chapter 9 solution

15
 0, 0] [ , 0]  x y x L y = = = =  PROBLEM 9.12 For the beam and loading shown, (a) express the magnitude and location of the maximum deflection in terms of w 0 ,  L,  E , and  I . (b) Calculate the value of the maximum deflection, assuming that beam  AB is a W460 74 ×  rolled shape and that 0 60 kN/m, w  =  6 m,  L =  and 200 GPa .  E  =  SOLUTION Using entire beam as a free body, 0 0 1 0: 0 2 3 1 6  B A  A  L  M R L w L  R w L Σ = + = =  Using  AJ  as a free body, 2 0 0 3 0 0 1 1 0: 0 6 2 3 1 1 6 6  J w x x  M w Lx M  L w  M w Lx x  L Σ = + + = =  2 3 0 0 2 2 4 0 0 1 3 5 0 0 1 2 1 1 6 6 1 1 12 24 1 1 36 120 d y w  EI w Lx x  L dx dy w  EI w Lx x C dx L w  EIy w Lx x C x C  L = = + = + +  2 2 3 4 4 0 0 0 1 1 [ 0, 0]: 0 0 0 0 0 1 1 7 [ , 0]: 0 0 36 120 360  x y C C w L  x L y w L w L C L C = = = + + = = = = + + =  Elastic curve: 5 3 3 0 4 2 3 0 1 1 7 36 120 360 1 1 7 12 24 360 w x  y Lx L x  EI L dy w x  Lx L dx EI L = =  USE DISCONTINUITY FUNCTIONS UP TO PROBLEMS 9.64

Upload: jayeshbankoti

Post on 07-Aug-2018

247 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 9 Solution

8/20/2019 Chapter 9 Solution

http://slidepdf.com/reader/full/chapter-9-solution 1/15

 

0, 0] [ , 0] x y x L y= = = =  

PROBLEM 9.12

For the beam and loading shown, (a) express the magnitude and location

of the maximum deflection in terms of w0,  L,  E , and  I . (b) Calculate thevalue of the maximum deflection, assuming that beam AB is a W460 74×  rolled shape and that 0 60 kN/m,w   =   6 m, L =  and 200 GPa. E  =  

SOLUTION

Using entire beam as a free body,

0

0

10: 0

2 3

16

 B A

 A

 L M R L w L

 R w L

Σ = − + =

=

 

Using  AJ  as a free body,

20

0

300

1 10: 0

6 2 3

1 1

6 6

 J 

w x x M w Lx M 

 L

w M w Lx x

 L

Σ = − + + =

= −

 

230

02

2 400 1

3 500 1 2

1 1

6 6

1 112 24

1 1

36 120

d y w EI w Lx x

 Ldx

dy w EI w Lx x C dx L

w EIy w Lx x C x C 

 L

= −

= − +

= − + +

 

2 2

34 4 0

0 0 1 1

[ 0, 0]: 0 0 0 0 0

1 1 7[ , 0]: 0 0

36 120 360

 x y C C 

w L x L y w L w L C L C 

= = = − + + ∴ =

= = = − + + ∴ = − 

Elastic curve:5

3 30

42 30

1 1 7

36 120 360

1 1 712 24 360

w x y Lx L x

 EI L

dy w x Lx Ldx EI L

= − −

= − −

 

USE DISCONTINUITY FUNCTIONS UP TO PROBLEMS 9.64

Page 2: Chapter 9 Solution

8/20/2019 Chapter 9 Solution

http://slidepdf.com/reader/full/chapter-9-solution 2/15

PROBLEM 9.12 (Continued)

To find location of maximum deflection, set 0.dy

dx =  

2 4 44 2 2 4 2

2 2 2

30 900 42015 30 7 0

30

81 0.2697

15

m m m

m

 L L L x L x L x

 x L L

− −− + = =

= − =

  0.5193m x L=   

53 30 1 1 (0.5193 ) 7

(0.5193 ) (0.5193 )36 120 360

m

w L y L L L L

 EI L

= − −

 

