chemical constituents and bioactivity studies of...

48
CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF Bauhinia rufescens Lam. (FABACEAE) AND Ficus platyphylla Del. (MORACEAE) AMINU MUHAMMAD A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemistry) Faculty of Science Universiti Teknologi Malaysia JUNE 2014

Upload: others

Post on 25-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF Bauhinia rufescens Lam. (FABACEAE) AND Ficus platyphylla Del. (MORACEAE)

AMINU MUHAMMAD

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Chemistry)

Faculty of Science

Universiti Teknologi Malaysia

JUNE 2014

Page 2: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

iii

To my beloved Father Late Alhaji Muhammad Sarki and my beloved mother Hajiya

Hauwa Muhammad Sarki

Page 3: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

iv

ACKNOWLEDGEMENT

Praise belongs to almighty Allah, the lord of all being. May his peace be upon his

messenger Muhammad (PBUH). My appreciation goes to my Supervisor Prof. Dr.

Hasnah Mohd Sirat for her guidance, patience, motivation, support, and advices

during my research.

A special thanks to Assoc. Prof. Dr. Farediah Ahmad for her kindness and her

precious help. I would like to thank Mr. Rasydi and Mr. Azmi for their assistance in

obtaining the NMR spectra at Faculty of Science, UTM.

My appreciation to all academic and technical staffs of Chemistry Department, UTM,

as well as my fellow postgraduate colleagues; Mr. Salam, Mr. Nuzul, Mr. Shamsul,

Mr. Nazifi, Mrs. Athira, Mrs. Shariha, Syafiqah, Ernie, Iman, Edeline, for their

advice and encouragement. Special thanks to my parents, family, siblings and my

friends for their constant support and encouragement.

Last but not the least, I would also acknowledge BUK-MacArthur Grant, Bayero

University Kano, Nigeria for my doctoral fellowship. International Doctoral

fellowship, UTM for partial financial support, and to the Faculty of Science

Universiti Teknologi Malaysia for facilities. Thank you.

Page 4: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

v

ABSTRACT

The chemical constituents and bioactivities of the stem barks and leaves of

Bauhinia rufescens and the stem barks of Ficus platyphylla have been studied. Extraction of the plant materials using Soxhlet method with petroleum ether, ethyl acetate, and methanol afforded nine crude extracts. Fractionation and purification of the ethyl acetate and methanol extracts of stem bark of B. rufescens yielded two new compounds identified as 4-(2′-hydroxyphenethyl)-5-methoxy-2-methylphenol and bauhiniside. Compounds identified as 6-methoxy-7-methyl-8-hydroxydibenz [b,f]oxepin, α-amyrin acetate, β-sitosterol 3-O-β-D-xylopyranoside, menisdaurin, sequoyitol, 6-hydroxy-7,7a-dihydrobenzofuran-2(6H)-one, glyceryl trilinoleate, linoleic acid, stigmasterol and β-sitosterol were also isolated from the stem barks. The leaves extract yielded glyceryl trilinoleate, sequoyitol and bauhiniside. F. platyphylla yielded two new phenolic compounds from its methanolic extract which was identified as ficuside A and ficuside B. In addition, hordenine was isolated via alkaloid extraction, and also 3,4-dihydroxybenzoic acid anhydride, epicatechin, lupeol, lupeol acetate and α-amyrin acetate were identified from F. platyphylla. Bioactivities including antioxidant, antimicrobial, inhibitory studies on the brine shrimp larvae, tyrosinase, acetylcholinesterase and cyclooxygenase-2 were investigated. Among the nine crude extracts from the two plants, the methanol extract from the stem barks of B. rufescens showed a strong DPPH radical scavenging activity (14.31 µg/mL), and similar extract from F. platyphylla showed higher total phenolic content (719.58 µg GAE/mg), while the methanol extract from the leaves of B. rufescens showed the highest antioxidant value based on β-carotene bleaching assay (78.75%). The antimicrobial activity revealed the methanol extract from F. platyphylla was active against Gram-positive bacteria, Staphylococcus aureus (113 µg/mL) and a fungus, Aspergillus niger (56 µg/mL). Meanwhile, toxicity study indicated that, ethyl acetate from the leaves of B. rufescens was toxic against brine shrimp larvae (LC50 0.06 mg/mL). The methanol extract from F. platyphylla was found active against tyrosinase enzyme (49.2%). Evaluation of acetylcholinesterase inhibition using the microplate and bioautographic assays showed the methanol extract from F. platyphylla inhibited the enzyme activity with percent inhibition of 44.7% (LD 30.0 µg). In addition, among the isolated compounds, oxepin from the stem barks of B. rufescens was found to be active against Staphylococcus aureus (113 µg/mL) and lupeol acetate from F. platyphylla was found active against Candida glabrata (56 µg/mL). It was also found that, hordenine inhibited acetylcholinesterase activity at 58.6% (LD 33.0 µg). Lupeol and 3,4-dihydroxybenzoic acid anhydride from F. platyphylla showed the highest inhibitory activity against tyrosinase (67.7%) and COX-2 (IC50 0.15 µM) enzymes, respectively.

