characterization of invariant subspaces in the polydiscjay/otoa/otoa18/zamit.pdfcharacterization of...

53
Characterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh M., Jaydeb Sarkar & Sankar T. R.) Recent Advances in Operator Theory and Operator Algebras Indian Statistical Institute, Bangalore December 13-19, 2018 Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 1 / 25

Upload: others

Post on 19-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Characterization of invariant subspaces in the polydisc

Amit Maji

IIIT Guwahati

(Joint work with Aneesh M., Jaydeb Sarkar & Sankar T. R.)

Recent Advances in Operator Theory and Operator AlgebrasIndian Statistical Institute, Bangalore

December 13-19, 2018

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 1 / 25

Page 2: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Characterization of invariant subspaces . . .

Aim

To give a complete characterization of (joint) invariant subspaces for(Mz1 , . . . ,Mzn) on the Hardy space H2(Dn) over the unit polydisc Dn in Cn,n > 1.

To discuss about a complete set of unitary invariants for invariant subspacesas well as unitarily equivalent invariant subspaces.

To classify a large class of n-tuples of commuting isometries.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 2 / 25

Page 3: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Characterization of invariant subspaces . . .

Aim

To give a complete characterization of (joint) invariant subspaces for(Mz1 , . . . ,Mzn) on the Hardy space H2(Dn) over the unit polydisc Dn in Cn,n > 1.

To discuss about a complete set of unitary invariants for invariant subspacesas well as unitarily equivalent invariant subspaces.

To classify a large class of n-tuples of commuting isometries.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 2 / 25

Page 4: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Characterization of invariant subspaces . . .

Aim

To give a complete characterization of (joint) invariant subspaces for(Mz1 , . . . ,Mzn) on the Hardy space H2(Dn) over the unit polydisc Dn in Cn,n > 1.

To discuss about a complete set of unitary invariants for invariant subspacesas well as unitarily equivalent invariant subspaces.

To classify a large class of n-tuples of commuting isometries.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 2 / 25

Page 5: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Characterization of invariant subspaces . . .

Notation

Unit polydisc Dn = {(z1, . . . , zn) ∈ Cn : |zi | < 1, i = 1, . . . , n}.Hardy space H2(D) = {f =

∑∞n=0 anzn :

∑∞n=0 |an|2 <∞}.

Vector-valued Hardy space

H2E(D) = {f =

∞∑n=0

anzn : an ∈ E and∞∑n=0

‖an‖2E <∞},

where E is some Hilbert space.

Mz denote the multiplication operator on H2E(D) defined by

(Mz f )(w) = wf (w) (f ∈ H2E(D),w ∈ D).

H∞B(E)(D) denote the space of bounded B(E)-valued holomorphic functions onD.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 3 / 25

Page 6: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Invariant subspaces: Motivation

A closed subspace M of a Hilbert space H is said to be invariant subspaceunder T ∈ B(H) if T (M) ⊆M.

Given an invariant subspace M of T ∈ B(H), one can view T as an operatormatrix with respect to the decomposition H =M⊕M⊥[

T |M ∗0 ∗

].

One of the most famous open problems in operator theory and functiontheory is the so-called invariant subspace problem: Does every bounded linearoperator have a non-trivial closed invariant subspace?

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 4 / 25

Page 7: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Invariant subspaces: Motivation

A closed subspace M of a Hilbert space H is said to be invariant subspaceunder T ∈ B(H) if T (M) ⊆M.

Given an invariant subspace M of T ∈ B(H), one can view T as an operatormatrix with respect to the decomposition H =M⊕M⊥[

T |M ∗0 ∗

].

One of the most famous open problems in operator theory and functiontheory is the so-called invariant subspace problem: Does every bounded linearoperator have a non-trivial closed invariant subspace?

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 4 / 25

Page 8: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Invariant subspaces: Motivation

A closed subspace M of a Hilbert space H is said to be invariant subspaceunder T ∈ B(H) if T (M) ⊆M.

Given an invariant subspace M of T ∈ B(H), one can view T as an operatormatrix with respect to the decomposition H =M⊕M⊥[

T |M ∗0 ∗

].

One of the most famous open problems in operator theory and functiontheory is the so-called invariant subspace problem: Does every bounded linearoperator have a non-trivial closed invariant subspace?

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 4 / 25

Page 9: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Invariant subspaces: Motivation

The celebrated Beurling theorem (1949) says that a non-zero closed subspaceS of H2(D) is invariant for Mz if and only if there exists an inner functionθ ∈ H∞(D) such that

S = θH2(D).

One may now ask whether an analogous characterization holds for (joint)invariant subspaces for (Mz1 , . . . ,Mzn) on H2(Dn), n > 1, i.e., if S is aninvariant subspace for (Mz1 , . . . ,Mzn) on H2(Dn), then

S = ψH2(Dn),

where ψ ∈ H∞(Dn) is an inner function.

