characteristic*basedslow*wave*fast*wave …...llnl#pres#731129...

30
LLNLPRES731129 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE AC5207NA27344. Lawrence Livermore National Security, LLC. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under contract DEAC0206CH11357. CharacteristicBased SlowWaveFastWave Partitioning for SemiImplicit Time Integration of Atmospheric Flows IMAGe 2017 Theme of the Year: Workshop on Multiscale Geoscience Numerics, National Center for Atmospheric Research, Boulder, CO May 16 — 19, 2017 Debojyoti Ghosh 1 Emil M. Constantinescu 2 1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory 2 Mathematics & Computer Science Division, Argonne National Laboratory

Upload: others

Post on 18-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­731129This  work  was  performed  under  the  auspices  of  the  U.S.  Department  of  Energy  by  Lawrence  Livermore  National  Laboratory  under  contract  DE-­AC52-­07NA27344.  Lawrence  Livermore  National  Security,  LLC.  This  material  is  based  upon  work  supported  by  the  U.S.  Department  of  Energy,  Office  of  Science,  Advanced  Scientific  Computing  Research,  under  contract  DE-­AC02-­06CH11357.

Characteristic-­‐Based  Slow-­‐Wave-­‐Fast-­‐Wave  Partitioning  for  Semi-­‐Implicit  Time  Integration  of  Atmospheric  FlowsIMAGe  2017  Theme  of  the  Year:  Workshop  on  Multiscale  Geoscience  Numerics,  National  Center  for  Atmospheric  Research,  Boulder,  CO

May  16  — 19,  2017

Debojyoti  Ghosh1 Emil  M.  Constantinescu21  Center  for  Applied  Scientific  Computing,  Lawrence  Livermore  National  Laboratory

2 Mathematics  &  Computer  Science  Division,  Argonne  National  Laboratory

Page 2: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­7311292

Challenges  in  Atmospheric  Flow  Simulations

3D  Rising  Thermal  Bubble:  Solution  obtained  with  NUMA  (http://faculty.nps.edu/fxgirald/projects/NUMA/)

o Compressibilityo Large  spatial  gradientsLength  Scale  Issues

o Sound  waves  much  faster  than  flow  velocitieso Insignificant  effect  on  atmospheric  phenomenaTime  Scale  Issues

Nonoscillatory  spatial  discretization  scheme

Multiscale  time  integration

2D  Rising  Thermal  Bubble:  Solution  obtained  with  HyPar  (http://hypar.github.io/)

Page 3: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­7311293

Governing  Equations  Formulations

o COAMP5  (US  Navy),  MM5  (NCAR/PSU),  NMM  (NCEP)o Does  not  conserve  mass/momentum/energy

Exner  Pressure  and  Potential  Temperature

o WRF  (NCAR),  NUMA  (NPS)o Conserved  mass  and  momentum,  not  energyo Does  not  allow  inclusion  of  true  diffusion  terms

Mass,  Momentum,  and  Potential  Temperature

o Examples?o Conserves  mass,  momentum,  and  energyo Allows  inclusion  of  viscosity  and  thermal  conduction

Mass,  Momentum,  and  Energy

Main  Advantage? Allows  the  application  of  the  vast  number  of  CFD  codes  with  minimal  modifications

Atmospheric  flows:  small  perturbations  around  hydrostatic  balance

Perturbation  form  of  governing  equations

Balanced  formulation  with  full  quantities

Page 4: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­7311294

Acoustic  Time  Scale  (Nonhydrostatic  Models)

Explicit  Time  Integrationo Time  step  size  restricted  by  acoustic  waveso Acoustic  waves  do  not  significantly  impact  any  atmospheric  phenomenono Split-­explicit  methods

Implicit  Time  Integration

o Unconditionally  stableo Requires  solutions  to  non-­‐linear  system  or  linearized  approximation

Implicit-­Explicit  (IMEX)  Time  Integration

“Fast”  waves  implicitly  “Slow”  waves  explicitly

Horizontal-­Explicit,  Vertical-­Implicit

Flux-­Partitioned  Methods

Page 5: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­7311295

IMEX  Time  Integration

Spatial  discretization  yieldssemi-­‐discrete  ODE  in  time

IMEX:  time  step  constrained  by  eigenvalues  (time  scales)  of  nonstiff  component  of  RHS

Explicit time  integration:Runge-­‐Kutta  methods

Time  step  constrained  by  eigenvalues  (time  scales)  of  entire  RHS

Implicit-­‐Explicit  (IMEX) time  integration:Additive  Runge-­‐Kutta  (ARK)  methods

