chemical change-2

Upload: chandra-reddy

Post on 02-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Chemical Change-2

    1/95

    Chemical Change

    Chapter 2

    Dr. Suzan A. Khayyat 1

  • 8/10/2019 Chemical Change-2

    2/95

    Chemical

    reactions

    PhotochemicalReaction

    Photooxidation Reaction

    PhotoadditionReaction

    Photohydrogenation

    Pericyclic Reaction

    Photodissociation

    Thermal chemicalReaction

    types of chemical reaction

    Dr. Suzan A. Khayyat 2

  • 8/10/2019 Chemical Change-2

    3/95

    The Jablonski Diagram

    The energy gained by a molecule when it absorbs a photon causes an electron tobe promoted to a higher electronic energy level. Figure 3 illustrates the principalphotophysical radiative and non-radiative processes displayed by organicmolecules in solution. The symbols So, S1, T2, etc., refer to the ground electronic

    state (So), first excited singlet state (S1), second excited triplet state (T2), and soon. The horizontal lines represent the vibrational levels of each electronic state.Straight arrows indicate radiative transitions, and curly arrows indicate non-radiative transitions. The boxes detail the electronic spins in each orbital, withelectrons shown as up and down arrows, to distinguish their spin.

    Note that all transitions from one electronic state to another originate from the

    lowest vibrational level of the initial electronic state. For example, fluorescenceoccurs only from S1, because the higher singlet states (S2, etc.) decay so rapidly byinternal conversion that fluorescence from these states cannot compete.

    Dr. Suzan A. Khayyat 3

  • 8/10/2019 Chemical Change-2

    4/95

    Absorption

    Fluo

    rescence

    Phosphorescence

    photochem. &singlet oxygen

    n

    1(n,

    Singlet State

    (S1,S2, ......) Triplet State(T1, T2, ...)

    ISC

    Biological Response

    Photochem.

    Ground StateSo

    Jablonski energy diagram

    Jablonski energy diagram

    Dr. Suzan A. Khayyat 4

  • 8/10/2019 Chemical Change-2

    5/95

    Jablonski diagram

    Figure 3. The basic concepts of this Jablonski diagram are presented in the BasicPhotophysics module. This version emphasizes the spins of electrons in each ofthe singlet states (paired, i.e., opposite orientation, spins) compared to thetriplet states (unpaired, i.e., same orientation, spins).

    Dr. Suzan A. Khayyat 5

  • 8/10/2019 Chemical Change-2

    6/95

  • 8/10/2019 Chemical Change-2

    7/95

  • 8/10/2019 Chemical Change-2

    8/95

    Photochemical reactions with singlet Oxygen

    1

    O2

  • 8/10/2019 Chemical Change-2

    9/95

    1Sens (S0

    )1Sens*(S1)

    hv

    1Sens*(S1) 3Sens*(T1)3Sens*(T1)

    1Sens (S0) + 1O

    2

    +3O2

    Photooxygenation Reaction

    Dr. Suzan A. Khayyat 9

  • 8/10/2019 Chemical Change-2

    10/95

    (1O2

    )

    1+g

    -g

    3

    1g

    22.4

    37.5 Kcal/mo

    Kcal/mol

    Hig hest occup ied mol ecu la r orb i ta l o f1

    O2

    Dr. Suzan A. Khayyat 10

  • 8/10/2019 Chemical Change-2

    11/95

  • 8/10/2019 Chemical Change-2

    12/95

    N

    N

    N

    N

    H

    H

    C6H5

    C6H5

    C6H5

    C6H5

    Tetraphenylporphyrine(TPP)

    N

    N

    N

    N

    H3C CHCH3

    OH

    CH3

    CHCH3OH

    HOOCH2C-H2C

    HOOC-H2C-H2C CH3

    H

    H

    H3C

    Hematoporphyrine( HP)

    O

    Cl

    ClCl

    Cl

    I

    OI

    ONa

    I

    I

    COONa

    Ros Bengal(RB)

    Dr. Suzan A. Khayyat 12

  • 8/10/2019 Chemical Change-2

    13/95

  • 8/10/2019 Chemical Change-2

    14/95

    Criteria of an ideal sensitizer

    It must be excited by the irradiation to be

    used, small singlet triplet splitting. High

    ISC yield.

