. Chemosphere 30:915–923.

Husseiny, M. I., Abd El-Aziz, M., Badr, Y. and Mahmoud, M. A. 2007. Biosynthesis of

gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta A 67:1003–1006.

Hutchings, G. J. and Haruta, M. 2005. A golden age of catalysis: A perspective. Appl. Catal.

A 291:2–5.

Inbakandan, D., Venkatesan, R. and Ajmal, S. 2010. Biosynthesis of gold nanoparticles

utilizing marine sponge Acanthella elongata (Dendy, 1905). Coll. Surf. B: Biointerf.

81:634–639.

Ingle, A., Gade, A., Pierrat, S., Sonnichsen, C. and Rai, M. 2008. Mycosynthesis of silver

nanoparticles using the fungus Fusarium acuminatum and its activity against some

human pathogenic bacteria. Curr. Nanosci. 4:141–144.

Ingle, A., Rai, M., Gade, A. and Bawaskar, M. 2009. Fusarium solani: a novel biological

agent for the extracellular synthesis of silver nanoparticles. J. Nanopart. Res. 11:2079–

2085.

Page 12: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

183

Jana, N. R. and Pal, T. 1999. Redox catalytic property of still-growing and final palladium

particles: a comparative study. Langmuir 15:3458–3463.

Jana, S., Ghosh, S. K., Nath, S., Pande, S., Praharaj, S., Panigrahi, S., Basu, S., Endo, T.

and Pal, T. 2006. Synthesis of silver nanoshell-coated cationic polystyrene beads: a solid

phase catalyst for the reduction of 4-nitrophenol. Appl. Catal. A 313:41–48.

Jha, A. K., Prasad, K., Prasad, K. and Kulkarni, A. R. 2009. Plant system: Nature’s

nanofactory. Coll. Surf. B: Biointerf. 73:219–223.

Jiang, Z. J., Liu, C. Y. and Sun, L. W. 2005. Catalytic properties of silver nanoparticles

supported on silica spheres J. Phys. Chem. B 109:1730–1735.

Jiangmei, Y., Huiwang, T., Muling, Z., Jun, T., Shihong, Z., Zhiying, Y., Wei, W. and

Jianqiang, W. 2009. PVP-capped silver nanoparticles as catalyst for oxidative coupling

of thiols to disulfides. Chin. J. Catal. 30:856–858.

Joerger, R., Klaus, T. and Granqvist, C. G. 2000. Biologically produced silver-carbon

composite materials for optically functional thin film coatings. Adv. Mater. 12:407–409.

Kalishwaralal, K., Deepak, V., Ramakumarpandian, S., Nellaiah, H. and Sangiliyandi, G.

2008. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of

Bacillus licheniformis. Mat. Lett. 62:4411–4413.

Kannan, P. and John, S.A. 2008. Synthesis of mercaptothiadiazole-functionalized gold

nanoparticles and their self-assembly on Au substrates. Nanotechnol. 19:085602.

Kashefi, K., Tor, J. M., Nevin, K. P. and Lovley, D. R. 2001. Reductive precipitation of gold

by dissimilatory Fe(III)-reducing bacteria and archea. Appl. Environ. Microbiol.

67:3275–3279.

Page 13: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

184

Kasthuri, J., Veerapandian, S. and Rajendiran, N. 2009a. Biological synthesis of silver and

gold nanoparticles using apiin as reducing agent. Coll. Surf. B Biointerf. 68:55–60.

Kasthuri, J., Kathiravan, K. and Rajendiran, N. 2009b. Phyllanthin-assisted biosynthesis of

silver and gold nanoparticles: a novel biological approach. J. Nanopart. Res. 11:1075–

1085.

Kathiresan, K., Manivanan, S., Nabeel, M. A. and Dhivya, B. 2009. Studies on silver

nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from

coastal mangrove sediment. Coll. Surf. B: Biointerf. 71:133–137.

Ken-Ichi, S., Yuji, M. and Ats ushi, S. 2010. Silica-supported silver nanoparticles with

surface oxygen species as a reusable catalyst for alkylation of arenes. ChemCatChem

2:84–91.

Kerker, M. 1969. The Scattering of Light and Other Electromagnetic Radiation, Chapters 3

and 4, Academic Press, New York.

Khanna, P. K., Singh, N., Charan, S., Subbarao, V. V. V. S., Gokhale, R. and Mulik, U. P.

2005. Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction

method. Mater. Chem. Phys. 93:117–121.

Klaus, T., Joerger, R., Olsson, E. and Granqvist, C. G. 1999. Silver based crystalline

nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. U.S.A. 96:13611–13614.

Klaus-Joerger, T., Joerger, R., Olsson, E. and Granqvist, C. G. 2001. Bacteria as workers

in the living factory: metal-accumulating bacteria and their potential for materials

science. Trends Biotechnol. 19:15–20.

