cheat sheet communications

Upload: ashok815

Post on 07-Jul-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Cheat Sheet Communications

    1/1

    Cheat Sheet: ECE 318Prepared by Walid Abediseid

    1 Modulation Schemes   (see Table below)

    –   Why Modulation? Make transmission more reliable.Reduce noise and interference. To facilitate channel as-signment and multiplexing.

    –   For DSB-LC:   µ   =   |max f (t)|Ac represents the modula-tion index. In this case, one may rewrite the DSB-LC as:   s(t) =   Ac(1 +  µf (t)) cos(ωc  +  φ), conditionedon   |max f (t)|   = 1. The modulation efficiency is de-

    fined by  η   =  P f /2P f /2+A2c/2

    , or   η   =  µ2P f /2µ2P f /2+1/2

      =  µ2P f 1+µ2P f 

    (for the other representation). A special case, is whenf (t) = cos(ωf t) or sin(ωf t). In this case, we have

    P f  = 1/2, and  η  =  µ2

    2+µ2 .

    –  For SSB:  f̂ (t) =   1πt∗f (t) is the Hilbert Transform of f (t)(hard to find in time-domain). In frequency domain:

    F̂ (ω) =  − jsgn(ω)F (ω). Hilbert Transform acts as a90◦ phase delay. Example   cos(ωt) = cos(ωt −  π/2) =sin(ωt), in this case no need to do Fourier Transform.

    –  All the above modulation schemes can be demodulated(coherently) using the following:

    s(t)   ×

    cos(ωct + φ)

    LPF   Acf (t)

    However, for VSB modulation scheme, the filter at the

    transmitter side   hVSB(t) must satisfy the condition:H (ω−ωc) + H (ω + ωc) = constant, so that one can usethe above demodulator to recover the actual messagesignal f (t).

    –   An exception to the above demodulator, is the DSB-LC. If the modulation index  µ  such that the envelopeof  s(t) is greater than zero, i.e., (Ac + µf (t)) >  0, thena simple RC circuit can be used to recover f (t).

    2 Noise Filtering in LTI Systems

    A random noise signal,   n(t), is called white if it has a

    power spectral density function,   S n(ω), that is flat for

    all frequencies, i.e.,   S n(ω) =  K 2   where   K   is a consta

    The average power of a signal   x(t) with power spect

    density   S x(ω) is given by:   P x   =  12π

    ∞ 

    −∞

    S x(ω)   dω   a

    since   S x(ω) is a non-negative function, one can write above equation as   P x   =

      12π   ×   [Total Area under S x(ω

    Signal-to-Noise Ratio (SNR) is defined by: SNR Average Power of Transmitted Signal

    Average Power of Noise  . The following pr

    erty of LTI systems is very important:

    r(t)

    S r(ω)

    LTI

    H (ω)g(t) =  r(t) ∗ h(t)

    S g(ω) =  S r(ω)|H (ω)|2

    Example 1.  Suppose we have  r(t) =  x(t) + n(t)  is the into the above LTI system, where   n(t)   is a white noise wS n(t) =  K/2, and 

    ω

    S x(ω)

    −2πB

    1

    2πBω

    H (ω)

    −πB

    1/2

    πB

    Find the SNR at the output? 

    Solution:   Let  y(t) =  x(t) ∗ h(t), and  n(t) =  n(t) ∗ h(t).order to find the average power of   y(t)   and   n(t), we nto find their corresponding power spectral density functi

    S y(ω),  S n(ω):

    ω

    S y(ω)

    −πB

    1/4

    1/8

    πBω

    S n(ω)

    −πB

    K/8

    πB

    In this case, the average power of   y(t)   can be eily evaluated using:   P y   =

      12π [Area under S y(ω)]

    12π [Area of rectangle +Area of triangle] =

      316

    B. Also, P n1

    2π [2πB  × K 

    8 ] =  BK 

    8   . Therefore, the SNR=

      3B/16

    BK/8   =  3

    2K .

    Scheme Format Power P s   Band-Width  Bs

    DSB-LC   s(t) = (Ac + f (t)) cos(ωct + φ)  A2c

    2   +  µ2P f 

    2   2Bf 

    DSB-SC   s(t) =  Acf (t) cos(ωct + φ)  A2cP f 

    2   2Bf 

    USSB   s(t) =  Acf (t) cos(ωct + φ) − Ac f̂ (t)sin(ωct + φ)  A2cP f 

    4  Bf 

    LSSB   s(t) =  Acf (t) cos(ωct + φ) + Ac f̂ (t)sin(ωct + φ)  A2cP f 

    4  Bf 

    VSB   s(t) =  sDSB−SC(t) ∗ hVSB(t) depend on filter depend on filter

    savals Thm:  ∞−∞ x(t)y(t)

    ∗ dt   =   12π  ∞−∞ X (ω)Y (ω)

    ∗ dω. Averag power of   x(t),   P x   = limT →∞1T 

      T/2−T/2 |x(t)|

    2 dt. Power[C

    =1 C k cos(ωkt + φk)] =  C 20  +

     nk=1

    C 2k2   , where  ωi  =  ωj   for   i  =  j . If the input to an LIT system with Frequency Response H (

    he complex exponential  A exp( jω0t) =⇒   the output is simply given by  A|H (ω0)| exp( j[ω0t + ∠H (ω0)]). Autocorrelation of  xt) =  F −1{S x(ω)}. Average power also equal to  Rx(0).