cheeseman - energy from waste lecture 2013.ppt

Upload: amy-jones

Post on 02-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    1/65

    Energy from WasteSustainability Themes and Engineering Principles

    Chris Cheeseman

    Department of Civil and Environmental EngineeringImperial College London

    Email: [email protected]

    CI 181 Energy production and distribution

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    2/65

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    3/65

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    4/65

    UK Population Growth

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    5/65

    Energy use per capita

    K

    g o

    f o i l e q u i v a

    l e n t p e r c a p

    i t a

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    6/65

    Oil consumption worldwide

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    7/65

    Carbon dioxide in the atmosphere

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    8/65

    Future temperature predictions

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    9/65

    UK Energy supply

    Potential to supply ~10% of UK energy from EfW

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    10/65

    The UK energy gap

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    11/65

    UK sources of alternative renewable energy

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    12/65

    Cost of energy from different sources

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    13/65

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    14/65

    Municipal solid waste collected, EU 15, 2007

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    15/65

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    16/65

    Hierarchy of waste management options

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    17/65

    MSW management in the EU

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    18/65

    Municipal solid waste sent to landfill in EU 15

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    19/65

    Energy from Waste via Landfill Gas

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    20/65

    Landfills as major construction projects

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    21/65

    Landfill Processes

    INPUTS: Liquids - present in waste, rain and other inputs

    Solids - wastes

    inert and biodegradable partsGases - air in void spaces

    PROCESSES: Microbial activitySolution/precipitation reactionsVolatilisationSorptionFiltration

    OUTPUTS: Landfill leachateLandfill gasResidual solids - what is left at the end

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    22/65

    Landfill degradation:

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    23/65

    Schematic of landfill stabilisation:Aerobic: phases I and VAnaerobic: phases II, III and IV

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    24/65

    Methanogenic landfill gas composition

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    25/65

    Landfill gas

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    26/65

    Typical landfill gasextraction well

    Landfill gas extraction well

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    27/65

    Schematic diagram of an operating landfill siteLandfill gas collection system

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    28/65

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    29/65

    Green energy from landfill gas:

    Gas extraction systems used in large modern landfill sites

    Combusted and used to generate electricity and/or heat

    Calorific value ~ 15 - 21 MJ/m 3 (natural gas is 37 MJ/m 3)

    Site containing 1 million tonnes can generate 1 MW of electricity

    Currently around 150 UK sites are generating electricity

    Producing a total of 292 megawatts

    Estimated 500 LFG energy schemes worldwide

    Yield of LFG - typically about 1 - 3 m 3 /tonne of waste per year

    Maximum recorded is over 20 m 3 /tonne

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    30/65

    Landfill gas production and collection for utilisationLandfill gas production and collection

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    31/65

    LFG EXPLOITATION:

    Normally about 50% of landfill gas (LFG) is lost

    LFG is saturated with water and this needs to be removed

    Direct use in boilers, kilns and furnaces is easiest and cheapest

    Most suited to large sites containing 200,000 to 500,000 tonnes ofwaste

    Bigger schemes are better, economies of scale

    Pollutant emissions from LFG combustion are mainly carbon

    dioxide, water vapour and minor pollutants

    Probable decline beyond 2025 due to the effects of EU LandfillDirective on waste composition reduction in biodegradable waste

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    32/65

    Landfill should be the last resort for waste, particularly biodegradable waste;

    The landfill tax will remain a key driver to divert waste from landfill;

    It is necessary to ensure the UK meets key EU targets in 2013 and 2020.

    Landfill Tax will increase until it reaches 80 per tonne in 2014/15.

    Government Review of Waste Policy 2011

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    33/65

    Reduction of biodegradable municipal waste sent to landfill:2010 - reduce biodegradable waste to landfill to 75% of 1995 levels

    2013 - reduce biodegradable waste to landfill to 50% of 1995 levels2020 - reduce biodegradable waste to landfill to 35% of 1995 levels

    EU Landfill Directive:

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    34/65

    A landfill in a box!

    Anaerobic Digestion (AD) effectively treats the organic component of waste

    Huge range of green materials, rotten food, manure, industry-sourced organicwaste and even energy crops grown specifically for this purpose.

    Enables biogas production under optimised conditions

    Transforms the green waste into energy and a valuable natural fertilizer.

    http://www.youtube.com/watch?v=ND9QoDS4ScY

    Anaerobic digestion

    http://www.youtube.com/watch?v=ND9QoDS4ScYhttp://www.youtube.com/watch?v=ND9QoDS4ScY
  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    35/65

    Food waste to anaerobic digestion

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    36/65

    Anaerobic digester

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    37/65

    Typical AD plants

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    38/65

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    39/65

    Composition and calorific values of MSW

    Weight % Calorific value MJ/kg

    Paper/board 33 16.9Plastics 7 32.6Glass 10 NilMetals 8 NilFood/garden 20 9.0

    Textiles 4 15.6Other 18 10.6

    Moisture 31.2 w/wCombustibles 44.6 w/w

    Inert 24.2 w/wCalorific value 10.6 MJ/kg

    Calorific value of municipal solid waste ~ 1/3 of coal1 Tonne MSW = 500kWh electricity or 200Kg of oil