Page 14: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

185

Konishi, Y., Tsukiyama, T., Tachimi, T., Saitoh, N., Nomura, T. and Nagamine, S. 2007a.

Microbial deposition of gold nanoparticles by metal-reducing bacterium Shewanella

algae. Electrochim. Acta 53:186–192.

Kotelnikova, N. E., Wegener, G., Stoll, M. and Demidov, V. N. 2003. Comparitive study of

intercalation of zero-valent silver into cellulose matrix by Raster and transmission

microscopy. Russ. J. appl. Chem. 76:117–123.

Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S. K. and

Paknikar, K. M. 2003. Extracellular synthesis of silver nanoparticles by a silver-tolerant

yeast strain MKY3. Nanotechnol. 14:95–100.

Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. T. and

Mohan, N. 2010. Synthesis of silver nanoparticles using Acalypha indica leaf extracts

and its antibacterial activity against water borne pathogens. Coll. Surf. B: Biointerf.

76:50–56.

Krpetic, Z., Scari, G., Caneva, E., Speranza, G. and Porta, F. 2009. Gold nanoparticles

prepared using cape aloe active components. Langmuir 25:7217–7221.

Kumar, A. S., Abyaneh, M. K., Gosavi, S. W., Kulkarni, S. K., Pasricha, R., Ahmad, A.

and Khan, M. I. 2007a. Nitrate reductase-mediated synthesis of silver nanoparticles

from AgNO3. Biotechnol. Lett. 29:439–445.

Kumar, S. A., Abyaneh, M. K., Gosavi, S. W., Kulkarni, S. K., Ahmad, A. and Khan, M.

I. 2007b. Sulfite reductase-mediated synthesis of gold nanoparticles capped with

phytochelatin. Biotechnol. Appl. Biochem. 47:191–195.

Page 15: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

186

Kuosa, M., Laari, A., Solonen, A., Haario, H. and Kallas, J. 2007. Estimation of

multicomponent reaction kinetics of p-nitrophenol ozonation in a bubble column. Ind.

Eng. Chem. Res. 46:6235–6243.

Lamb, A. E., Anderson, C. W. N. and Haverkamp, R.G. 2001. The induced accumulation of

gold in the plants Brassica juncea, Berkheya coddii and chicory. Chem. New Zealand

65:34–36.

Laursen, A., Hojholt, K., Lundegaard, L., Simonsen, S., Helveg, S., Schuth, F., Paul, M.,

Grunwaldt, J. D., Kegnaes, S., Christensen, C. and Egeblad, K. 2010. Substrate size-

selective catalysis with zeolite-encapsulated gold nanoparticles. Angew. Chem. Int. Ed.

49:3504– 3507.

Lee, K. Y., Lee, Y. W., Kwon, K., Heo, J., Kim, J. and Han, S. W. 2008. One step

fabrication of gold nanoparticles-silica composites with enhanced catalytic activity,

Chem. Phy. Lett. 453:77–81.

Lee, T. M. H., Li, L. L. and Hsing, I. M. 2003. Enhanced electrochemical detection of DNA

hybridization based on electrode-surface modification. Langmuir 19:4338–4343.

Leela, A. and Vivekanandan, M. 2008. Tapping the unexploited plant resources for the

synthesis of silver nanoparticles. Afr. J. Biotechnol. 7:3162–3165.

Lengke, M. and Southam, G. 2006. Bioaccumulation of gold by sulfate-reducing bacteria

cultured in the presence of gold(I)-thiosulfate complex. Geochim. Cosmochim. Acta

70:3646-3661.

Lengke, M., Fleet, M. E. and Southam, G. 2006a. Morphology of gold nanoparticles

synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride

complexes. Langmuir 22:2780–2787.

Page 16: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

187

Lengke, M., Ravel, B., Fleet, M. E., Wanger, G., Gordon, R. A. and Southam, G. 2006b.

Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-

chloride complex. Environ. Sci. Technol. 40:6304–6309.

Leung, K. T., Tresse, O., Errampallu, D., Lee, H. and Trevors, J. T. 1997. Mineralization

of p-nitrophenol by pentachlorophenol-degrading Sphingomonas sp., FEMS Microbiol.

Lett. 155:107–114.

Li, H., Luk, Y. Y. and Mrksich, M. 1999. Catalytic asymmetric dihydroxylation by gold

colloids functionalized with self-assembled monolayers. Langmuir 15:4957–4959.

Li, P., Dai, Y. N., Zhang, J. P., Wang, A. Q. and Wei, Q. 2008. Chitosan-alginate

nanoparticles as a novel drug delivery system for Nifedipine. Int. J. Biomed. Sci. 4:221–

228.

Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L. and Zhang, Q. 2007. Green synthesis of

silver nanoparticles using Capsicum annuum L. extract. Green Chem. 9:852–858.

Li, X. Z., Nikaido, H. and Williams, K. E. 1997. Silver-resistant mutants of Escherichia coli

display active efflux of Ag+ and are deficient in porins. J. Bacteriol. 179:6127–6132.