    It must be present in sufficient

    concentration to absorb more strongly than

    the other reactants under the condition.

    It must be able to transfer energy to the

    desired reactant, low chemical reactivity in

    Triplet state.

  • 8/10/2019 Chemical Change-2

    15/95

    Types of singlet oxygen reactions

    3)

    2)

    1)

    H

    X

    +

    +

    +

    1

    O2

    O2

    1O2

    1

    A

    B

    C

    OOH

    X

    OO

    O O

    Dr. Suzan A. Khayyat 15

  • 8/10/2019 Chemical Change-2

    16/95

    O2*

    C

    C C

    H

    C

    C C

    O OH

    Cis cyclic mechanism for the reaction of 1O2 withmono-olefins.

    1- Ene Reaction

    Dr. Suzan A. Khayyat 16

  • 8/10/2019 Chemical Change-2

    17/95

    Dr. Suzan A. Khayyat 17

  • 8/10/2019 Chemical Change-2

    18/95

    C C

    CH

    +1O2 C C

    OOH

    C

    Dr. Suzan A. Khayyat 18

  • 8/10/2019 Chemical Change-2

    19/95

    Dr. Suzan A. Khayyat 19

  • 8/10/2019 Chemical Change-2

    20/95

    Dr. Suzan A. Khayyat 20

  • 8/10/2019 Chemical Change-2

    21/95

    Dr. Suzan A. Khayyat 21

  • 8/10/2019 Chemical Change-2

    22/95

    2-Cycloaddition Reaction (Diels Alder)

    Dr. Suzan A. Khayyat 22

  • 8/10/2019 Chemical Change-2

    23/95

    Direct addition reaction to produce(1,2-dioxetane)

    Dr. Suzan A. Khayyat 23

  • 8/10/2019 Chemical Change-2

    24/95

    Dr. Suzan A. Khayyat 24

  • 8/10/2019 Chemical Change-2

    25/95

    Dr. Suzan A. Khayyat 25

  • 8/10/2019 Chemical Change-2

    26/95

    Dr. Suzan A. Khayyat 26

  • 8/10/2019 Chemical Change-2

    27/95

    Photosensitized oxidation

    OCH3H3C

    + O2hv , sens

    OCH3H3C

    OO

    C C

    CH3

    CH3

    H3C

    H3C

    + O2hv , sens

    C C

    CH2

    CH3

    H3C

    H3C

    + O2hv , sens

    C2H5O-CH-CH-OC2H5

    O O

    C2H5O-CH=CH-OC2H5

    Dr. Suzan A. Khayyat 27

  • 8/10/2019 Chemical Change-2

    28/95

    Photodissociation: processes and examples

    Hydrocarbons:

    RCH2R/ + hv RCR

    /+ H2

    CH2=CH2+ hv H2 + H2C=C: ( HC CH)

    2H + H2C=C:

    H2 + HC CH

    2H + HC CH

    Dr. Suzan A. Khayyat 28

  • 8/10/2019 Chemical Change-2

    29/95

    Carbonyl Compounds

    1- Keetones:

    Norrish Type I:

    The Norrish type I reaction is the photochemical cleavage or homolysisof aldehydes and ketones into two free radical intermediates. Thecarbonyl group accepts a photon and is excited to a photochemical

    singlet state. Through intersystem crossing the triplet state can beobtained. On cleavage of the -carbon carbon bond from either state,two radical fragments are obtained.