Rudin’s pathological examples (Rudin (1969)): There exist invariantsubspaces S1 and S2 for (Mz1 ,Mz2 ) on H2(D2) such that(1) S1 is not finitely generated, and(2) S2 ∩ H∞(D2) = {0}.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 5 / 25

Page 10: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Invariant subspaces: Motivation

The celebrated Beurling theorem (1949) says that a non-zero closed subspaceS of H2(D) is invariant for Mz if and only if there exists an inner functionθ ∈ H∞(D) such that

S = θH2(D).

One may now ask whether an analogous characterization holds for (joint)invariant subspaces for (Mz1 , . . . ,Mzn) on H2(Dn), n > 1, i.e.,

if S is aninvariant subspace for (Mz1 , . . . ,Mzn) on H2(Dn), then

S = ψH2(Dn),

where ψ ∈ H∞(Dn) is an inner function.

Rudin’s pathological examples (Rudin (1969)): There exist invariantsubspaces S1 and S2 for (Mz1 ,Mz2 ) on H2(D2) such that(1) S1 is not finitely generated, and(2) S2 ∩ H∞(D2) = {0}.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 5 / 25

Page 11: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Invariant subspaces: Motivation

The celebrated Beurling theorem (1949) says that a non-zero closed subspaceS of H2(D) is invariant for Mz if and only if there exists an inner functionθ ∈ H∞(D) such that

S = θH2(D).

One may now ask whether an analogous characterization holds for (joint)invariant subspaces for (Mz1 , . . . ,Mzn) on H2(Dn), n > 1, i.e., if S is aninvariant subspace for (Mz1 , . . . ,Mzn) on H2(Dn), then

S = ψH2(Dn),

where ψ ∈ H∞(Dn) is an inner function.

Rudin’s pathological examples (Rudin (1969)): There exist invariantsubspaces S1 and S2 for (Mz1 ,Mz2 ) on H2(D2) such that(1) S1 is not finitely generated, and(2) S2 ∩ H∞(D2) = {0}.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 5 / 25

Page 12: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Invariant subspaces: Motivation

The celebrated Beurling theorem (1949) says that a non-zero closed subspaceS of H2(D) is invariant for Mz if and only if there exists an inner functionθ ∈ H∞(D) such that

S = θH2(D).

One may now ask whether an analogous characterization holds for (joint)invariant subspaces for (Mz1 , . . . ,Mzn) on H2(Dn), n > 1, i.e., if S is aninvariant subspace for (Mz1 , . . . ,Mzn) on H2(Dn), then

S = ψH2(Dn),

where ψ ∈ H∞(Dn) is an inner function.

Rudin’s pathological examples (Rudin (1969)): There exist invariantsubspaces S1 and S2 for (Mz1 ,Mz2 ) on H2(D2) such that(1) S1 is not finitely generated, and(2) S2 ∩ H∞(D2) = {0}.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 5 / 25

Page 13: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Invariant subspaces: Motivation

To understand the structure of a large class of operators we need tounderstand the structure of shift invariant subspaces for the vector-valuedHardy space over the unit disc.

Theorem (Beurling-Lax-Halmos)

A non-zero closed subspace S of H2E(D) is invariant for Mz if and only if there

exists a closed subspace F ⊆ E and an inner function Θ ∈ H∞B(F,E)(D) such that

S = ΘH2F (D).

Idea

Identify Hardy space over polydisc H2(Dn+1) to the H2(Dn)-valued Hardyspace over disc H2

H2(Dn)(D).

Represent (Mz1 ,Mz2 , . . . ,Mzn+1 ) on H2(Dn+1) to (Mz ,Mκ1 , . . . ,Mκn) onH2

H2(Dn)(D), where κi ∈ H∞B(H2(Dn))(D), i = 1, . . . , n, is a constant as well as

simple and explicit B(H2(Dn))-valued analytic function.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 6 / 25

Page 14: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Invariant subspaces: Motivation

To understand the structure of a large class of operators we need tounderstand the structure of shift invariant subspaces for the vector-valuedHardy space over the unit disc.

Theorem (Beurling-Lax-Halmos)

A non-zero closed subspace S of H2E(D) is invariant for Mz if and only if there

exists a closed subspace F ⊆ E and an inner function Θ ∈ H∞B(F,E)(D) such that

S = ΘH2F (D).

Idea

Identify Hardy space over polydisc H2(Dn+1) to the H2(Dn)-valued Hardyspace over disc H2

H2(Dn)(D).

Represent (Mz1 ,Mz2 , . . . ,Mzn+1 ) on H2(Dn+1) to (Mz ,Mκ1 , . . . ,Mκn) onH2

H2(Dn)(D), where κi ∈ H∞B(H2(Dn))(D), i = 1, . . . , n, is a constant as well as

simple and explicit B(H2(Dn))-valued analytic function.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 6 / 25

Page 15: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Invariant subspaces: Motivation

To understand the structure of a large class of operators we need tounderstand the structure of shift invariant subspaces for the vector-valuedHardy space over the unit disc.

Theorem (Beurling-Lax-Halmos)

A non-zero closed subspace S of H2E(D) is invariant for Mz if and only if there

exists a closed subspace F ⊆ E and an inner function Θ ∈ H∞B(F,E)(D) such that

S = ΘH2F (D).

Idea

Identify Hardy space over polydisc H2(Dn+1) to the H2(Dn)-valued Hardyspace over disc H2

H2(Dn)(D).