Implicit Explicit

Page 6: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­7311296

Objectives

6

@

@t

2

664

⇢u

⇢v

e

3

775+@

@x

2

664

⇢u

⇢u

2 + p

⇢uv

(e+ p)u

3

775+@

@y

2

664

⇢v

⇢uv

⇢v

2 + p

(e+ p)v

3

775 =

2

664

0⇢g · i⇢g · j

⇢ug · i+ ⇢vg · j

3

775

Develop  a  conservative,  high-­order  finite-­difference  based  on  the  compressible  Euler  equations  (conservation  of  mass,  momentum,  energy)

Balanced  formulation  for  full  quantities:Hydrostatic  balance  preserved  to  machine  precision  without  writing  equations  in  terms  of  perturbations

Flux-­partitioning  for  IMEX  time-­integration:Isolate  acoustic  and  gravity  waves  from  convective  mode

Selective  preconditioning  of  acoustic  modes

• Implicit  Continuous  Eulerian (ICE)  technique  (Harlow,  Amsden,  1971)

• Preconditioning  applied  to  stiff  modes  (Reynolds,  Samtaney,  Woodward,  2010)

Page 7: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­7311297

Conservative  Finite-­‐Difference  Schemes

Conservative  finite-­‐difference  discretization    of  a  1D  hyperbolic  conservation  law:

7

j j+10 Nj-1j-1/2 j+1/2

Cell  centersCell  interfaces

Δx

Spatially-­‐discretized  ODE  in  time

5th order  WENO(Jiang  &  Shu,  J.  Comput.  Phys.,  1996)

5th order  CRWENO(Ghosh  &  Baeder,  SIAM  J.  Sci.  Comput.,  2012)

Page 8: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­7311298

Balanced,  Conservative  Finite-­‐Difference  Formulation  (1)

Governing Equations for 2D flows(gravity acting along –y axis)

Hydrostatically  balanced  equilibrium  Pressure  gradient  balanced  by  gravitational  source

Flow  variables  at  reference  altitude

Page 9: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­73112999

Extension  of  Xing  &  Shu’s  method (J.  Sci.  Comput.,  2013)

Isothermal  equilibrium Constant  potential  temperature(Rising  thermal  bubble)

Stratified  atmosphere  with  a  specified  Brunt-­‐Vaïsälä frequency(Inertia-­‐gravity  wave)

Balanced,  Conservative  Finite-­‐Difference  Formulation  (2)

Page 10: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­731129101

0

Differential Form Discretized Form Well-­‐Balanced  Formulation:Discretized  equilibrium  holds  not  just  for  but  for  any  grid  resolution.

Finite-­‐Difference DiscretizationDG [p] = ⇢RT0 {% (y)}�1 Ds⇤ [' (y)]

If  flux  and  source  discretized  by  same  operator

) Dhp� ⇢RT0 {% (y)}�1 ' (y)

i= D

hp0' (y)� ⇢0% (y)RT0 {% (y)}�1 ' (y)

i= 0

ModifiedGoverningEquations

Balanced,  Conservative  Finite-­‐Difference  Formulation  (3)

Page 11: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­731129111

1

Represents the WENO/CRWENO finite-­‐difference operator with thenon-­‐linear weights computed based on G(u)

Diffusion  term in  upwinding  must  vanish  for  equilibrium  solution

Constant at steady state

Interpolation

Upwinding(Rusanov)

Differencing

Flux Source

Balanced,  Conservative  Finite-­‐Difference  Formulation  (4)

Page 12: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­73112912

Verification  of  Balanced  Formulation

12

Case  1: Isothermal  equilibriumCase  2: Stratified  atmosphere  with  constant  potential  temperatureCase  3: Stratified  atmosphere  with  specified  Brunt-­‐Vaïsälä  frequency

Difference of the final solution with the initial solution(Verification that hydrostatic balance is preserved to machine precision)

-0.002

0

0.002

0.004

0.006

0.008

0.01

0 0.2 0.4 0.6 0.8 1

Pressure perturbation

x

InitialReference

WENO5CRWENO5

-2e-05

0

2e-05

4e-05

6e-05

8e-05

0.0001

0 0.2 0.4 0.6 0.8 1

Pressure perturbation

x

InitialReference

WENO5CRWENO5

Small perturbation to isothermal hydrostatic balance

Δp =  0.01 Δp =  0.0001§ Algorithm  is  able  to  preserve  the  

hydrostatic  balance  at  any  grid  resolution  and  for  any  duration  to  machine  precision.

§ Small  perturbations to  the  hydrostatic  balance  are accurately  resolved.