    Dr. Suzan A. Khayyat 29

  • 8/10/2019 Chemical Change-2

    30/95

    Norish Type I Processes of Ketones Basic

    Concepts

    R

    O

    C

    O

    C

    h

    +

  • 8/10/2019 Chemical Change-2

    31/95

    O O O

    O OO

    O

    OMe

    O

    O

    2 X 106 3 X 107 1 X 108

    2 X 1082 X 107

    1 X 107

    7 X 105not measured

    >109

    # Norish type I reaction is much faster for n-

    * compared to

    * excited states

    # n-

    * reactivity is due to the weakening of the

    -bond by overlap of this bond with the half

    vaccant n-orbital of oxygen.

    # This overlap is not possible for

    * excited states

    # Electron releasing group at para position lead to stabilization of

    * excited states hence decrease in reactivity

  • 8/10/2019 Chemical Change-2

    32/95

    Dr. Suzan A. Khayyat 32

  • 8/10/2019 Chemical Change-2

    33/95

    Dr. Suzan A. Khayyat 33

  • 8/10/2019 Chemical Change-2

    34/95

    Norrish type II

    A Norrish type II reaction is the photochemical intramolecular abstraction

    of a -hydrogen (which is a hydrogen atom three carbon positions

    removed from the carbonyl group) by the excited carbonyl compound to

    produce a 1,4-biradical as a primary photoproduct

    Dr. Suzan A. Khayyat 34

  • 8/10/2019 Chemical Change-2

    35/95

    Norish type II photoelimination of ketones:

    Cleavage of 1,4-biradicals formed by -

    hydrogen abstraction

    O1O*

    h

  • 8/10/2019 Chemical Change-2

    36/95

    RR'

    RR'

    1

    RR'

    1O*

    R

    R'OH

    n

    R

    OH R'

    R R'

    O

    R

    R'

    1O*

    RR'

    1O*

    RR'

    3O*

    RR'

    O

    RR'

    3O*

    R

    R'

    OH

    n

    R

    OH R'

    R'

    OH

    R

    RR'

    O

    h

    1KHa

    1Kd

    Kisc3Kd

    3

    KH

  • 8/10/2019 Chemical Change-2

    37/95

    Dr. Suzan A. Khayyat 37

  • 8/10/2019 Chemical Change-2

    38/95

    Dr. Suzan A. Khayyat 38

  • 8/10/2019 Chemical Change-2

    39/95

    RCHO + hv RH + C

    C=O + hv

    2C2H4 + CO

    + CO

    CH2=CHCH2CH2CHO

    Dr. Suzan A. Khayyat 39

  • 8/10/2019 Chemical Change-2

    40/95

    Dr. Suzan A. Khayyat 40

    H2C

    O

    H2C hv

    Ohv

    Complete the next equations

  • 8/10/2019 Chemical Change-2

    41/95

    Dr. Suzan A. Khayyat 41

    H3C

    CH2

    CH3

    O

    hv

    H3C

    CH3

    CH3

    CH3

    O

    hv

  • 8/10/2019 Chemical Change-2

    42/95

    2- Esters:

    Dr. Suzan A. Khayyat 42

    RCH2CH2CH2COOR\

    hv

    RCH=CH2 + CH3COOR

    \

    hv

    RCOOCH CH R\RCOOH + CH2=CHR

    \

  • 8/10/2019 Chemical Change-2

    43/95

    Photocycloaddition

    2+2 Intermolecular cycloaddition

    Dr. Suzan A. Khayyat 43

    R

    R\

    +

    O

    H3CO

    OCH3

    O

    hv

    H3CO

    O

    R

    R\

    OCH3

    O

    O

  • 8/10/2019 Chemical Change-2

    44/95

    Dr. Suzan A. Khayyat 44

  • 8/10/2019 Chemical Change-2

    45/95

    Dr. Suzan A. Khayyat 45

    O

    hv

    O O

    +

    O

    O

    2

  • 8/10/2019 Chemical Change-2

    46/95

    Dr. Suzan A. Khayyat 46

    hv

    2+2 Intramolecular cycloaddition

  • 8/10/2019 Chemical Change-2

    47/95

    +

    Dr. Suzan A. Khayyat 47

    2+4 Cycloaddition

  • 8/10/2019 Chemical Change-2

    48/95

    Dr. Suzan A. Khayyat 48

    hv +

  • 8/10/2019 Chemical Change-2

    49/95

    O OEtCN O

    OEt

    OCN

    O O

    OEt OEtO

    OEt

    CN N O

    CN

    Regiochemistry of enone cycloaddition

    -

    h

    reversal of polarity

    head to tail

    head to head

    -

    -

    OAc

  • 8/10/2019 Chemical Change-2

    50/95

    O

    OMe

    OMe

    O

    O

    nBu

    OAc

    nBu

    O

    OAc

    nBu

    nBu

    O

    OEtEtO

    CO2Et

    O

    CO2Et

    OEt

    OEt

    OOEt

    OEt

    CO2Et

    O

    SiMe3

    OSiMe

    3

    OSiMe

    3

    O

    OAc

    OOOO

    OAc

    O

    O OOAc

    O

    O

    OAc

    O

    O OO

    98%

    +

    +

    only

    +

    82.5 17.5

    +

    1 1

    +

    95 5

    96%

    81 19

    O

  • 8/10/2019 Chemical Change-2

    51/95

    O

    OH

    H

    OH

    H

    OH

    H

    OH

    H

    always cis

    always cis

  • 8/10/2019 Chemical Change-2

    52/95

    O O

    OH OH

    O

    H

    O

    H

    O O

    O

    CuOTf, h

    exo pdt

    The observed selectivity is assumed to arise from

    a preferential formation of the less sterically crowded

    copper (I)-diene complex, leading to exo pdt.

    NaIO4/RuO4

    CuOTf, h

    CuOTf, h

  • 8/10/2019 Chemical Change-2

    53/95

    Dr. Suzan A. Khayyat 53

  • 8/10/2019 Chemical Change-2

    54/95

    R

    O

    H

    R

    OH

    CH3

    R

    O

    R

    OH

    CO2Me

    CO2Me

    CO2Me

    CO2

    Me

    R OHR

    CO2Me

    CO2

    Me

    H-Transfer

    spin-inversion

    +

    Photoenolization

  • 8/10/2019 Chemical Change-2

    55/95

    O

    Ph

    .

    C OH

    Ph

    Me

    .

    C

    Me

    OH

    OH

    PhOH

    Ph

    OH

    PhO

    Ph

    h

    O OH Oh (-)Ephidrine

  • 8/10/2019 Chemical Change-2

    56/95

    O

    OO

    OMe

    OMe

    MeO

    O O

    CO2Et O

    OOH

    OMe

    OMe

    MeO

    O O

    CO2Et

    O

    O

    OMe

    OMe

    MeO

    O O

    OHCO

    2Et

    h

    Norish II, Cleavage

    (-)Ephidrine

    Enantioselective

    H-transfer

    h

    Photoenolization

    4+2

    Podophyllotoxin derivative

  • 8/10/2019 Chemical Change-2

    57/95

    Di-pi-methane rearrangement

    The di-pi-methane rearrangement is a photochemical reaction

    of a molecular entity that contains two -systems separated

    by a saturated carbon atom (a 1,4-diene or an allyl-

    substituted aromatic ring), to form an ene- (or aryl-)

    substituted cyclopropane. The rearrangement reaction

    formally amounts to a 1,2 shift of one ene group (in thediene) or the aryl group (in the allyl-aromatic analog) and

    bond formation between the lateral carbons of the non-

    migrating moiety.

    57

    hv

    O Di M th t

  • 8/10/2019 Chemical Change-2

    58/95

    Oxa-Di--Methane rearrangement

    A photochemical reaction of a , -unsaturated

    ketone to form a saturated -cyclopropylketone. The rearrangement formally amounts to

    a 1,2-acyl shift and bond formation between

    the former and carbon atoms.