Lin, Z., Wu, J., Xue, R. and Yang, Y. 2005. Spectroscopic characterization of Au3+

biosorption by waste biomass of Saccharomyces cerevisiae. Spectrochim. Acta A

61:761–765.

Liu, J., Qin, G., Raveendran, P. and Ikushima, Y. 2006. A facile and green synthesis,

characterization and catalytic function of β-D-glucose stabilized Au nanocrystals. Chem.

Eur. J. 12 :2131–2138.

Page 17: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

188

Lopez, M. L., Gardea-Torresdey, J. L., Peralta-videa, J. R., de la Rosa, G., Armendariz,

V., Herrera, I., Troiani, H. and Henning, J. 2005. Gold binding by native and

chemically modified Hops biomasses. Bioinorg. Chem. Appl. 3:29–41.

Lovley, D. R., Stolz, J. F., Nord, G. L. and Phillips, E. J. P. 1987. Anerobic production of

magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254.

Lu, H. W., Liu, S. H., Wang, X. L., Qian, X. F., Yin, J. and Zhu, Z. K. 2003. Silver

nanocrystals by hyperbranched polyurethane-assisted photochemical reduction of Ag+.

Mater. Chem. Phys. 81:104–107.

Malik, A. 2004. Metal bioremediation through growing cells. Environ. Inter. 30:261–278.

Manea, F., Houillon, F. B., Pasquato, L. and Scrimin, P. 2004. Nanozymes: gold-

nanoparticle-based transphosphorylation catalysts.Angew. Chem. Int. Ed. 43:6165–6169.

Mann, S. 1992. Bacteria and midas touch. Nature 357:358–360.

Marshall, A. T., Haverkamp, R. G., Davies, C. E., Parsons, J. G., Gardea-Torresdey, J. L.

and Agterveld, D. V. 2007. Accumulation of gold nanoparticles in Brassica juncea. Int.

J. Phytoremed. 9:197–206.

Massey, I. J., Aitken, M. D., Ball, L. M. and Heck, P. E. 1994. Mutagenicity screening of

reaction products from the enzyme-catalyzed oxidation of phenolic pollutants. Environ.

Toxicol. Chem. 13:1743–1752.

Mata, Y. N., Blazquez, M. L., Ballester, A., Gonzalez, F. and Munoz, J. A. 2008.

Characterization of the biosorption of cadmium, lead and copper with the brown alga

Fucus vesiculosus. J. Haz. Mater. 158:316–323.

Page 18: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

189

Mata, Y. N., Torres, E., Blazquez, M. L., Ballester, A., Gonzalez, F. and Munoz, J. A.

2009. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J.

Hazard. Mater. 166:612–618.

Milligan, A. J. and Morel, F. M. M. 2002. A proton buffering role for silica in diatoms.

Science 297:1848–1850.

Mitsudome, T., Mikami, Y., Funai, H., Mizugaki, T., Jitsukawa, K. and Kaneda, K. 2007.

Oxidant-free alcohol dehydrogenation using a reusable hydrotalcite-supported silver

nanoparticle catalyst. Angew. Chem. Int. Ed. 47:138–141.

Mitsudome, T., Mikami, Y., Mori, H., Arita, S., Mizugaki, T., Jitsukawa, K. and Kaneda,

K. 2009. Supported silver nanoparticle catalyst for selective hydration of nitriles to

amides in water. Chem. Commun. 22:3258–3260.

Mohammadian, A., Shojaosadati, S. A. and Rezaee, M. H. 2007. Fusarium oxysporum

mediates photogeneration of silver nanoparticles. Scientia Iranica 14:323–326.

Mohanpuria, P., Rana, N. K. and Yadav, S. K. 2008. Biosynthesis of nanoparticles:

technological concepts and future applications. J. Nanopart. Res. 10:507–517.

Moreno-Manas, M. and Pleixats, R. 2003. Formation of carbon–carbon bonds under

catalysis by transition-metal nanoparticles. Acc. Chem. Res. 36:638–643.

Mostafavi, J. L., Marignier, J. A. and Belloni, J. 1989. Nucleation dynamics of silver

aggregates simulation of photographic development processes. Radiat. Phys. Chem.

34:605–617.

Mouxing, F. U., Qingbiao, L. I., Daohua, S. U. N., Yinghua, L. U., Ning, H. E., Xu, D.,

Wang, H. and Huang, J. 2006. Rapid characterization process of silver nanoparticles by

bioreduction and their characterization. Chin. J. Chem. Eng. 14:114–117.

Page 19: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

190

Mozes, N., Marchal, F., Hermesse, M. P., Van Haecht, J. L., Reuliaux, L., Leonhard, A.

J. and Rouxhet, P.C. 1987. Immobilization of microorganisms by adhesion: interplay of

electrostatic and nonelectrostatic interactions. Biotechnol. Bioeng. 30:439–450.

Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Ramani,

R., Parischa, R., Ajaykumar, P. V., Alam, M., Sastry, M. and Kumar, R. 2001a.

Bioreduction of AuCl4- ions by the fungus, Verticillium sp. and surface trapping of the

gold nanoparticles formed. Angew Chem. Int. Ed. 40:3585–3588.

Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I.,

Parischa, R., Ajaykumar, P. V., Alam, M., Kumar, R. and Sastry, M. 2001b. Fungus-

mediated synthesis of silver nanoparticles and their immobilization in the mycelial

matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 1:515–519.

Mukherjee, P., Patra, C. R., Ghosh, A., Kumar, R. and Sastry, M. 2002b. Characterization

and catalytic activity of gold nanoparticles synthesized by autoreduction of aqueous

chloroaurate ions with fumed silica. Chem. Mater. 14:1678–1684.

Mukherjee, P., Patra, C. R., Kumar, R. and Sastry, M. 2001c. Entrapment and catalytic

activity of gold nanoparticles in amine-functionalized MCM-41 matrices synthesized by

spontaneous reduction of aqueous chloroaurate ions. PhysChemComm. 5:1–2.

Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Ghatak, J., Tyagi,

A. K. and Kale, S. P. 2008. Green synthesis of highly stabilized nanocrystalline silver

particles by a non-pathogenic and agriculturally important fungus T. asperellum.

Nanotechnol. 19:075103.

Page 20: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

191

Mukherjee, P., Senapati, S., Mandal, D., Ahmad, A., Khan, M. I., Kumar, R. and Sastry,

M. 2002a. Extracellular synthesis of gold nanoparticles by the fungus Fusarium

oxysporum. ChemBioChem 3:461–463.

Mulvaney, P. 1996. Surface plasmon spectroscopy of nanosized metal particles. Langmuir

12:788–800.

Munnecke, D. M. and Hsieh, D. P. H. 1974. Microbial decontamination of parathion and p-

nitrophenol in aqueous media. Appl. Microbiol. 28:212–217.

Murugadoss, A. and Chattopadhyay, A. 2008. A ‘green’ chitosan-silver nanoparticle

composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnol.

19:015603.

Naik, R. R., Stringer, S. J., Agarwal, G., Jones, S. E. and Stone, M. O. 2002. Biomimetic

synthesized and patterning of silver nanoparticles. Nat. Mater. 1:169–172.

Nair, B. and Pradeep, T. 2002. Coalescence of nanoclusters and formation of submicron

crystallites assisted by Lactobacillus strains. Cryst. Growth Des. 2:293–298.

Namrata, M., Avinash, I., Aniket, G. and Mahendra, R. 2009. Synthesis of silver

nanoparticles using callus extract of Carica papaya-a first report. J. Plant Biochem.

Biotechnol. 18:83–86.

Narayanan, R. and El-Sayed, M. A. 2005a. Carbon supported spherical palladium

nanoparticles as potential recyclable catalysts for the suzuki reaction and the effect of

catalysis on the nanoparticles size. J. Catal. 234:348–355.

Narayanan, R. and El-Sayed, M. A. 2005b. Catalysis with transition metal nanoparticles in

colloidal solution: nanoparticles shape dependence and stability. J. Phys. Chem. B

109:12663–12676.

Page 21: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

192

Panigrahi, S., Basu, S., Praharaj, S., Pande, S., Jana, S., Pal, A., Ghosh, S.K. and Pal, T.

2007. Synthesis and size-selective catalysis by supported gold nanoparticles: study on

heterogeneous and homogeneous catalytic process. J. Phys. Chem. C 111:4596–4605.

Parashar, U. K., Saxena, P. S. and Srivastava, A. 2009a. Bioinspired synthesis of silver

nanoparticles. Digest J. Nanomater. Biostruct. 4:159–166.

Parashar, V., Parashar, R., Sharma, B. and Pandey, A. 2009b. Parthenium leaf extract

mediated synthesis of silver nanoparticles: a novel approach towards weed utilization.

Digest J. Nanomater. Biostruct. 4:45–50.

Parikh, R. Y., Singh, S., Prasad, B. L. V., Patole, M. S., Sastry, M. and Shouche, Y. S.

2008. Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of

silver resistance from Morganella sp. towards understanding biochemical synthesis

mechanism. ChemBioChem 9:1415–1422.

Parker, S. F., Frost, C. D., Telling, M., Albers, P., Lopez, M. and Seitz, K. 2006.

Characterization of the adsorption sites of hydrogen on Pt/C fuel cell catalysts. Catal.

Today 114:418–421.

Pasquato, L., Rancan, F., Scrimin, P., Mincin, F. and Frigeri, C. 2000. N-

Methylimidazole-functionalized gold nanoparticles as catalyts for cleavage of a

carboxylic acid ester. Chem. Commun. 22:2253–2254.