Represent (Mz1 ,Mz2 , . . . ,Mzn+1 ) on H2(Dn+1) to (Mz ,Mκ1 , . . . ,Mκn) onH2

H2(Dn)(D), where κi ∈ H∞B(H2(Dn))(D), i = 1, . . . , n, is a constant as well as

simple and explicit B(H2(Dn))-valued analytic function.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 6 / 25

Page 16: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Basic definitions

A closed subspace S ⊆ H2E(Dn) is called a (joint) invariant subspace for

(Mz1 , . . . ,Mzn) on H2E(Dn) if

ziS ⊆ S,for all i = 1, . . . , n.

An isometry V on H is called a pure isometry (or shift) if V ∗m → 0 in SOT.

Let V be a pure isometry on H. Then

H =∞⊕

m=0V mW,

where W = ker V ∗ = H VH.

The natural map ΠV : H → H2W(D) defined by

ΠV (V mη) = zmη,

for all m ≥ 0 and η ∈ W, is a unitary operator and

ΠV V = MzΠV .

We call ΠV the Wold-von Neumann decomposition of the shift V .

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 7 / 25

Page 17: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Basic definitions

A closed subspace S ⊆ H2E(Dn) is called a (joint) invariant subspace for

(Mz1 , . . . ,Mzn) on H2E(Dn) if

ziS ⊆ S,for all i = 1, . . . , n.

An isometry V on H is called a pure isometry (or shift) if V ∗m → 0 in SOT.

Let V be a pure isometry on H. Then

H =∞⊕

m=0V mW,

where W = ker V ∗ = H VH.

The natural map ΠV : H → H2W(D) defined by

ΠV (V mη) = zmη,

for all m ≥ 0 and η ∈ W, is a unitary operator and

ΠV V = MzΠV .

We call ΠV the Wold-von Neumann decomposition of the shift V .

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 7 / 25

Page 18: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Basic definitions

A closed subspace S ⊆ H2E(Dn) is called a (joint) invariant subspace for

(Mz1 , . . . ,Mzn) on H2E(Dn) if

ziS ⊆ S,for all i = 1, . . . , n.

An isometry V on H is called a pure isometry (or shift) if V ∗m → 0 in SOT.

Let V be a pure isometry on H. Then

H =∞⊕

m=0V mW,

where W = ker V ∗ = H VH.

The natural map ΠV : H → H2W(D) defined by

ΠV (V mη) = zmη,

for all m ≥ 0 and η ∈ W, is a unitary operator and

ΠV V = MzΠV .

We call ΠV the Wold-von Neumann decomposition of the shift V .

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 7 / 25

Page 19: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Basic definitions

A closed subspace S ⊆ H2E(Dn) is called a (joint) invariant subspace for

(Mz1 , . . . ,Mzn) on H2E(Dn) if

ziS ⊆ S,for all i = 1, . . . , n.

An isometry V on H is called a pure isometry (or shift) if V ∗m → 0 in SOT.

Let V be a pure isometry on H. Then

H =∞⊕

m=0V mW,

where W = ker V ∗ = H VH.

The natural map ΠV : H → H2W(D) defined by

ΠV (V mη) = zmη,

for all m ≥ 0 and η ∈ W, is a unitary operator and

ΠV V = MzΠV .

We call ΠV the Wold-von Neumann decomposition of the shift V .

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 7 / 25

Page 20: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Commutator of shift

Theorem 1 (Maji, Sarkar, & Sankar’ 18)

Let V be a pure isometry on H, and let C be a bounded operator on H. Let PiVbe the Wold-von Neumann decomposition of V . Let W = Ker(V ∗) and assumethat M = ΠV C Π∗V . Then

CV = VC ,

if and only ifM = MΘ,

whereΘ(z) = PW(IH − zV ∗)−1C |W (z ∈ D).

RemarkIn addition if CV ∗ = V ∗C , then

Θ(z) = C |W = Θ(0) (z ∈ D),

as C (I − VV ∗) = (I − VV ∗)C and V ∗m |W= 0 for all m ≥ 1.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 8 / 25

Page 21: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Commutator of shift

Theorem 1 (Maji, Sarkar, & Sankar’ 18)

Let V be a pure isometry on H, and let C be a bounded operator on H. Let PiVbe the Wold-von Neumann decomposition of V . Let W = Ker(V ∗) and assumethat M = ΠV C Π∗V . Then

CV = VC ,

if and only ifM = MΘ,

whereΘ(z) = PW(IH − zV ∗)−1C |W (z ∈ D).

RemarkIn addition if CV ∗ = V ∗C , then

Θ(z) = C |W = Θ(0) (z ∈ D),

as C (I − VV ∗) = (I − VV ∗)C and V ∗m |W= 0 for all m ≥ 1.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 8 / 25

Page 22: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Preparation for main result

For the sake of simplicity we discuss firstly for n = 2, i.e., vector-valuedHardy space over the bidisc H2

E(D2).