4 40 00.00652 or 0.00652

w L w L

 EI EI = −    

Data: 30 60 kN/m 60 10 N/m 6 mw L= = × =  

For 6 4 6 4W460 74, 333 10 mm 333 10 m I   −× = × = ×  

3 43

9 6

(0.00652)(60 10 )(6)7.61 10 m

(200 10 )(333 10 )m y

  −

×= = ×

× ×  7.61 mmm y   =  

Page 3: Chapter 9 Solution

8/20/2019 Chapter 9 Solution

http://slidepdf.com/reader/full/chapter-9-solution 3/15

 

PROBLEM 9.15

For the beam and loading shown, determine the deflection at

point C. Use 200 GPa. E   =  

SOLUTION

Reactions: 0 0 / , /  A B R M L R M L= ↑ = ↓  

0 : x a< <  

0

0

0:

0

  =

− + =

=

 J  M 

 M 

 x M  L

 M  M x

 L

 

[ 0, 0] [ , 0]

[ , ]

,

 x y x L y

 x a y y

dy dy x a

dx dx

= = = =

= =

= =

  :a x L< <  

00

0

0:

0

( )

=

− + + =

= −

K  M 

 M  x M M 

 L

 M  M x L

 L

 

0   x a< <  

20

2

201

1

2

d y M  EI x

 Ldx

dy M  EI x C 

dx L

=

= +

  (1)

301 2

1

6

 M  EIy x C x C 

 L

= + +

  (2)

a x L< <  

20

2

203

( )

1

2

d y M  EI x L

 Ldx

dy M  EI x Lx C 

dx L

= −

= − +

  (3)

3 203 4

1 1

6 2

 M  EIy x Lx C x C 

 L

= − + +

  (4) 

[ ] 2 20, 0 Eq. (2): 0 0 0 0 x y C C = = = + + =  

2 20 01 3

3 1 0

1 1, Eqs. (1) and (3):

2 2

dy dy M M   x a a C a La C 

dx dx L L

C C M a

= = + = − +

= +

 

Page 4: Chapter 9 Solution

8/20/2019 Chapter 9 Solution

http://slidepdf.com/reader/full/chapter-9-solution 4/15

PROBLEM 9.15 (Continued)

[ ] 30 1, Eqs. (2) and (4):6

 M  x a y y a L= = 1C a

+

30 1

6 M  a

 L= 2 11 (2

 La C 

− +

0 4

24 0

)

1

2

 M a a C 

C M a

+ +

= −

 

[ ] 3 3 201 0 0

2 201

1 1 1, 0 Eq. (4): ( ) 0

6 2 2

1 1

3 2

 M  x L y L L C M a L M a

 L

 M C L a aL

 L

= = − + + − =

= + −

 

Elastic curve for 0 : x a< <   3 2 20 1 1 1

6 3 2

 M  y x L a aL x

 EIL

= + + −

 

Make . x a=  3 2 3 2 3 2 20 01 1 1 2 1

6 3 2 3 3C 

 M M  y a L a a a L a L a La

 EIL EIL

= + + − = + −

 

Data: 9200 10 Pa, E   = ×   6 4 6 434.4 10 mm 34.4 10 m , I    −= × = ×   30 60 10 N m M    = × ⋅  

1.2 m, 4.8 ma L= =  

3 3 2 2

3

9 6

(60 10 ) (2)(1.2) / 3 (4.8) (1.2) / 3 (4.8)(1.2)6.28 10 m

(200 10 )(34.4 10 )(4.8)C  y   −

× + − = = ×× ×

 

6.28 mmC  y   = ↑  

Page 5: Chapter 9 Solution

8/20/2019 Chapter 9 Solution

http://slidepdf.com/reader/full/chapter-9-solution 5/15

 

PROBLEM 9.45

For the beam and loading shown, determine (a) the slope at

end  A, (b) the deflection at point C . Use 200 GPa. E   =

 

SOLUTION

Units: Forces in kN, lengths in m

0:

1.6 (9.6)(0.8) (20)(0.4) 0

9.8 kN

 D

 A

 A

 M 

 R

 R

=

− + + =

=

 