Philip, D. 2009a. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom

extract. Spectrochim. Acta A 73:374–381.

Philip, D. 2009b. Green synthesis of silver and gold nanoparticles using Hibiscus rosa

sinensis. Physica E 42:1417–1424.

Page 22: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

193

Philip, D. 2009c. Honey mediated green synthesis of gold nanoparticles. Spectrochim Acta A

73: 650–653.

Philip, D. 2010. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica

leaf. Spectrochim Acta A 77:807–810.

Pighi, L., Pumpel, T. and Schinner, F. 1989. Selective accumulation of silver by fungi.

Biotechnol. Lett. 11:275–280.

Pocurull, E., Marce, R. M. and Borrull, F. 1996. Determination of phenolic compounds in

natural waters by liquid chromatogrphy with ultraviolet and electrochemical detection

after on-line trace enrichment. J. Chromat. A 738:1–9.

Prabhuram, J., Wang, X., Hui, C. L. and Hsing, I. M. 2003. Synthesis and characterization

of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications. J. Phys. Chem. B

107:11057–11064.

Pradhan, N., Pal, A. and Pal, T. 2002. Silver nanoparticles catalyzed reduction of aromatic

nitro compounds. Coll Surf A: Physico. Eng. Aspects 196:247–257.

Praharaj, S., Nath, S., Ghosh, S. K., Kundu, S. and Pal, T. 2004. Immobilization and

recovery of Au nanoparticles from anion exchange resin: resin-bound nanoparticles

matrix as a catalyst for the reduction of 4-nitrophenol.Langmuir 20:9889–9892.

Pugazhenthiran, N., Anandan, S., Kathiravan, G., Prakash, N. K. U., Crawford, S. and

Ashokkumar, M. 2009. Microbial synthesis of silver nanoparticles by Bacillus sp. J.

Nanopart. Res. 11:1811–1815.

Pum, D. and Sleytr, U. B. 1999. The application of bacterial S-layers in molecular

nanotechnology. Trends Biotechnol. 17: 8–12.

Pyykko, P. 1988. Relativistic effects in structural chemistry, Chem. Rev. 88:563–594.

Page 23: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

194

Raghunandan, D., Basavaraja, S., Mahesh, B., Balaji, S., Manjunath, S. Y. and

Venkataraman, A. 2009. Biosynthesis of stable polyshaped gold nanoparticles from

microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf

extract. Nanobiotechnol. 5:34–41.

Rai, A., Chaudhary, M., Ahmad, A., Bhargava, S. and Sastry, M. 2007. Synthesis of

triangular Au core-Ag shell nanoparticles. Mater. Res. Bull. 42:1212–1220.

Ramanaviciusa, A., Kausaite, A. and Ramanaviciene, A. 2005. Biofuel cell based on direct

bioelectrocatalysis. Biosens. Bioelect. 20:1962–1967.

Ramezani, N., Ehsanfar, Z., Shamsa, F., Amin, G., Shahverdi, H. R., Esfahani, H. R. M.,

Shamsaie, A., Bazaz, R. D. and Shahverdi, A. R. 2008. Screening of medicinal plant

methanol extracts for the synthesis of gold nanoparticles by their reducing potential. Z.

Naturforsch. 63b:903–908.

Rao, C. N. R. and Cheetham, A. K. 2001. Science and technology of nanomaterials: current

status and future prospects. J. Mater. Chem. 11:2887–2893.

Raut, W. R., Jaya, R. L., Niranjan, S. K., Vijay, D. M. and Sahebrao, B.K. 2009.

Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Curr. Nanosci.

5:117–122.

Rautaray, D., Sanyal, A., Adyanthaya, S. D., Ahmad, A. and Sastry, M. 2004. Biological

synthesis of strontium carbonate crystals using the fungus Fusarium oxysporum.

Langmuir 20:6827–6833.

Raymond, D. G. M. and Alexander, M. 1971. Microbial metabolism and cometabolism of

nitrophenols. Pestic. Biochem. Physiol. 1:123–130.

Page 24: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

195

Reetz, M. T., Quaiser, S. A., Breinbauer, R. and Tesche, B. 1995. A new strategy in

heterogeneous catalysis: the design of cortex catalysts. Angew. Chem. Int. Ed. Engl.

34:2728–2730.

Riddin, T. L., Gericke, M. and Whiteley, C. G. 2006. Analysis of the inter- and extracellular

formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using

response surface methodology. Nanotechnol. 17:3482–3489.

Rodriguez, E., Peralta-Videa, J. R., Sanchez-Salcido, B., Parsons, J. G., Romero, J. and

Gardea-Torresdey, J. L. 2007. Improving gold phytoextraction in desert willow

(Chilopsis linearis) using thiourea: a spectroscopic investigation. Environ. chem. 4:98–

108.

Rodriguez, J. A., Perez, M., Jirsak, T., Evans, J., Hrbek, J. and Gonzalez, L. 2003.