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    40/65

    UK Energy from waste (EfW) plants

    Source: Incineration Transformation, A.Metcalfe, CIWM, June 2010

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    41/65

    New proposedWtE facilities

    Source: Incineration Transformation,

    A.Metcalfe, CIWM, June 2010

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    42/65

    MSW Incineration plants in the UK

    Plant Company Scale (tpa) Electrical Energy

    Edmonton London Waste 500,000 32MWAllington WRG 500,000 43MWSELCHP SELCHP/Veolia 420,000 32MWTysesley Tyseley Waste/Veolia 350,000 25MWCleveland Sita 245,000 20MWCoventry Coventry/Solihull WDC 240,000 18MWSheffield Veolia 225,000 + Heat 39MWStoke MES Environmental 200,000 13MWMarchwood Veolia 165,000 14MWPortsmouth Veolia 165,000 14MWNottingham Veolia 150,000 + Heat 20MWKirklees Sita 136,000 9MWDundee Dundee Energy Recycling 120,000 83MW

    Wolverhampton MES Environmental 105,000 7MWDudley MES Environmental 90,000 7MWChineham Veolia 90,000 7MWIsle of Man Sita 60,000 6MW

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    43/65

    SELCHP (next to Millwall FC)

    South East London Combined Heat and Power

    l f l h

    http://upload.wikimedia.org/wikipedia/commons/9/9f/SELCHP.jpg
  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    44/65

    Veolia EfW plant Southampton

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    45/65

    400,000 tonnes capacity, operating from 2010

    New Grundon/Viridor Lakeside EfW plant

    http://www.youtube.com/watch?v=JRCuEInRqEY

    b f l

    http://www.youtube.com/watch?v=JRCuEInRqEYhttp://www.youtube.com/watch?v=JRCuEInRqEY
  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    46/65

    446 large scale MSW incinerators in Europe

    Number of plants in Europe

    http://www.cewep.eu/

    France 130 13.7Germany 70 19.1Italy 51 4.5Sweden 31 4.7

    Denmark 31 3.5Switzerland 29 3.6UK 24 4.4Norway 20 1.0Belgium 16 2.6Netherlands 12 6.3Spain 10 2.2Austria 11 2.3Portugal 3 1.1Czech Republic 3 0.4Finland 3 0.3Slovakia 2 0.2

    Number offacilities

    MSWTreated

    Mtonnes per year

    CEWEP is the Confederation of European Waste to Energy Plants

    http://www.cewep.eu/http://www.cewep.eu/
  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    47/65

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    48/65

    Spittelau waste to energy plant, Austria

    A d

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    49/65

    Amsterdam

    Largest WtE facility in the world @ 1.5 million tonnes per year

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    50/65

    Energy from Waste (EfW)

    Advantages:

    No methane productionIncineration close to where waste is generated/collectedNo long-term liabilitiesEfW now has a track record in many countriesProduces biologically sterile ash with:

    1/10 the volume1/3rd the weight of original waste

    Emissions are controlledExtract energy from the wasteBottom ash can be reused as aggregate in construction

    Energ from Waste (EfW)

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    51/65

    Energy from Waste (EfW)

    Disadvantages:

    Generates carbon dioxidePublic perceptionHigh costs and long pay back periodsNeeds long-term waste disposal contracts

    Regarded by some as not compatible with recyclingNeeds high calorific value wastes- paper and plastics

    Concern over emissions - dioxins and furansProduction of ash residues requiring disposal

    h d f f l

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    52/65

    Schematic diagram of an EfW plant

    Crane typically a 5 Tonne grab

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    53/65

    Crane, typically a 5 Tonne grab

    View of waste burning on the grate

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    54/65

    View of waste burning on the grate

    Temperature is typically at 900 - 1000

    C

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    55/65

    S f UK f l dfill d b i

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    56/65

    I n s t a l

    l e d c a p a c i t y

    M W

    %

    o f t o t a l r e n e w a

    b l e e n e r g y

    Status of UK energy from landfill gas and waste combustion

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    57/65

    M h i l Bi l gi l T t t

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    58/65

    Waste delivered toreception hall

    Shredding andmechanicalseparation

    Sent forrecyclingMetals

    AnaerobicDigestion

    LandfillSRF to market

    Biogas forelectricity or fuel

    for vehicles

    ResiduesOrganics Refuse derived fuel

    Biomass fuelEnergy for homes

    and businesses

    Mechanical Biological Treatment

    Producing Solid Recovered Fuel (SRF)450,000 Tonnes of SRF currently produced in the UK (9 large facilities)About 1.5 million tonnes SRF capacity planned (19 facilities)SRF mainly used in cement kilns

    Alternative to mass burn energy from waste plants

    Pl t tl d i g SRF i th UK

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    59/65

    Plants currently producing SRF in the UK

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    60/65

    SRF plants planned in the UK

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    61/65

    SRF plants planned in the UK

    Cement kilns burning waste

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    62/65

    Temperatures of 1450C

    Uses high calorific value wastes

    Cement kilns burning waste

    UK renewable energy generation

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    63/65

    UK renewable energy generation

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    64/65

    And in the long term!!!!!

  • 8/10/2019 Cheeseman - Energy from waste lecture 2013.ppt

    65/65

    And in the long term!!!!!

    T h li h !!!!