We now identify H2E(D2) with H2

H2E (D)

(D) by the canonical unitaries

H2E(D2)

U−→ H2(D)⊗ H2E(D)

U−→ H2H2E (D)(D)

whereU(zk1

1 zk22 η) = zk1 ⊗ (zk2

1 η), ( k1, k2 ≥ 0, η ∈ E )

andU(zk ⊗ ζ) = zkζ, ( k ≥ 0, ζ ∈ H2

E(D) ).

Set U = UU. Then it follows that U : H2E(D2)→ H2

H2E (D)

(D) is a unitary

operator. Since

UMz1 = (Mz ⊗ IH2E (D) ))U and UMz2 = (IH2(D) ⊗Mz1 )U,

we have UMz1 = MzU, and UMz2 = Mκ1 U, where κ1(w) = Mz1 for w ∈ D.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 9 / 25

Page 23: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Preparation for main result

For the sake of simplicity we discuss firstly for n = 2, i.e., vector-valuedHardy space over the bidisc H2

E(D2).

We now identify H2E(D2) with H2

H2E (D)

(D) by the canonical unitaries

H2E(D2)

U−→ H2(D)⊗ H2E(D)

U−→ H2H2E (D)(D)

whereU(zk1

1 zk22 η) = zk1 ⊗ (zk2

1 η), ( k1, k2 ≥ 0, η ∈ E )

andU(zk ⊗ ζ) = zkζ, ( k ≥ 0, ζ ∈ H2

E(D) ).

Set U = UU. Then it follows that U : H2E(D2)→ H2

H2E (D)

(D) is a unitary

operator. Since

UMz1 = (Mz ⊗ IH2E (D) ))U and UMz2 = (IH2(D) ⊗Mz1 )U,

we have UMz1 = MzU, and UMz2 = Mκ1 U, where κ1(w) = Mz1 for w ∈ D.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 9 / 25

Page 24: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Preparation for main result

For the sake of simplicity we discuss firstly for n = 2, i.e., vector-valuedHardy space over the bidisc H2

E(D2).

We now identify H2E(D2) with H2

H2E (D)

(D) by the canonical unitaries

H2E(D2)

U−→ H2(D)⊗ H2E(D)

U−→ H2H2E (D)(D)

whereU(zk1

1 zk22 η) = zk1 ⊗ (zk2

1 η), ( k1, k2 ≥ 0, η ∈ E )

andU(zk ⊗ ζ) = zkζ, ( k ≥ 0, ζ ∈ H2

E(D) ).

Set U = UU. Then it follows that U : H2E(D2)→ H2

H2E (D)

(D) is a unitary

operator. Since

UMz1 = (Mz ⊗ IH2E (D) ))U and UMz2 = (IH2(D) ⊗Mz1 )U,

we have UMz1 = MzU, and UMz2 = Mκ1 U, where κ1(w) = Mz1 for w ∈ D.Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 9 / 25

Page 25: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Preparation for main result

Let E be a Hilbert space and let En = H2(Dn)⊗ E for n ≥ 1. Let κi ∈ H∞B(En)(D)

denote the B(En)-valued constant function on D defined by

κi (w) = Mzi ∈ B(En),

for all w ∈ D, and let Mκi denote the multiplication operator on H2En(D) defined by

Mκi f = κi f ,

for all f ∈ H2En(D) and i = 1, . . . , n. Then

Theorem 2 (Maji, Aneesh, Sarkar, & Sankar’ 18)

(i) (Mz1 ,Mz2 . . . ,Mzn+1 ) on H2E(Dn+1) and (Mz ,Mκ1 , . . . ,Mκn) on H2

En(D) areunitarily equivalent.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 10 / 25

Page 26: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Preparation for main result

Let S ⊆ H2H2E (D)

(D) be a closed invariant subspace for (Mz ,Mκ1 ) on

H2H2E (D)

(D). Set

V = Mz |S and V1 = Mκ1 |S .

Let ΠV : S → H2W(D) be the Wold-von Neumann decomposition of V on S.

ThenΠV V Π∗V = Mz and ΠV V1Π∗V = MΦ1 ,

whereΦ1(w) = PW(IS − wV ∗)−1V1|W ,

for all w ∈ D, Φ1 ∈ H∞B(W)(D).

Let iS denote the inclusion map iS : S ↪→ H2En(D). Then

H2W(D)

Π∗V−−→ S iS−→ H2H2E (D)(D)

i.e., ΠS = iS ◦ Π∗V : H2W(D)→ H2

H2E (D)

(D) is an isometry and

ran ΠS = S.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 11 / 25

Page 27: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Preparation for main result

Let S ⊆ H2H2E (D)

(D) be a closed invariant subspace for (Mz ,Mκ1 ) on

H2H2E (D)

(D). Set

V = Mz |S and V1 = Mκ1 |S .

Let ΠV : S → H2W(D) be the Wold-von Neumann decomposition of V on S.

ThenΠV V Π∗V = Mz and ΠV V1Π∗V = MΦ1 ,

whereΦ1(w) = PW(IS − wV ∗)−1V1|W ,

for all w ∈ D, Φ1 ∈ H∞B(W)(D).