0 0

0 0

( ) 12 0.4 12 1.2 kN/m

( ) 12 0.4 12 1.2 kN/m

w x x x

dV w x x x

dx

= − − −

= − = − − + − 

1 1 0

22 2 1

2

2 3 3 2 2

1

3 4 4 3 31 2

9.8 12 0.4 12 1.2 20 1.2 kN

9.8 6 0.4 6 1.2 20 1.2 kN m

4.9 2 0.4 2 1.2 10 1.2 kN m

1 1 101.63333 0.4 1.2 1.2 kN m

2 2 3

dM V x x x

dx

d y EI M x x x x

dx

dy

 EI x x x x C dx

 EIy x x x x C x C 

= = − − + − − −

= = − − + − − − ⋅

= − 

  − 

  + 

  − 

  − 

  − 

  + ⋅

= −     −     +     −     −     −     + + ⋅

 

2 2[ 0, 0] : 0 0 0 0 0 0 0 x y C C = = − + − + + = =  

3 4 4 31

1 1 10[ 1.6, 0] : (1.63333)(1.6) (1.2) (0.4) (0.4) (1.6) 0 0

2 2 3 x y C = = − + − + + =  

21 3.4080 kN mC    = − ⋅  

Data: 9 6 4 6 4

4 6 6 2 2

200 10 Pa, 6.83 10 mm 6.83 10 mm

(200 10 )(6.83 10 ) 1.366 10 N m 1366 kN m

 E I 

 EI 

= × = × = ×

= × × = × ⋅ = ⋅

 

(a) Slope at  A: at 0dy

 xdx

=

 

20 0 0 0 3.4080 kN mdy

 EI dx

= − + − − ⋅  

33.40802.49 10 rad

1366 Aθ 

  −= − = − ×   32.49 10 rad Aθ   −= ×    

Page 6: Chapter 9 Solution

8/20/2019 Chapter 9 Solution

http://slidepdf.com/reader/full/chapter-9-solution 6/15

PROBLEM 9.45 (Continued) 

 

(b) Deflection at C : ( at 1.2 m) y x   =  

3 4

3

1(1.63333)(1.2) (0.8) 0 0 (3.4080)(1.2) 0

2

1.4720 kN m

C  EIy   = − + − − +

= − ⋅

 

31.47201.078 10 m

1366C  y   −= − = − ×   1.078 mmC  y   = ↓   

Page 7: Chapter 9 Solution

8/20/2019 Chapter 9 Solution

http://slidepdf.com/reader/full/chapter-9-solution 7/15

 

SOLUTION

Units: Forces in kN; lengths in

  0: 4.8 (

( B A

 M R= − +

+

 

6 4

9

2

212 10 mm

(200 10 )(212

42400 kN m

 I 

 EI 

= ×

= ×

= ⋅

  ( ) 30 30 2.4w x x= −     −

  30 30dV 

w

dx

= − = − +

  79 30dM 

V xdx

= = − +

 2

79 15d y

 EI M x xdx

= = −

  2 3795 5

2

dy EI x x

dx= − +  

  3 479 5 5

6 4 4 EIy x x= − +

 

[ 0, 0] 0

7[ 4.8, 0]

 x y

 x y

= =

 = =  

 

 

PROBLEM 9.64

The rigid bar DEF  is welded at point  D to

For the loading shown, determine (a) thedeflection at midpoint C  of the beam. Use

meters.

30)(2.4)(3.6)

0)(2.4) 0

79 kN A R

=

= ↑

 

6 4

6 6 2

212 10 m

10 ) 42.4 10 N m

×

× = × ⋅  

0  

02.4 x  −  

1 030 2.4 50 3.6 x x   −     −     −  

2 1 015 2.4 50 3.6 60 3.6 x x x+     −     −     −     −     −  

3 2 112.4 25 3.6 60 3.6 x x x C −     −     −     −     −     +

4 3 21

252.4 3.6 30 3.6

3 x x x C x   −     −     −     −     −     + +

( )

2 2

43 4

3 21

0 0 0 0 0 0 0

9 5 5(4.8) 4.8 (2.4)

4 4

25(1.2) (30)(1.2) 4.8 0

3

C C 

+ − − + + = =

  − +

 

− − + =

 

1 161.7C   = −

the rolled-steel beam AB.