Page 13: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­73112913

Characteristic-­‐based  Flux  Partitioning  (1)

13

1D Euler equations Semi-­‐discrete ODE in timeSpatial  discretization

Discretization  operator  (e.g.:WENO5,  CRWENO5)

Flux  Jacobian

-3

-2

-1

0

1

2

3

-3 -2.5 -2 -1.5 -1 -0.5 0

Imaginary

Real

CRWENO5

-200

-150

-100

-50

0

50

100

150

200

-250 -200 -150 -100 -50 0 50

Imaginary

Real

u+au-­‐a

u

Eigenvalues  of  the  CRWENO5  discretization

Eigenvalues  of  the  right-­‐hand-­‐side  operator  (u=0.1,  a=1.0,  dx=0.0125)

Example: Periodic density sine wave on aunit domain discretized by N=80 points.

Time step size limit forlinear stability

Eigenvalues  of  the  right-­‐hand-­‐side of  the  ODE  are  the  eigenvalues  of  the  discretization  operator times  the  characteristic  speeds of  the  physical  system

Page 14: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­731129141

4

Splitting of the flux Jacobian based on its eigenvalues

“Slow”  flux “Fast”  Flux

⇤F =

2

40

u+ au� a

3

5

Characteristic-­‐based  Flux  Partitioning  (2)

Acoustic  flux  (fast)

Convective  flux  (slow)

Page 15: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­731129151

5

-200

-150

-100

-50

0

50

100

150

200

-250 -200 -150 -100 -50 0 50

Imaginary

Real

F(u) FF(u) FS(u)

Example: Periodic  density  sine  wave  on  a  unit  domain  discretized  by  N=80  points  (CRWENO5).

Small  difference  between  the  eigenvalues  of  the  complete  operator  and  the  split  operator.(Not  an  error)

Characteristic-­‐based  Flux  Partitioning  (3)

Page 16: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­73112916

IMEX  Time  Integration  with  Characteristic-­‐based  Flux  Partitioning  (1)

16

Apply Additive Runge-­‐Kutta (ARK) time-­‐integrators to the split form

Stage values(s stages)

Step completion

Non-­‐linear system of equations

Solution-­‐dependent weights forthe WENO5/CRWENO5 scheme

Nonlinear flux

Page 17: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­731129171

7

Redefine the splitting as

Note:  Introduces  no  error in  the  governing  equation. -200

-150

-100

-50

0

50

100

150

200

-250 -200 -150 -100 -50 0 50

Imaginary

Real

F(u) FF(u) FS(u)

At the beginning of a time step:-­‐

Is  FF a  good  approximation  at  each  stage?

Linearization  of    Flux  Partitioning

Linearization of the WENO/CRWENO discretization:

Within  a  stage,  the  non-­‐linear  weights  are  kept  fixed.Example:  2-­‐stage  ARK  method

Page 18: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­731129181

8

Linear system of equations for implicit stages:

ARKIMEX 2c• 2nd order accurate• 3 stage (1 explicit, 2 implicit)• L-­‐Stable implicit part• Large real stability of explicit part

ARKIMEX 2e• 2nd order accurate• 3 stage (1 explicit, 2 implicit)• L-­‐Stable implicit part

ARKIMEX 3• 3rd order accurate• 4 stage (1 explicit, 3 implicit)• L-­‐Stable implicit part

ARKIMEX 4• 4th order accurate• 5 stage (1 explicit, 4 implicit)• L-­‐Stable implicit part

ARK Methods (PETSc)

Preconditioning (Preliminary attempts)

First  order  upwind  discretizationPeriodic  boundaries  ignored

o Jacobian-­‐free approach à Linear Jacobian definedas a function describing its action on a vector

o Preconditioning matrixà Stored as a sparse matrix

Block n-­‐diagonal matrices• Block tri-­‐diagonal (1D)• Block penta-­‐diagonal (2D)• Block septa-­‐diagonal (3D)

IMEX  Time  Integration  with  Characteristic-­‐based  Flux  Partitioning  (2)

Page 19: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­73112919

Example:  1D  Density  Wave  Advection  (M∞ =  0.1)

19

Initial solution

CRWENO5, 320 grid points

10−4 10−3 10−2 10−110−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

dt

Erro

r

arkimex(2c )arkimex(2e )arkimex(3 )rk (2a )rk (3 )

≈10xExplicit  limit

Semi-­‐implicit  limit

Semi-­‐implicit  time  step  size  limit 1/  M∞ than  explicit  time  step  size  limit