Let iS denote the inclusion map iS : S ↪→ H2En(D). Then

H2W(D)

Π∗V−−→ S iS−→ H2H2E (D)(D)

i.e., ΠS = iS ◦ Π∗V : H2W(D)→ H2

H2E (D)

(D) is an isometry and

ran ΠS = S.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 11 / 25

Page 28: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Preparation for main result

Let S ⊆ H2H2E (D)

(D) be a closed invariant subspace for (Mz ,Mκ1 ) on

H2H2E (D)

(D). Set

V = Mz |S and V1 = Mκ1 |S .

Let ΠV : S → H2W(D) be the Wold-von Neumann decomposition of V on S.

ThenΠV V Π∗V = Mz and ΠV V1Π∗V = MΦ1 ,

whereΦ1(w) = PW(IS − wV ∗)−1V1|W ,

for all w ∈ D, Φ1 ∈ H∞B(W)(D).

Let iS denote the inclusion map iS : S ↪→ H2En(D). Then

H2W(D)

Π∗V−−→ S iS−→ H2H2E (D)(D)

i.e., ΠS = iS ◦ Π∗V : H2W(D)→ H2

H2E (D)

(D) is an isometry and

ran ΠS = S.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 11 / 25

Page 29: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Main result

We have invariant subspace result on vector-valued Hardy space over polydiscsetting:

Theorem 2 (Maji, Aneesh, Sarkar, & Sankar’ 18)

(ii) Let E be a Hilbert space, S ⊆ H2En(D) be a closed subspace, and let

W = S zS. Then S is invariant for (Mz ,Mκ1 , . . . ,Mκn) if and only if(MΦ1 , . . . ,MΦn) is an n-tuple of commuting shifts on H2

W(D) and there exists aninner function Θ ∈ H∞B(W,En)(D) such that

S = ΘH2W(D),

andκiΘ = ΘΦi ,

whereΦi (w) = PW(IS − wPSM∗z )−1Mκi |W ,

for all w ∈ D and i = 1, . . . , n.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 12 / 25

Page 30: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Remarks

One obvious necessary condition for a closed subspace S of H2En(D) to be

(joint) invariant for (Mz ,Mκ1 , . . . ,Mκn) is that S is invariant for Mz , and,consequently

S = ΘH2W(D),

where W = S zS and Θ ∈ H∞B(W,En)(D) is the Beurling, Lax and Halmosinner function.

Again κiS ⊆ S, =⇒κiΘ = ΘΓi ,

for some Γi ∈ B(H2W(D)), i = 1, . . . , n (by Douglas’s range inclusion theorem

).

In the above theorem, we prove that Γi is explicit, that is

Γi = Φi ∈ H∞B(W)(D),

for all i = 1, . . . , n, and (Γ1, . . . , Γn) is an n-tuple of commuting shifts onH2W(D).

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 13 / 25

Page 31: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Remarks

One obvious necessary condition for a closed subspace S of H2En(D) to be

(joint) invariant for (Mz ,Mκ1 , . . . ,Mκn) is that S is invariant for Mz , and,consequently

S = ΘH2W(D),

where W = S zS and Θ ∈ H∞B(W,En)(D) is the Beurling, Lax and Halmosinner function.

Again κiS ⊆ S, =⇒κiΘ = ΘΓi ,

for some Γi ∈ B(H2W(D)), i = 1, . . . , n (by Douglas’s range inclusion theorem

).

In the above theorem, we prove that Γi is explicit, that is

Γi = Φi ∈ H∞B(W)(D),

for all i = 1, . . . , n, and (Γ1, . . . , Γn) is an n-tuple of commuting shifts onH2W(D).

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 13 / 25

Page 32: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Remarks

One obvious necessary condition for a closed subspace S of H2En(D) to be

(joint) invariant for (Mz ,Mκ1 , . . . ,Mκn) is that S is invariant for Mz , and,consequently

S = ΘH2W(D),

where W = S zS and Θ ∈ H∞B(W,En)(D) is the Beurling, Lax and Halmosinner function.

Again κiS ⊆ S, =⇒κiΘ = ΘΓi ,

for some Γi ∈ B(H2W(D)), i = 1, . . . , n (by Douglas’s range inclusion theorem

).

In the above theorem, we prove that Γi is explicit, that is

Γi = Φi ∈ H∞B(W)(D),

for all i = 1, . . . , n, and (Γ1, . . . , Γn) is an n-tuple of commuting shifts onH2W(D).

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 13 / 25

Page 33: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Remarks

Uniqueness

Let S be an invariant subspace for (Mz ,Mκ1 , . . . ,Mκn) on H2En(D). Then

S = ΘH2W(D) and

κiΘ = ΘΦi (i = 1, . . . , n),

from the above Theorem.

Now suppose S = ΘH2W(D) and κi Θ = ΘΦi for some Hilbert space W, inner

function Θ ∈ H∞B(W)(D) and shift MΦi

on H2W(D), i = 1, . . . , n.