Activation of Au nanoparticles on oxide surfaces: reaction of SO2 with Au/MgO(100).

Chem. Phys. Lett. 378:526–532.

Romera, E., Gonzalez, F., Ballester, A., Blazquez, M. L. and Munoz, J. A. 2007.

Comparitive study of biosorption of heavy metals using different types of algae.

Bioresour Technol. 98:3344–3353.

Rosenkraz, H. S. and Klopman, G. 1990. Prediction of the carcinogenicity in rodents of

chemicals currently being tested by the US National Toxicology Program: structure-

activity correlation. Mutagenesis 5:425–432.

Safaepour, M., Shahverdi, A. R., Shahverdi, H. R., Khorramizadeh, M. R. and Gohari, A.

R. 2009. Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity

against fibrosarcoma-Wehi 164. Avicenna J Med. Biotechnol. 1:111–115.

Page 25: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

196

Sahi, S. V., Bryant, N. L., Sharma, N. C. and Singh, S.R. 2002. Characterization of a lead

hyperaccumulator shrub, Sesbania drummondii. Environ. Sci. Technol. 36:4676–4680.

Sahiner, N., Ozay, H., Ozay, O. and Aktas, N. 2010. New catalytic route: hydrogels as

templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of

2- and 4-nitrophenols. Appl. Catal. A 385:201–207.

Saito, H., Koyasu, J., Yoshida, K., Shigeoka, T. and Koike, S. 1993. Cytotoxicity of 109

chemicals to goldfish GFS and relationships with 1-octanol/water partition coefficients.

Chemosphere 26:1015–1028.

Sanghi, R. and Verma, P. 2009. Biomimetic synthesis and characterization of protein capped

silver nanoparticles. Bioresour. Technol. 100:501–504.

Sankalia, M. G., Mashru, R. C., Sankalia, J. M. and Sutariya, V. B. 2007. Reversed

chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase:

optimization and physicochemical characterization. Eur. J. Pharm. Biopharm. 65:215–

232.

Sartori, C., Finch, D. S. and Ralph, B. 1997. Determination of the cation content of alginate

thin films by FTIR spectroscopy. Polymer 38:43–51.

Sastry, M., Mayya, K. S., Patil, V., Paranjape, D. V. and Hegde, S. G. 1997. Langmuir-

Blodgett films of carboxylic acid derivatized silver colloidal particles: role of subphase

pH on degree of cluster incorporation. J. Phys. Chem. B 101:4954–4958.

Sastry, M., Patil, V. and Sainkar, S. R. 1998. Electrostatically controlled diffusion of

carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine

films. J. Phys. Chem. B 102:1404–1410.

Page 26: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

197

Scampicchio, M., Wang, J., Blasco, A. J., Arribas, A. S., Mannino, S. and Escarpa, A.

2006. Nanoparticle-based assays of antioxidant activity. Anal. Chem. 78:2060–2063.

Schmid, G. 1992. Large clusters and colloids. Metals in the embryonic state. Chem. Rev.

92:1709–1727.

Senapati, S., Ahmad, A., Khan, M. I., Sastry, M. and Kumar, R. 2005. Extracellular

biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1:517–520.

Senapati, S., Mandal, D., Ahmad, A., Khan, M. I., Sastry, M. And Kumar, R. 2004.

Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Ind. J.

Phys. 78A:101–105.

Shahverdi, A. R., Minaeian, S., Shahverdi, H. R., Jamalifar, H. and Nohi, A. A. 2007.

Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a

novel biological approach. Proc. Biochem. 42:919–923.

Shaligram, N. S., Bule, M., Bhambure, R., Singhal, R. S., Singh, S. K., Szakacs, G. and

Pandey, A. 2009. Biosynthesis of silver nanoparticles using aqueous extract from the

compactin producing fungal strain. Proc. Biochem. 44:939–943.

Shankar, S. S., Ahmad, A., Pasricha, R. and Sastry, M. 2003a. Bioreduction of chloroaurate

ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different

shapes. J. Mat. Chem. 13:1822–1826.

Shankar, S. S., Ahmad, A. and Sastry, M. 2003b. Geranium leaf assisted biosynthesis of

silver nanoparticles. Biotechnol. Prog. 19:1627–1631.

Shankar, S. S., Rai, A., Ahmad, A. and Sastry, M. 2004a. Biosynthesis of silver and gold

nanoparticles from extracts of different parts of the geranium plant. Appl. Nanosci. 1:69–

77.

Page 27: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

198

Shankar, S. S., Rai, A., Ahmad, A. and Sastry, M. 2004c. Rapid synthesis of Au, Ag, and

bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J.

Colloid Interf. Sci. 275:496–502.

Shankar, S. S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A. and Sastry, M. 2004b.

Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3:482–488.