    58

    O

    hv

    O

  • 8/10/2019 Chemical Change-2

    59/95

    Mechanism I

  • 8/10/2019 Chemical Change-2

    60/95

    Photoaddition and photocyclization

  • 8/10/2019 Chemical Change-2

    61/95

    Photoaddition and photocyclization

    reactions

    +

    NH2

    hv

    HN

    +

    HN

    +

    Dr. Suzan A. Khayyat 61

  • 8/10/2019 Chemical Change-2

    62/95

    Direct and photosensitized reactions

    trans

    cis

    direct

    sensitized

    Dr. Suzan A. Khayyat 62

  • 8/10/2019 Chemical Change-2

    63/95

    Isomerization and rearrangements

    Dr. Suzan A. Khayyat 63

  • 8/10/2019 Chemical Change-2

    64/95

    R h

  • 8/10/2019 Chemical Change-2

    65/95

    N N

    R

    RN N

    R R

    h

    R = Me R = CHMe

    R = R =

    R = R =

  • 8/10/2019 Chemical Change-2

    66/95

    NN

    N N

    N NN N

    C C

    h

    h(405nm)

    h

    (436nm)/heat

    h

    (313nm)

    -N2 h (313nm)

    -N2

    Ci T i i i f lk

  • 8/10/2019 Chemical Change-2

    67/95

    A

    B

    D

    E

    A

    B

    E

    D

    Cis-Trans isomerization of alkenes

    3S**3

  • 8/10/2019 Chemical Change-2

    68/95

    h

    triplet

    donor

    h

  • 8/10/2019 Chemical Change-2

    69/95

    h

    sens

    h

    sens

  • 8/10/2019 Chemical Change-2

    70/95

    H

    H

    h

    185 nm

    sens

    heath

    h

  • 8/10/2019 Chemical Change-2

    71/95

  • 8/10/2019 Chemical Change-2

    72/95

    direct

    Tripletsensitized

    Dr. Suzan A. Khayyat 72

  • 8/10/2019 Chemical Change-2

    73/95

    hv

    HH

    hv+ +

    Benzvalene bicyclo-

    hexadiene

    fulvene

    Dr. Suzan A. Khayyat 73

  • 8/10/2019 Chemical Change-2

    74/95

    Dr. Suzan A. Khayyat 74

    CN

    C6H5C6H5

    C6H5 CNC6H5

    hv

  • 8/10/2019 Chemical Change-2

    75/95

    Photochemical synthesis of

    oxetansPatern-Bchi Reaction

    O

  • 8/10/2019 Chemical Change-2

    76/95

    O

    O

    EtO

    OEt

    CO2H

    O N

    N

    OOH

    OH

    N

    N

    NH2

    O

    O

    NH2

    NH

    NH2

    O

    O

    O

    OO

    O

    OAc

    OR

    H

    OBz

    OOAc

    OH

    +

    Paterno and Chieffi (1909), Buchi in 1954 mechanistic analysis

    Insecticidal activity

    Thromboxane A2 Oxetanocine

    Bradyoxetin

    Merrilactone A

    Palitaxel

    Reaction mechanism

  • 8/10/2019 Chemical Change-2

    77/95

    CHO

    C

    O

    H

    O

    C

    C

    O

    C

    C

    OO

    h[PhCHO] S1

    ISC[PhCHO] T1

    (n-*)

    Kisc aromatic>> Kisc aliphatic (>>1010/s)