Then there exists a unitary operator τ :W → W such that

Θ = Θτ,

andτΦi = Φiτ,

for all i = 1, . . . , n.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 14 / 25

Page 34: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Remarks

Uniqueness

Let S be an invariant subspace for (Mz ,Mκ1 , . . . ,Mκn) on H2En(D). Then

S = ΘH2W(D) and

κiΘ = ΘΦi (i = 1, . . . , n),

from the above Theorem.Now suppose S = ΘH2

W(D) and κi Θ = ΘΦi for some Hilbert space W, inner

function Θ ∈ H∞B(W)(D) and shift MΦi

on H2W(D), i = 1, . . . , n.

Then there exists a unitary operator τ :W → W such that

Θ = Θτ,

andτΦi = Φiτ,

for all i = 1, . . . , n.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 14 / 25

Page 35: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Remarks

Uniqueness

Let S be an invariant subspace for (Mz ,Mκ1 , . . . ,Mκn) on H2En(D). Then

S = ΘH2W(D) and

κiΘ = ΘΦi (i = 1, . . . , n),

from the above Theorem.Now suppose S = ΘH2

W(D) and κi Θ = ΘΦi for some Hilbert space W, inner

function Θ ∈ H∞B(W)(D) and shift MΦi

on H2W(D), i = 1, . . . , n.

Then there exists a unitary operator τ :W → W such that

Θ = Θτ,

andτΦi = Φiτ,

for all i = 1, . . . , n.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 14 / 25

Page 36: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Nested invariant subspaces

Theorem (Maji, Aneesh, Sarkar, & Sankar’ 18)

Let E be a Hilbert space, and let S1 = Θ1H2W1

(D) and S2 = Θ2H2W2

(D) be twoinvariant subspaces for (Mz ,Mκ1 , . . . ,Mκn) on H2

En(D) and Wj = Sj zSj forj = 1, 2. Let

Φj,i (w) = PWj (ISj − wPSj M∗z )−1Mκi |Wj ,

for all w ∈ D, j = 1, 2, and i = 1, . . . , n.

Then S1 ⊆ S2 if and only if there exists an inner multiplier Ψ ∈ H∞B(W1,W2)(D)such that Θ1 = Θ2Ψ and ΨΦ1,i = Φ2,iΨ for all i = 1, . . . , n.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 15 / 25

Page 37: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Nested invariant subspaces

Theorem (Maji, Aneesh, Sarkar, & Sankar’ 18)

Let E be a Hilbert space, and let S1 = Θ1H2W1

(D) and S2 = Θ2H2W2

(D) be twoinvariant subspaces for (Mz ,Mκ1 , . . . ,Mκn) on H2

En(D) and Wj = Sj zSj forj = 1, 2. Let

Φj,i (w) = PWj (ISj − wPSj M∗z )−1Mκi |Wj ,

for all w ∈ D, j = 1, 2, and i = 1, . . . , n.Then S1 ⊆ S2 if and only if there exists an inner multiplier Ψ ∈ H∞B(W1,W2)(D)such that Θ1 = Θ2Ψ and ΨΦ1,i = Φ2,iΨ for all i = 1, . . . , n.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 15 / 25

Page 38: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Unitarily equivalent invariant subspaces

Definition

Let S and S be invariant subspaces for the (n + 1)-tuples of multiplicationoperators (Mz ,Mκ1 , . . . ,Mκn) on H2

En(D) and H2En

(D), respectively. We say that Sand S are unitarily equivalent, and write S ∼= S, if there is a unitary mapU : S → S such that

UMz |S = Mz |SU and UMκi |S = Mκi |SU,

for all i = 1, . . . , n.

Identification

There exists a unitary operator UE : H2E(Dn+1)→ H2

En(D) such that

UEMz1 = MzUE ,

andUEMzi+1 = Mκi UE ,

for all i = 1, . . . , n.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 16 / 25

Page 39: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Unitarily equivalent invariant subspaces

Definition

Let S and S be invariant subspaces for the (n + 1)-tuples of multiplicationoperators (Mz ,Mκ1 , . . . ,Mκn) on H2

En(D) and H2En

(D), respectively. We say that Sand S are unitarily equivalent, and write S ∼= S, if there is a unitary mapU : S → S such that

UMz |S = Mz |SU and UMκi |S = Mκi |SU,

for all i = 1, . . . , n.

Identification

There exists a unitary operator UE : H2E(Dn+1)→ H2

En(D) such that

UEMz1 = MzUE ,

andUEMzi+1 = Mκi UE ,

for all i = 1, . . . , n.Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 16 / 25

Page 40: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Intertwining maps

Let F be another Hilbert space, and let X : H2E(Dn+1)→ H2

F (Dn+1) be a boundedlinear operator such that

XMzi = Mzi X , (0.1)

for all i = 1, . . . , n + 1. SetXn = UFXU∗E .

Then Xn : H2En(D)→ H2

Fn(D) is bounded and

XnMz = MzXn and XnMκi = Mκi Xn, (0.2)

for all i = 1, . . . , n.

Definition

Any map satisfying (0.2) will be referred to module maps.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 17 / 25

Page 41: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Unitarily equivalent invariant subspaces

Theorem (Maji, Aneesh, Sarkar, & Sankar’ 18)

Let S ⊆ H2Fn

(D) be a closed invariant subspace for (Mz ,Mκ1 , . . . ,Mκn) onH2Fn

(D). Then S ∼= H2En(D) if and only if there exists an isometric module map

Xn : H2En(D)→ H2

Fn(D) such that

S = XnH2En(D).