Shankar, S., Rai, A., Ahmad, A. and Sastry, M. 2005. Controlling the optical properties of

lemongrass extract synthesized gold nanotriangles and potential application in infrared-

absorbing optical coatings. Chem. Mater. 17:566–572.

Sharma, N. C., Sahi, S. V., Nath, S., Parsons, J. G., Gardea-Torresdey, J. L. and Pal, T.

2007. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-

embedded nanomaterials. Environ. Sci. Technol. 41:5137–5142.

Shenton, W., Douglas, T., Young, M., Stubbs, G. and Mann, S. 1999. Inorganic-organic

nanotube composites from template mineralization of tobacco mosaic virus. Adv.

Materials 11:253–256.

Shen, X. T., Zhu, L. H., Liu, G. X., Yu, H. W. and Tang, H. Q. 2008. Enhanced

photocatalytic degradation and selective removal of nitrophenols by using surface

molecular imprinted titania. Environ. Sci. Technol. 42:1687–1692.

Shimizu, K., Miyamoto, Y. and Satsuma, A. 2010. Size- and support-dependent silver cluster

catalysis for chemoselective hydrogenation of nitroaromatics. J. Catal. 270:86–94.

Signori, A. M., Santos, K. D. O., Eising, R., Albuquerque, B. L., Giacomelli, F. C. and

Domingos, J. B. 2010. Formation of catalytic silver nanoparticles supported on branched

polyethyleneimine derivatives. Langmuir 26:17772–17779.

Page 28: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

199

Singaravelu, G., Arockiamary, J. S., Kumar, V. G. and Govindaraju, K. 2007. A novel

extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum

wightii Greville. Coll. Surf. B: Biointerf. 57:97–101.

Singh, A. K., Talat, M., Singh, D. P. and Srivastava, O. N. 2010. Biosynthesis of gold and

silver nanoparticles by natural precursor clove and their functionalization with amine

group. J. Nanopart. Res. 12:1667–1675.

Solomun, T., Schimanski, A., Sturm, H. and Illenberger, E. 2004. Reactions of amide

group with fluorine as revealed with surface analytics. Chem. Phys. Lett. 387:312– 316.

Song, J. Y. and Kim, B. S. 2008. Biological synthesis of bimetallic Au/Ag nanoparticles using

Persimmon (Diopyros kaki) leaf extract. Kor. J. Chem. Eng. 25:808–811.

Song, J. Y. and Kim, B. S. 2009. Rapid biological synthesis of silver nanoparticles using plant

leaf extracts. Bioproc. Biosyst. Eng. 32:79–84.

Song, J. Y., Jang, H. K. and Kim, B. S. 2009. Biological synthesis of gold nanoparticles

using Magnolia kobus and Diopyros kaki leaf extracts. Proc Biochem. 44:1133–1138.

Southam, G. and Beveridge, T. J. 1994. The in vitro formation of placer gold by bacteria.

Geochim. Cosmochim. Acta 58:4527–4530.

Spain, J. C., Wyss, O. and Gibson, D. T. 1979. Enzymatic oxidation of p-nitrophenol.

Biochem. Biophys. Res. Commun. 88:634–641.

Stathatos, E. and Lianos, P. 2000. Photocatalytically deposited silver nanoparticles on

mesoporous TiO2 films, Langmuir 16:2398–2400.

Steffan, M., Jakob, A., Claus, P. and Lang, H. 2009. Silica supported silver nanoparticles

from a silver(I) carboxylate: highly active catalyst for regioselective hydrogenation.

Catal. Commun. 10:437–441.

Page 29: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

200

Storhoff, J. J. and Mirkin, C. A. 1999. Programmed material synthesis with DNA. Chem.

Rev. 99:1849–1862.

Stuart, B. 2004. Infrared spectroscopy: fundamentals and applications. John Wiley and Sons

Ltd., Chichester, England.

Swanson, N. L. and Billard, B. D. 2003. Optimization of extinction from surface plasmon

resonances of gold nanoparticles. Nanotechnol. 14:353–357.

Tang, S., Chen, L., Vongehr, S. and Meng, X. 2010. Heterogeneous nucleation and growth

of silver nanoparticles on unmodified polystyrene spheres by in situ reduction. Appl.

Surf. Sci. 256:26954–2660.

Templeton, A. C., Pietron, J. J., Murray, R. W. and Mulvaney, P. 2000. Solvent refractive

index and core charge influences on the surface plasmon adsorbance of alkanethiolate

monolayer-protected gold clusters. J. Phys. Chem. B 104:564–570.

Terry, N. and Zayed, A. 1998. Phytoremediation of selenium. In: Frankenberger Jr WT,

Engberg RA (eds) Environmental chemistry of selenium. Dekker, New York, pp. 633–

655.

Tsunoyama, H., Sakurai, H., Ichikuni, N., Negishi, Y. and Tsukuda, T. 2004. Colloidal

gold nanoparticles as catalyst for carbon-carbon bond formation: application to aerobic

homocoupling of phenylboronic acid in water. Langmuir 20:11293–11296.