    responsible

    +

    electrophile nucleophile

    +

    Major Minor

    Biradical intermediate

    O O O

    Enones and Ynones

  • 8/10/2019 Chemical Change-2

    78/95

    O

    Me CCl3 Me CCl3

    OO

    O

    Me Me

    F

    O

    F

    O

    F

    O

    Me Me

    Cl

    O

    Cl

    O

    Cl

    + +

    42% 47%

    + +Low T

    3% oxetane

    + +

    10% 9 0%

    + +

    90% 10%

    O O

    SiMe3

    h

  • 8/10/2019 Chemical Change-2

    79/95

    O

    PhPh SiMe3

    O

    SiMe3

    Ph

    Ph

    O

    Ph

    Ph

    O

    PhPh OTMS

    O

    OTMS

    Ph

    Ph

    O

    Ph

    Ph

    OTMS

    O

    PhPhH SMe

    H

    O

    H

    Ph

    Ph

    SMe

    O

    H

    Ph

    Ph

    SMe

    +

    h

    +

    24 1

    +

    h+

    94 6

    +

    h

    +

    100 0

  • 8/10/2019 Chemical Change-2

    80/95

    R1R2

    R3 R4O

    R

    R4

    R3

    R1

    R2

    OX

    R4

    R3

    CHRYR1

    R2

    O

    PhR

    OTMSOH

    R OTMS

    Ph OH

    R OH

    Ph

    O

    OPh O

    OH

    Ph

    + R CHOh XY

    Carboxydroxylation strategy by reductive cleavage of oxetanes

    H2

    H2

    OH

    Total synthesis of (+)-Preussin

  • 8/10/2019 Chemical Change-2

    81/95

    N

    Ph

    H

    O

    Ph N

    PG

    N

    PG

    O

    Ph N

    PG

    OH

    Ph

    N

    CO2Me

    R

    N

    CO2Me

    R

    O

    H

    H

    Ph NR

    OH

    Me

    Ph

    N

    CO2Me

    N

    CO2Me

    O

    Ph N

    OH

    Ph

    +

    Carbohydroxylation strategy fo N-containing unsaturated heterocycles

    PhCHO/h

    MeCN

    H2, Pd(OH)2/C

    LAH/THF

    endo

    MeCN

    17%

    H2, Pd(OH)2/C

    LAH/THF

    Chem.Eur.J, 2000, 6, 3838-48

    PhCHO/h

  • 8/10/2019 Chemical Change-2

    82/95

    +orthopara

    meta

    1

    2

    3

    45

    6

    1

    2

    1

    4

    1

    3

    Possible modes of addition in the arene-alkene photocycloaddition reactions

    RR

  • 8/10/2019 Chemical Change-2

    83/95

    R

    HH

    R

    +

    endo exciplex

    h

    h i

  • 8/10/2019 Chemical Change-2

    84/95

    Photo Fries rearrangement

    Dr. Suzan A. Khayyat 84

    http://localhost/var/www/apps/conversion/tmp/scratch_5//upload.wikimedia.org/wikipedia/commons/5/5d/Fries_rearrangement_(photo).svg
  • 8/10/2019 Chemical Change-2

    85/95

    a Fries Rearrangement is photochemical

    excitation

    Dr. Suzan A. Khayyat 85

    Synthetic applications of electrocyclisation reactions:

  • 8/10/2019 Chemical Change-2

    86/95

    86

    The conversion of ergosterol to vitamin D2 proceeds through a ring-opening (reverse)

    electrocyclisation to give provitamin D2, which then undergoes a second rearrangement (a [1,7]-

    sigmatropic shift). Stereochemical control in the sigmatropic shift process will be described in a

    later section of this course.

    HHHO

    ergosterol

    sunlight

    photochemically-promoted electrocyclisation(antarafacial, conrotation)

    H

    HOprovitamin D2

    H

    HO

    H

    [1,7]-sigma-tropic shift.

    vitamin D2

    Dr. Suzan A. Khayyat

    DNA photochemistry

  • 8/10/2019 Chemical Change-2

    87/95

    NH

    N

    O

    O

    R

    R'

    N

    N

    NH2

    O

    R

    N

    N N

    N

    NH2

    R

    NH

    N N

    N

    R

    O

    NH2

    p y

    Ura R ' = H R = H

    Urd R ' = H R = ribose

    UMP R ' = H R = ribose phosphate

    Thy R ' = Me R = H

    Thd R ' = Me R = deoxyribose

    TMP R ' = Me R = deoxyribose phosphate

    Cyt R = H

    Cyd R = ribose

    CMP R = ribose phosphate

    PYRIMIDINES

    Ade R = H

    Ado R = ribose

    AMP R = ribose phosphate

    Gua R = H

    Guo R = ribose

    GMP R = ribose phosphate

    PURINES

    260 nm (*)270 nm (*)