Moreover, in this casedim E ≤ dim F .

Corollary

Let S ⊆ H2Hn

(D) be a closed invariant subspace for (Mz ,Mκ1 , . . . ,Mκn) on

H2Hn

(D). Then S ∼= H2Hn

(D) if and only if there exists an isometric module map

Xn : H2Hn

(D)→ H2Hn

(D) such that

S = Xn(H2Hn

(D)).

The above corollary was first observed by Agrawal, Clark and Douglas (1986).

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 18 / 25

Page 42: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Unitarily equivalent invariant subspaces

Theorem (Maji, Aneesh, Sarkar, & Sankar’ 18)

Let S ⊆ H2Fn

(D) be a closed invariant subspace for (Mz ,Mκ1 , . . . ,Mκn) onH2Fn

(D). Then S ∼= H2En(D) if and only if there exists an isometric module map

Xn : H2En(D)→ H2

Fn(D) such that

S = XnH2En(D).

Moreover, in this casedim E ≤ dim F .

Corollary

Let S ⊆ H2Hn

(D) be a closed invariant subspace for (Mz ,Mκ1 , . . . ,Mκn) on

H2Hn

(D). Then S ∼= H2Hn

(D) if and only if there exists an isometric module map

Xn : H2Hn

(D)→ H2Hn

(D) such that

S = Xn(H2Hn

(D)).

The above corollary was first observed by Agrawal, Clark and Douglas (1986).Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 18 / 25

Page 43: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

A complete set of unitary invariants

Definition

Let E and E be Hilbert spaces, and let {Ψ1, . . . ,Ψn} ⊆ H∞B(E)(D) and

{Ψ1, . . . , Ψn} ⊆ H∞B(E)(D). We say that {Ψ1, . . . ,Ψn} and {Ψ1, . . . , Ψn} coincide

if there exists a unitary operator τ : E → E such that

τΨi (z) = Ψi (z)τ,

for all z ∈ D and i = 1, . . . , n.

Theorem (Maji, Aneesh, Sarkar, & Sankar’ 18)

Let E and E be Hilbert spaces. Let S ⊆ H2En(D) and S ⊆ H2

En(D) be invariant

subspaces for (Mz ,Mκ1 , . . . ,Mκn) on H2En(D) and H2

En(D), respectively. Then

S ∼= S if and only if {Φ1, . . . ,Φn} and {Φ1, . . . , Φn} coincide.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 19 / 25

Page 44: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

A complete set of unitary invariants

Definition

Let E and E be Hilbert spaces, and let {Ψ1, . . . ,Ψn} ⊆ H∞B(E)(D) and

{Ψ1, . . . , Ψn} ⊆ H∞B(E)(D). We say that {Ψ1, . . . ,Ψn} and {Ψ1, . . . , Ψn} coincide

if there exists a unitary operator τ : E → E such that

τΨi (z) = Ψi (z)τ,

for all z ∈ D and i = 1, . . . , n.

Theorem (Maji, Aneesh, Sarkar, & Sankar’ 18)

Let E and E be Hilbert spaces. Let S ⊆ H2En(D) and S ⊆ H2

En(D) be invariant

subspaces for (Mz ,Mκ1 , . . . ,Mκn) on H2En(D) and H2

En(D), respectively. Then

S ∼= S if and only if {Φ1, . . . ,Φn} and {Φ1, . . . , Φn} coincide.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 19 / 25

Page 45: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Representations of model isometries

Question

Given a Hilbert space E , characterize (n + 1)-tuples of commuting shifts onHilbert spaces that are unitarily equivalent to (Mz ,Mκ1 , . . . ,Mκn) on H2

En(D).

Answer

Answer to this question is related to (numerical invariant) the rank of an operatorassociated with the Szego kernel on Dn+1.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 20 / 25

Page 46: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Representations of model isometries

Question

Given a Hilbert space E , characterize (n + 1)-tuples of commuting shifts onHilbert spaces that are unitarily equivalent to (Mz ,Mκ1 , . . . ,Mκn) on H2

En(D).

Answer

Answer to this question is related to (numerical invariant) the rank of an operatorassociated with the Szego kernel on Dn+1.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 20 / 25

Page 47: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Representations of model isometries

DefinitionThe defect operator corresponding to an m-tuple of commuting contractions(T1, . . . ,Tm) on a Hilbert space H is defined (see, Guo & Yang (2004)) as

S−1m (T1, . . . ,Tm) =

∑0≤|k|≤m

(−1)|k|T k11 · · ·T

kmm T ∗k1

1 · · ·T ∗kmm ,

where |k| = k1 + k2 + . . .+ km, 0 ≤ ki ≤ 1, i = 1, . . . ,m.