slope at point  A, (b) the200 GPa. E   =  

kN/m

kN  

kN m⋅  

2kN m⋅  

2   3kN m⋅  

26 kN m⋅  

Page 8: Chapter 9 Solution

8/20/2019 Chapter 9 Solution

http://slidepdf.com/reader/full/chapter-9-solution 8/15

PROBLEM 9.64 (Continued)

(a) Slope at point  A: at 0dy

 xdx

=

 

2

3

0 0 0 0 0 161.76

161.76 kN m

161.763.82 10

42400

 A

 A

dy EI 

dx

dy

dx

= − + − − −

= − ⋅

− = = − ×

  33.82 10 rad. Aθ 

  −= ×   

(b) Deflection at midpoint C : ( at 2.4) y x   =  

3 4

3

3

79 5

(2.4) (2.4) 0 0 0 (161.76)(2.4) 06 4

247.68 kN m

247.685.84 10 m

42400

 EIy

 y   −

= − + − − − +

= − ⋅

−= = − ×   5.84 mmC  y   = ↓   

Page 9: Chapter 9 Solution

8/20/2019 Chapter 9 Solution

http://slidepdf.com/reader/full/chapter-9-solution 9/15

 

PROBLEM 9.77

For the beam and loading shown, determine (a) the slope at

end  A, (b) the deflection at point C . Use 200 GPa. E  =

 

SOLUTION

Units: Forces in kN; lengths in m.

Loading I: Moment at  B.

Case 7 of Appendix D: 80 kN m, 5.0 m, 2.5 m M L x= ⋅ = =  

3 2 3 2

(80)(5.0) 66.667

6 6

80 125( ) [2.5 (5.0) (2.5)]

6 6 (5.0)

 A

 ML

 EI EI EI 

 M  y x L x

 EIL EI EI 

θ    = = =

= − − = − − =

 

Loading II: Moment at  A: (Case 7 of Appendix D.)

80 kN m, 5.0 m, 2.5 m

(80)(5.0) 133.333

3 3 A

 M L x

 ML

 EI EI EI θ 

= ⋅ = =

= = =  

125C  y

 EI =   (Same as loading I.)

Loading III: 140 kN concentrated load at C : 140 kNP =  

2 2

3 3

(140)(5.0) 218.75

16 16

(140)(5.0) 364.583

48 48

 A

PL

 EI EI EI 

PL y

 EI EI EI 

θ    = − = − = −

= − = − = −

 

Data: 9 6 4 6 4200 10 Pa, 156 10 mm 156 10 m E I    −= × = × = ×  

9 6 6 2 2(200 10 )(156 10 ) 31.2 10 N m 31200 kN m EI    −= × × = × ⋅ = ⋅  

(a) Slope at  A: 367.667 133.333 218.750.601 10 rad

31200 Aθ 

  −+ −= = − ×  

30.601 10 rad Aθ   −= ×   

(b) Deflection at C : 3125 125 364.5833.67 10 m

31200C  y

  −+ −= = − ×   3.67 mmC  y   = ↓  

Page 10: Chapter 9 Solution

8/20/2019 Chapter 9 Solution

http://slidepdf.com/reader/full/chapter-9-solution 10/15

 

PROBLEM 9.86

The two beams shown have the same cross section and

are joined by a hinge at C . For the loading shown,determine (a) the slope at point  A, (b) the deflection at

point B. Use 200 GPa. E  =  

SOLUTION

Using free body ABC ,

3 3 4

6 12 2

0: 0.45 (0.3)(3.5) 0 2.33 kN

200 GPa

1 1

(30)(30) 67500 mm12 12

(200 10 )(67500 10 ) 13.5 kNm

 A C C  M R R

 E 

 I bh

 EI   −

Σ = − = =

=

= = =

= × × =

 

Using cantilever beam CD with load ,C  R  

Case 1 of Appendix D:

3 3(2.33)(0.3)0.001555 mm

3 (3)(13.5)

C CDC 

 R L y

 EI = − = − =  

Calculation of  Aθ ′  and  B y′  assuming that point C  does not move.