Page 5: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

vi

ABSTRAK

Komponen kimia dan bioaktiviti terhadap kulit batang dan daun Bauhinia rufescens serta kulit batang Ficus platyphylla telah dikaji. Pengekstrakan tumbuhan menggunakan Soxhlet dengan petroleum eter, etil asetat dan metanol telah menghasilkan sembilan ekstrak mentah. Pengasingan dan penulenan ekstrak mentah etil asetat dan metanol daripada kulit batang B. rufescens berjaya menghasilkan dua sebatian baru yang dikenalpasti sebagai 4-(2′-hidroksifenetil)-5-metoksi-2-metilfenol dan bauhinisida. Sebatian dikenalpasti sebagai 6-metoksi-7-metil-8-hidroksidibenz[b,f]oksepin, α-amirin asetat, β-sitosterol 3-O-β-D-xilopiranosida, menisdaurin, sekuoyitol, 6-hidroksi-7,7a-dihidrobenzofuran-2(6H)-on, gliseril trilinoleat, asid linoleik, stigmasterol dan β-sitosterol turut diasingkan daripada kulit batang. Ekstrak daun menghasilkan gliseril trilinoleat, sekuoyitol dan bauhinisida. F. platyphylla menghasilkan dua sebatian fenolik baru daripada ekstrak metanol dan dikenalpasti sebagai fikusida A dan fikusida B. Di samping itu, hordenin diasingkan melalui pengekstrakan alkaloid dan 3,4-dihidroksibenzoik asid anhidrida, epikatekin, lupeol, lupeol asetat dan α-amyrin asetat juga dikenalpasti daripada F. platyphylla. Bioaktiviti termasuk antioksidan, antimikrob, kajian perencatan ke atas larva udang air masin, tirosinase, asetilkolinesterase dan siklooksigenase-2 turut dikaji. Antara sembilan ekstrak mentah daripada dua tumbuhan, ekstrak metanol daripada kulit batang B. rufescens menunjukkan aktiviti perencatan radikal yang tinggi (14.31 µg/mL) dan ekstrak yang sama daripada F. platyphylla menunjukkan kandungan fenolik keseluruhan yang lebih tinggi (719.58 µg GAE/mg). Ekstrak metanol daripada daun B. rufescens menunjukkan nilai antioksidan tertinggi berdasarkan aktiviti pelunturan β-karotena (78.75%). Aktiviti antimikrob menunjukkan ekstrak metanol daripada F. platyphylla adalah aktif terhadap bakteria Gram-positif, Staphylococcus aureus (113 µg/mL) dan kulat Aspergillus niger (56 µg/mL). Sementara itu, kajian ketoksikan menunjukkan etil asetat daripada daun B. rufescens adalah toksik terhadap larva udang air masin (LC50 0.06 mg/mL). Ekstrak metanol daripada F. platyphylla didapati aktif terhadap enzim tirosinase (49.2%). Penilaian perencatan asetilkolinesterase menggunakan plat mikro dan bioautografi menunjukkan ekstrak metanol daripada F. platyphylla merencat aktiviti enzim dengan peratus perencatan 44.7% (LD 30.0 µg). Selain itu, antara sebatian yang diasingkan, oksepin daripada kulit batang B. rufescens didapati aktif terhadap Staphylococcus aureus (113 µg/mL) dan lupeol asetat daripada F. platyphylla didapati aktif terhadap Candida glabrata (56 µg/mL). Hordenin turut didapati menrencat aktiviti asetilkolinesterase sebanyak 58.6% (LD 33.0 µg). Lupeol dan 3,4-dihidroksibenzoik asid anhidrida daripada F. platyphylla menunjukkan penrencatan aktiviti tertinggi masing-masing terhadap enzim tirosinase (67.7%) and COX-2 (IC50 0.15 µM).