    NH2 OH

    O

  • 8/10/2019 Chemical Change-2

    88/95

    N

    NH

    N

    N

    O

    OH

    NH2

    O

    O P

    O

    OO

    O

    OH

    O

    O

    N

    NH

    N

    N

    O

    OH

    N2

    O

    O P

    O

    O

    O

    O

    OH

    O

    O

    H

    HH

    O

    N

    NH

    N

    N

    O

    OH

    NH2

    O

    O P

    O

    O

    OO

    OH

    O

    N

    NH

    N

    NH

    O

    OH

    O

    O P

    O

    O

    O

    O

    OH

    O

    O

    H

    HH

    O

    N

    N

    N

    N

    O

    OH

    NH2

    O

    O P

    O

    O

    O

    OHO

    OH

    h

    heat

    Possible photoreaction at dipyrimidine sequences (CT); cyclobutane and oxetane formation

    h

    O O

  • 8/10/2019 Chemical Change-2

    89/95

    N

    N

    N

    NH

    O

    OH

    O

    O P

    O

    O

    O

    O

    OH

    N

    N

    NH2

    O

    N

    NH

    O

    OH

    O

    O P

    O

    O

    O

    N

    NNH

    2

    N

    NOH

    N

    N

    N

    N

    O

    OH O P

    O

    O

    O

    O

    OH

    N

    N

    NH2

    N

    N

    NH2

    N

    N

    O

    O

    O

    PO O

    O

    OH

    N

    N

    N

    N

    NN

    NH2

    NH2

    h

    Cycloadditions involving adenine; Cyclobutane and azetidine dimer formation

    h

    Ph t h i t i l ti

  • 8/10/2019 Chemical Change-2

    90/95

    Photochemistry in solution

    (CH3)H2C C

    O

    H2C (CH3) CO + C3H8

    liq+H3C CHCHO

    gas

    CHH2C

    OC

    OC

    H2C (CH3)2

    Dr. Suzan A. Khayyat 90

    Ph t di i ti

  • 8/10/2019 Chemical Change-2

    91/95

    Photodimerization

    Dr. Suzan A. Khayyat 91

    hv

    in open air

    ,CHCl3

    Scheme 1

    1

    4

    CHO CHO

    OHC

    O

    O

    OO

    OHC

    CHO1

    2

    3

    45

    1\\

    2\\3\\

    4

    \\

    5\\ 6\\

    1\

    2\ 3\

    4\

    5\6\

  • 8/10/2019 Chemical Change-2

    92/95

    Dr. Suzan A. Khayyat 92

    hv

    inopenair ,CHCl3

    Scheme 2

    2

    5

    H3CO

    HO

    H3CO

    HO

    OCH3

    OH

    H3CO

    HO OCH3

    OH1\

    2\

    3\

    4\

    5\6

    \

    32

    1

    4

  • 8/10/2019 Chemical Change-2

    93/95

    Dr. Suzan A. Khayyat 93

    O

    O

    hv

    in openair ,CHCl3

    O

    O

    Scheme 3

    3

    O

    O

    O

    6

    O

    OO

    1 2

    3

    45

    6 1\

    2\

    3\4\

    5\6\

    O

    O

    O O

    Factors determining reacti it

  • 8/10/2019 Chemical Change-2

    94/95

    Factors determining reactivity

    1- The excess energy possessed by the species (whichmay help overcome activation barriers).

    2- The intrinsic reactivity of the specific electronic

    arrangement.

    3- The relative efficiencies of the different competing

    pathways for loss of the particular electronic state.

    4- The type of orbital (s, p, , or, , etc.) and its

    symmetry.

    5- Explicit in the correlation rules for orbital symmetry

    and spin that are introduced first at the end of this section.

    ONOO

  • 8/10/2019 Chemical Change-2

    95/95

    H

    H

    O

    H

    H

    H

    O

    H

    O

    C

    H

    HH

    O

    H

    HH

    NOH

    O

    h