Eigenvalues

-800

-600

-400

-200

0

200

400

600

800

-1000-900-800-700-600-500-400-300-200-100 0 100

Imaginary

Real

F(u) FF(u) FS(u)

-100

-50

0

50

100

-100 -80 -60 -40 -20 0

Imaginary

Real

F(u) FF(u) FS(u)

Explicit  

Implicit  

⇢ = ⇢1 + ⇢ sin (2⇡x) , u = u1, p = p1; 0 x 1⇢ = ⇢1 + ⇢ sin (2⇡x) , u = u1, p = p1; 0 x 1⇢ = ⇢1 + ⇢ sin (2⇡x) , u = u1, p = p1; 0 x 1

Page 20: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­731129202

0

Number of function calls Wall time

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e+03 1e+04 1e+05

Erro

r (L

2)

Number of RHS function calls

ARK2c - No preconditionerARK2c - Block Jacobi

ARK2c - ILU(0)RK2a

≈  5x

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-01 1e+00 1e+01

Erro

r (L

2)

Wall time (seconds)

ARK2c - No preconditionerARK2c - Block Jacobi

ARK2c - ILU(0)RK2a

≈  4x

Example:  1D  Density  Wave  Advection  (M∞ =  0.1)Computational  Cost

Number  of  function  calls =  (Number  of  time  steps  × number  of  stages)  +  Number  of  GMRES  iterations(does  not  reflect  cost  of  constructing  preconditioning  matrix  and  inverting  it)

Page 21: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­731129212

1

-800

-600

-400

-200

0

200

400

600

800

-1000 -800 -600 -400 -200 0

Imaginary

Real

F(u) FF(u) FS(u)

-100

-50

0

50

100

-100 -80 -60 -40 -20 0

Imaginary

Real

F(u) FF(u) FS(u)

Explicit  

Implicit  

10−4 10−3 10−2 10−1 10010−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

dt

Erro

r

arkimex(2c )arkimex(2e )arkimex(3 )rk (2a )rk (3 )

≈100x

Explicit  limit

Semi-­‐implicit  limit

Eigenvalues Initial solution ⇢ = ⇢1 + ⇢ sin (2⇡x) , u = u1, p = p1; 0 x 1⇢ = ⇢1 + ⇢ sin (2⇡x) , u = u1, p = p1; 0 x 1⇢ = ⇢1 + ⇢ sin (2⇡x) , u = u1, p = p1; 0 x 1

CRWENO5, 320 grid points

Semi-­‐implicit  time  step  size  limit 1/  M∞ than  explicit  time  step  size  limit

Example:  1D  Density  Wave  Advection  (M∞ =  0.01)

Page 22: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­731129222

2

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e+03 1e+04 1e+05 1e+06

Error (L2)

Number of RHS function calls

ARK2c - No preconditionerARK2c - Block Jacobi

ARK2c - ILU(0)RK2a

≈  60x

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-01 1e+00 1e+01 1e+02

Error (L2)

Wall time (seconds)

ARK2c - No preconditionerARK2c - Block Jacobi

ARK2c - ILU(0)RK2a

≈  45x

Example:  1D  Density  Wave  Advection  (M∞ =  0.01)Computational  Cost

Number of function calls Wall time

Number  of  function  calls =  (Number  of  time  steps  × number  of  stages)  +  Number  of  GMRES  iterations(does  not  reflect  cost  of  constructing  preconditioning  matrix  and  inverting  it)

Page 23: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­73112923

Example:  2D  Low  Mach  Isentropic  Vortex  Convection

23

Freestream flow

Vortex (Strength b = 0.5)

Eigenvalues of the right-­‐hand-­‐side operators

-15

-10

-5

0

5

10

15

-20-18-16-14-12-10 -8 -6 -4 -2 0 2

Imaginary

Real

F(u) FF(u) FS(u)

-1.5

-1

-0.5

0

0.5

1

1.5

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Imaginary

Real

F(u) FF(u) FS(u)

Grid:  322 points,  CRWENO5

Page 24: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­731129242

4

10−3 10−2 10−1 100 10110−14

10−12

10−10

10−8

10−6

10−4

10−2

dt

Erro

r

arkimex(2e )arkimex(2c )arkimex(3 )arkimex(4 )rk (2a )rk (3 )rk (4 )

≈10x

Semi-­‐implicit  limit

Explicit  limit

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Re(λ) ∆ t

Im(λ

) ∆ t

ARK2e (IMEX)ARK2e (Expl)

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5−3

−2

−1

0

1

2

3

Re(λ) ∆ t

Im(λ

) ∆ t

ARK3 (IMEX)ARK3 (Expl)

o Optimal orders of convergence observed for all methodso Time step size limited by the “slow” eigenvalues.