Case 5 of Appendix D:

2 2 2 2

2 2 2 2

3.5 kN, 0.45 m, 0.3 m, 0.15 m

( ) (3.5)(0.15)(0.45 0.15 )0.00259 rad

6 (6)(13.5)(0.45)

(3.5)(0.15) (0.3)0.000389 m

3 (3)(13.5)(0.45)

 A

 B

P L a b

Pb L b

 EIL

Pb a y

 EIL

θ 

= = = =− −

′   = − = − = −

′   = − = − = −

 

Additional slope and deflection due to movement of point C .

0.0015550.003456 rad

0.45

(0.3)(0.001555)0.0010367 mm

0.45

C  A

 AC 

 B C 

 y

 L

a y y

 L

θ ′′  = = − = −

′′   = = − = −

 

(a) Slope at A: 0.00259 0.003456 A A Aθ θ θ ′ ′′= + = − −  

0.006046 rad 0.00605 rad− =   

(b) Deflection at B: 0.000389 0.0010367 B B B y y y′ ′′= + = − −  

31.4257 10 m 1.43 mm−= − × =  

Page 11: Chapter 9 Solution

8/20/2019 Chapter 9 Solution

http://slidepdf.com/reader/full/chapter-9-solution 11/15

 

SOLUTION

Using portion AB and applying

3

1

2

1

1 1

3

(13( )

3(1

( )2

( ) ( )

1.56 10

 B

 B

C B

PL y

 EI PL

 EI 

 y y L

θ 

= =

= =

= +

= ×

Due to load P  at point C : (C

  ( y

Total deflection at point C :

PROBLEM 9.87

Beam  DE   rests on the cantilever beam

that a square rod of side 10 mm is usedthe deflection at end C  if the 25-N m⋅  c

 E  of beam DE , (b) to end C of beam AC .

9

3 4

2

200 10 Pa

1(10)(10) 833.33 mm

12

166.667 N m

 E 

 I 

 EI 

= ×

= = =

= ⋅

(a) Couple applied to beam DE .

Free body DE .  0: 0.180 25 0 M PΣ = − =

  Loads on cantilever beam ABC  are P  at point

  as shown.

Due to P  at point B.

ase 1 of Appendix D,

33

23

3 31

8.889)(0.120)0.480 10 m

(3)(166.667)8.889)(0.120)

6.00 10(2)(166.667)

( ) 0.480 10 (0.180)(6.00 10 )

m

C Bθ 

− −

= ×

= ×

= × + ×

 

se 1 of App. D applied to ABC .)

3 3

2

(138.889)(0.120 0.180)) 7.50 1

3 (3)(166.667)

PL

 EI 

+= − = − = − ×

31 2( ) ( ) 5.94 10 mC C C  y y y   −

= + = − ×  

(b) Couple applied to beam AC :

Case 3 of Appendix D.

2 23(25)(0.300)

6.75 10 m2 (2)(166.667)

 ML y

 EI 

−= − = − = − ×

 

 AC   as shown. Knowing

for each beam, determineuple is applied (a) to endUse 200 GPa. E   =  

12 433.33 10 m−×

 

138.889 NP =  

 B and P at point C

30 m−  

5.94 mmC  y   =   

6.75 mmC  y   =   

Page 12: Chapter 9 Solution

8/20/2019 Chapter 9 Solution

http://slidepdf.com/reader/full/chapter-9-solution 12/15

 

PROBLEM 9.91

Before the load P was applied, a gap, 0 0.5mm,δ    =  existed

between the cantilever beam  AC and the support at  B.Knowing that 200 GPa, E   =  determine the magnitude of P for which the deflection at C  is 1 mm.

SOLUTION

Let length 0.5 m AB L= =  

length 0.2 m BC a= =  

Consider portion AB of beam ABC .

The loading becomes forces P and  B R  at B plus the couple Pa.The deflection at B is 0.δ   Using Cases 1 and 3 of Appendix D , 

3 2

0

3 2 3

0

( )

3 2

3 2 3

 B

 B

P R L PaL

 EI EI 

 L L a LP R EI  

δ 

δ 

−= +

+ − =

  (1)

The deflection at C  depends on the deformation of beam  ABC  

subjected to loads P  and . B R  For loading I, using Case 1 of

Appendix D,

3

1

( )( )

3C 

P L a

 EI δ    +=  

For loading II, using Case 1 of Appendix D,

3 2

3 2

 B B B B

 R L R L y

 EI EI θ = =  

Portion BC  remains straight.