Definition

We say that (T1, . . . ,Tm) is of rank p (p ∈ N ∪ {∞}) if

rank [S−1m (T1, . . . ,Tm)] = p,

and we writerank (T1, . . . ,Tm) = p.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 21 / 25

Page 48: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Representations of model isometries

DefinitionThe defect operator corresponding to an m-tuple of commuting contractions(T1, . . . ,Tm) on a Hilbert space H is defined (see, Guo & Yang (2004)) as

S−1m (T1, . . . ,Tm) =

∑0≤|k|≤m

(−1)|k|T k11 · · ·T

kmm T ∗k1

1 · · ·T ∗kmm ,

where |k| = k1 + k2 + . . .+ km, 0 ≤ ki ≤ 1, i = 1, . . . ,m.

Definition

We say that (T1, . . . ,Tm) is of rank p (p ∈ N ∪ {∞}) if

rank [S−1m (T1, . . . ,Tm)] = p,

and we writerank (T1, . . . ,Tm) = p.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 21 / 25

Page 49: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Representations of model isometries

Let (V ,V1 . . . ,Vn) be an (n + 1)-tuple of doubly commuting shifts on H.Then Sarkar (2014) proved that (V ,V1, . . . ,Vn) on H and (Mz1 , . . . ,Mzn+1 )on H2

D(Dn+1) are unitarily equivalent, where

D = ran S−1n+1(V ,V1, . . . ,Vn) =

(n∩i=1

ker V ∗i

)∩ ker V ∗.

Theorem (Maji, Aneesh, Sarkar, & Sankar’ 18)

Let (V ,V1, . . . ,Vn) be an (n + 1)-tuple of doubly commuting shifts on someHilbert space H. Let W = H VH, and let

Ψi (z) = Vi |W (i = 1, . . . , n),

for all z ∈ D. Then (V ,V1, . . . ,Vn) on H, (Mz ,MΨ1 , . . . ,MΨn) on H2W(D), and

(Mz ,Mκ1 , . . . ,Mκn) on H2En(D) are unitarily equivalent, where E is a Hilbert space

and dim E = rank (V ,V1, . . . ,Vn).

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 22 / 25

Page 50: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Representations of model isometries

Let (V ,V1 . . . ,Vn) be an (n + 1)-tuple of doubly commuting shifts on H.Then Sarkar (2014) proved that (V ,V1, . . . ,Vn) on H and (Mz1 , . . . ,Mzn+1 )on H2

D(Dn+1) are unitarily equivalent, where

D = ran S−1n+1(V ,V1, . . . ,Vn) =

(n∩i=1

ker V ∗i

)∩ ker V ∗.

Theorem (Maji, Aneesh, Sarkar, & Sankar’ 18)

Let (V ,V1, . . . ,Vn) be an (n + 1)-tuple of doubly commuting shifts on someHilbert space H. Let W = H VH, and let

Ψi (z) = Vi |W (i = 1, . . . , n),

for all z ∈ D. Then (V ,V1, . . . ,Vn) on H, (Mz ,MΨ1 , . . . ,MΨn) on H2W(D), and

(Mz ,Mκ1 , . . . ,Mκn) on H2En(D) are unitarily equivalent, where E is a Hilbert space

and dim E = rank (V ,V1, . . . ,Vn).

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 22 / 25

Page 51: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

References

O. P. Agrawal, D. N. Clark and R. G. Douglas, Invariant subspaces in thepolydisk, Pacific J. Math., 121 (1986), 1-11.

H. Bercovici, R.G. Douglas and C. Foias, Canonical models for bi-isometries,A panorama of modern operator theory and related topics, 177-205, Oper.Theory Adv. Appl., 218, Birkhauser/Springer Basel AG, Basel, 2012.

H. Bercovici, R.G. Douglas and C. Foias, On the classification ofmulti-isometries, Acta Sci. Math. (Szeged), 72 (2006), 639-661.

C. A. Berger, L. A. Coburn and A. Lebow, Representation and index theoryfor C∗-algebras generated by commuting isometries, J. Funct. Anal. 27(1978), 51–99.

B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space.North-Holland, Amsterdam-London, 1970.

K. Guo and R. Yang, The core function of submodules over the bidisk,Indiana Univ. Math. J. 53 (2004), 205-222.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 23 / 25

Page 52: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

References

A. Maji, A. Mundayadan, J. Sarkar, Sankar T. R, Characterization ofinvariant subspaces in the polydisc , Journal of Operator Theory , (To appear).

A. Maji, J. Sarkar, Sankar T. R, Pairs of commuting isometries - I , StudiaMathematica, (To appear).

D. Popovici, A Wold-type decomposition for commuting isometric pairs,Proc. Amer. Math. Soc. 132 (2004) 2303-2314.

Y. Qin and R. Yang, A note on Rudin’s pathological submodule in H2(D2),Integral Equations Operator Theory 88 (2017), 363-372.

W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.

J. Sarkar, Wold decomposition for doubly commuting isometries, LinearAlgebra Appl. 445 (2014), 289-301.

H. Wold, A study in the analysis of stationary time series, Stockholm, 1954.

Amit Maji ( IIIT G ) Characterization of invariant subspaces in the polydisc 24 / 25

Page 53: Characterization of invariant subspaces in the polydiscjay/OTOA/OTOA18/zAmit.pdfCharacterization of invariant subspaces in the polydisc Amit Maji IIIT Guwahati (Joint work with Aneesh

Thank You!