Example:  2D  Low  Mach  Isentropic  Vortex  Convection

Page 25: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­73112925

Example:  Vortex  Convection  (Computational  Cost)

25

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e+03 1e+04 1e+05

Error (L2)

Number of RHS function calls

ARK2c - No preconditionerARK2c - Block Jacobi

ARK2c - ILU(0)ARK2c - LU

RK2a

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e+01 1e+02 1e+03 1e+04

Error (L2)

Wall time (seconds)

ARK2c - No preconditionerARK2c - Block Jacobi

ARK2c - ILU(0)ARK2c - LU

RK2a

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e+03 1e+04 1e+05 1e+06

Error (L2)

Number of RHS function calls

ARK3 - No preconditionerARK3 - Block Jacobi

ARK3 - ILU(0)ARK3 - LU

RK3

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e+01 1e+02 1e+03 1e+04

Error (L2)

Wall time (seconds)

ARK3 - No preconditionerARK3 - Block Jacobi

ARK3 - ILU(0)ARK3 - LU

RK3

ARK  2c ARK  3Number  of  function  calls

Wall time

Page 26: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­73112926

Example:  Inertia  – Gravity  Wave

26

o Periodic  channel – 300  km  x  10  kmo No-­‐flux  boundary  conditions at  top  and  

bottom  boundarieso Mean  horizontal  velocity of  20  m/s  in  a  

uniformly  stratified  atmosphere  (M∞≈    0.06)o Initial  solution  – Potential  temperature  

perturbation

x

y

0 0.5 1 1.5 2 2.5 3x 105

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5x 10−3

Potential temperature perturbations at 3000 seconds (Solutionobtained withWENO5 and ARKIMEX 2e, 1200x50 grid points)

Eigenvalues of the right-­‐hand-­‐side operators

Grid:  300x10  points,  CRWENO5

Page 27: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­73112927

Example:  Inertia  – Gravity  Wave

27

Cross-­‐sectional  potential  temperature  perturbations  at  3000  seconds  (y  =  5  km)  at  CFL  numbers  0.2  – 13.6

Fastest  RK4CFL  ~  1.0,  Wall  time:  5400  sFunction  counts:  24000

CFL Wall  time   Function  countsAbsolute  (s) Normalized  (/RK4) Absolute Normalized  (/RK4)

8.5 6,149 1.14 24,800 1.0313.6 4,118 0.76 17,457 0.7317.0 3,492 0.65 14,820 0.6220.4 2,934 0.54 12,895 0.54

Page 28: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­73112928

Example:  Rising  Thermal  Bubble

28

Fastest  RK4CFL  ~  0.7,  Wall  time:  30,154  sFunction  counts:  160,000

CFL Wall  time   Function  counts

Absolute  (s) Normalized  (/RK4) Absolute Normalized  

(/RK4)6.9 73,111   2.42 360,016 2.25

34.7 22,104 0.73 111,824 0.70

138.9 8,569 0.28 45,969 0.29

Page 29: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

LLNL-­PRES-­73112929

Conclusions

29

Characteristic-­‐based flux splitting:o Partitioning of flux separates the acoustic and entropy modes à Allows larger

time step sizes (determined by flow velocity, not speed of sound).

o Comparison to alternatives

• Vs. explicit time integration: Larger time stepsàMore efficient algorithm

• Vs. implicit time integration: Semi-­‐implicit solves a linear system without anyapproximations to the overall governing equations (as opposed to: solve non-­‐linear system of equations or linearize governing equations in a time step).

Future work:o Improve efficiency of the linear solve

• Better preconditioning of the linear system

o Extend to 3D flow problems

Page 30: Characteristic*BasedSlow*Wave*Fast*Wave …...LLNL#PRES#731129 Thisworkwasperformed1under1the1auspicesof1the1U.S.1Department1of1EnergybyLawrence1Livermore1National1Laboratoryunder1c

Thank  you.  Questions?

Papers:

o Ghosh,  D.,  Constantinescu,  E.  M.,  Well-­Balanced,  Conservative  Finite-­Difference  Algorithm  for  Atmospheric  Flows,  AIAA  Journal,  54  (4),  2016

o Ghosh,  D.,  Constantinescu,  E.  M.,  Semi-­Implicit  Time  Integration  of  Atmospheric  Flows  with  Characteristic-­Based  Flux  Partitioning,  SIAM  J.  Sci.  Comput.,  38  (3),  2016

Code:  http://hypar.github.io/