3 2

3 2

 BC B B

 L L a R y y a

 EI θ 

= + = +

 

By superposition, the downward deflection at C  is3 3 2( )

3 3 2

 BC 

P L a L L a R

 EI EI δ 

+= − +

 

3 3 2( )

3 3 2  B C 

 L a L L aP R EI  δ 

+− + =

  (2)

Page 13: Chapter 9 Solution

8/20/2019 Chapter 9 Solution

http://slidepdf.com/reader/full/chapter-9-solution 13/15

PROBLEM 9.91 (Continued)

Data:9

200 10 Pa E   = ×  3 6 4 6 4

3 2

3 30

1(60)(60) 1.08 10 mm 1.08 10 m12

216 10 N m

0.5 10 m 1.0 10 mC 

 I 

 EI 

δ δ 

− −

= = × = ×

= × ⋅

= × = ×

 

Using the data, eqs (1) and (2) become

0.06667 0.04167 108 BP R− =   (1)′  

0.11433 0.06667 216 BP R− =   (2)′  

Solving simultaneously,

3

5.63 10 NP  = ×

  5.63 kNP  = ↓

 

 36.42 10 N B R   = ×  

Page 14: Chapter 9 Solution

8/20/2019 Chapter 9 Solution

http://slidepdf.com/reader/full/chapter-9-solution 14/15

 

PROBLEM 9.93

A 22-mm-diameter  rod BC  is attached to the lever AB and

to the fixed support at C . Lever  AB has a uniform crosssection 10 mm   thick and 25 mm deep. For the loadingshown, determine the deflection of point  A. Use

200 GPa E  =  and 77 GPaG  =  

SOLUTION

Deformation of rod BC : (Torsion)

4 4

9 12

1 1(22) 11 mm

2 2

22998 mm2

(350)(0.25) 87.5 N m

0.5 m

(87.5)(0.5)

(77 10 )(22998 10 )

0.0247 rad

 B

C d 

 J C 

T Pa

 L

TL

GJ 

π 

ϕ −

= = =

= =

= = = ⋅

=

= =× ×

=

 

Deflection of point A assuming lever AB to be rigid:

1( ) (0.25)(0.0247) B B y aϕ = =  

0.006175 m=  

Additional deflection due to bending of lever AB.

Refer to Case 1 of Appendix D.

3 4

3 3

9 12

1(10)(25) 13021 mm

12

(350)(0.25)( )

3 (3)(200 10 )(13021 10 ) A

 I 

PL y

 EI    −

= =

= =× ×

 

32.1 10 m−= ×  

Total deflection at point A:

1 2( ) ( ) 8.28 mm A A A y y y= + =  

Page 15: Chapter 9 Solution

8/20/2019 Chapter 9 Solution

http://slidepdf.com/reader/full/chapter-9-solution 15/15

 

PROBLEM 9.94

A 16-mm-diameter rod has been bent into the shape shown.

Determine the deflection of end C   after the 200-N force is applied.Use 200 GPa E  =  and 80 GPa.G =  

SOLUTION

Let 200 N .P=  

Consider torsion of rod AB.

2

3

( ) B

C B

TL PL L PL

 JG JG JG

PL y L

 JG

φ 

φ 

= = =

′   = − = −

 

Consider bending of AB. (Case 1 of Appendix D.)

3

3C B

PL y y

 EI ′′   = = −  

Consider bending of BC . (Case 1 of Appendix D.)

3

3C 

PL y EI 

′′′ = −  

Superposition:

3 3 3 3 2

3 3 3

C C C C   y y y y

PL PL PL PL EI  

 JG EI EI EI JG

′ ′′ ′′′= + +

= − − − = − +

 

Data:

9 4 9 4

9 9 4

2 2

33

180(10 ) Pa (0.008) 6.4340(10 ) m

2

1200(10 ) Pa 3.2170(10 ) m2

643.40 N m 514.72 N m

(200)(0.25) 643.40 29.3093(10 ) m

643.40 514.72 3C 

G J 

 E I J 

 EI JG

 y

π    −

= = =

= = =

= ⋅ = ⋅

= − + = −

 

9.31 mmC  y   = ↓