Uddin, I., Adyanthaya, S., Syed, A., Selvaraj, K., Ahmad, A. and Poddar, P. 2008.

Structure and microbial synthesis of sub-10 nm Bi2O3 nanocrystals. J. Nanosci.

Nanotechnol. 8:3909–3913.

van de Hulst, H. C. 1957. Light Scattering by Small Particles, Chapters 9 and 10, Wiley, New

York.

Page 30: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

201

Vargas, R. and Nunez, O. 2009. Hydrogen bond interactions at the TiO2 surface: their

contribution to the pH dependent photo-catalytic degradation of p-nitrophenol. J. Mol.

Catal. A: Chem. 300:65–71.

Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V., Nachane, R. P., Paralikar, K.

M. and Balasubramanya, R. H. 2007. Biological synthesis of silver nanoparticles using

the fungus Aspergillus flavus. Mat. Lett. 61:1413–1418.

Vigneshwaran, N., Kathe, A. A., Varadarajan, P. V., Nachane, R. P. and

Balasubramanya, R. H. 2006. Biomimetics of silver nanoparticles by white rot fungus,

Phaenerochaete chrysosporium. Coll. Surf. B: Interf. 53:55–59.

Vilchis-Nestor, A. R., Sanchez-Mendieta, V., Camacho-Lopez, M. A., Gomez-Espinosa, R.

M., Camacho-Lopez, M. A. and Arenas-Alatorre, J.A. 2008. Solventless synthesis and

optical properties of Au and Ag nanoparticles using Camellia sinensis extrac. Mat. Lett.

62:3103–3105.

Volesky, B. and Holan, Z. R. 1995. Biosorption of heavy metals. Biotechnol. Progr. 11:235–

250.

Wang, Y., He, X., Wang, K., Zhang, X. and Tan, W. 2009. Barbated skullcup herb extract-

mediated biosynthesis of gold nanoparticles and its primary application in

electrochemistry. Coll. Surf. B: Biointerf. 73:75–79.

Wei, D., Ye, Y., Jia, X., Yuan, C. and Qian, W. 2010. Chitosan as an active support for

assembly of metal nanoparticles and application of the resultant bioconjugates in

catalysis. Carbohydrate Res. 345:74–81.

Page 31: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

202

Wen, L., Lin, Z., Gu, P., Zhou, J., Yao, B., Chen, G. and Fu, J. 2009. Extracellular

biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J. Nanopart.

Res. 11:279–288.

Wilde, E. W. and Benemann, J. R. 1993. Bioremoval of heavy metals by the use of

microalgae. Biotech. Adv. 11:781–812.

Wong, T. S. and Schwaneberg, U. 2003. Protein engineering in bioelectrocatalysis. Curr.

Opin. Biotechnol. 14:590–596.

Wu, Z. C., Zhang, Y., Tao, T. X., Zhang, L. and Fong, H. 2010. Silver nanoparticles on

amidoxime fibers for photo-catalytic degradation of organic dyes in waste water. Appl.

Surf. Sci. 257:1092–1097.

Xie, J., Lee, J. Y., Wang, D. I. C. and Ting, Y. P. 2007a. Identification of active

biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal

solutions. Small 3:672–682.

Xie, J., Lee, J. Y., Wang, D. I. C. and Ting, Y. P. 2007b. Silver nanoplates: from biological

to biomimetic synthesis. ACS Nano 1:429–439.

Yong, G. P., Tian, D., Tong, H. W. and Liu, S. M. 2010. Mesoporous SBA-15 supported

silver nanoparticles as environmentally friendly catalysts for three-component reaction of

aldehydes, alkynes and amines with glycol as a “green” solvent. J. Mol. Catal. A: Chem.

323:40–44.

Yu, H. G. 2006. Density functional theory study on ethylene partial oxidation on Ag7 clusters.

Chem. Phys. Lett. 431:236–240.

Page 32: CHAPTER 7 REFERENCESshodhganga.inflibnet.ac.in/.../14/14_references.pdf · Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor

203

Zhang, H., Li, Q., Lu, Y., Sun, D., Lin, X., Deng, X., He, N. and Zheng S. 2005.

Biosorption and bioreduction of diamine silver complex by Corynebacterium. J. Chem.

Technol. Biotechnol. 80:285–290.

Zhang, Z., Zhang, L., Wang, S., Chen, W. and Lei, Y. 2001. A convenient route to

polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization-reduction

approach. Polymer 42:8315–8318.

Zheng, M., Gu, M., Jin, Y. and Jin, G. 2001. Optical properties of silver-dispersed PVP thin

film. Mater. Res. Bull. 36:853–859.

Zhu, J. and Wang, Y. C. 2005. Ultraviolet and blue-violet photoluminescene of gold

nanoparticles. Spectroscopy and Spectral analysis. 25:235–238.