Page 6: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

vii

TABLE OF CONTENTS CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENTS iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xiii

LIST OF SCHEMES xv

LIST OF FIGURES xvi

LIST OF ABBREVIATIONS xviii

LIST OF APPENDICES xxi

1 INTRODUCTION 1

1.0 Introduction 1

1.1 Background of Study 1

1.2 Medicinal Plants 3

1.3 Statement of the Problem 4

1.4 Objectives of Research 4

1.5 Significance of the Research 4

1.6 Scope of Work 5

2 LITERATURE REVIEWS 6

2.1 Fabaceae Family 6

2.2 Bauhinia Species 8

2.3 Moraceae Family 9

Page 7: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

viii

2.4 Ficus species 10

2.5 Chemical Components of Bauhinia and Ficus

species 11

2.5.1 Terpenoids 11

2.5.2 Alkaloids 16

2.5.3 Flavonoids 17

2.5.4 Phenolics 20

2.5.5 Stilbenoids 22

2.5.6 Coumarins 23

2.5.7 Cyclitols 24

2.5.8 Fatty Acids 25

2.6 Bioactivities of Bauhinia and Ficus species 26

2.6.1 Antimicrobial Activity 27

2.6.2 Antiinflammatory Activity 28

2.6.3 Antidiabetic Activity 29

2.6.4 Cytotoxic Activity 30

2.6.5 Bioactive Compounds from Bauhinia and

Ficus species 31

3 CHEMICAL CONSTITUENTS OF Bauhinia

rufescens Lam 34

3.1 Extraction of Leaves and Stem Bark of Bauhinia

rufescens Lam. 34

3.2 Chemical Constituents of Bauhinia rufescens

Lam. 35

3.2.1 4-(2′-Hydroxyphenethyl)-5-methoxy-2-

methylphenol (141) 35

3.2.2 6-Methoxy-7-methyl-8-hydroxydibenz[b,f]

oxepin (138) 44

3.2.3 Bauhiniside (142) 47

3.2.3.1 Biosynthetic Pathway: Bauhiniside

(142) 58

3.2.4 Menisdaurin (99) 59

3.2.5 Menisdaurilide (143) 62

Page 8: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

ix

3.2.6 Sequoyitol (94) 63

3.2.7 α-Amyrin Acetate (139) 64

3.2.8 β-Sitosterol 3-O-β-D-xylopyranoside (7) 65

3.2.9 Mixture of β-Sitosterol (10) and

Stigmasterol (14) 67

3.2.10 Triglyceride: Glyceryl trilinoleate (140) 68

3.2.11 Linoleic Acid (104) 69

4 CHEMICAL CONSTITUENTS OF Ficus

platyphylla Del 71

4.1 Extraction of Stem Bark of Ficus platyphylla

Del. 71

4.2 Chemical Constituents of Ficus platyphylla Del. 71

4.2.1 3,4-Dihydroxybenzoic acid anhydride

(150) 72

4.2.1.1 Biosynthetic Pathway of 3,4-

Dihydroxybenzoic acid anhydride

(150)

73

4.2.2 Ficuside A (158) 74

4.2.3 Ficuside B (159) 85

4.2.3.1 Biosynthetic Pathway: Ficuside A

(158) and Ficuside B (159) 94

4.2.4 Epicatechin (62) 95

4.2.5 Hordenine (164) 97

4.2.6 Lupeol (16) 98

4.2.7 Lupeol Acetate (163) 100

4.2.8 α-Amyrin Acetate (139) 102

5 BIOACTIVITY STUDIES OF Bauhinia rufescens

Lam. AND Ficus platyphylla Del. 103

5.1 Bioactivity Studies 103

5.2 Antioxidant Activity 103

5.2.1 DPPH Radical Scavenging Activity 104

5.2.2 β-Carotene–Linoleic acid Bleaching 107

Page 9: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

x

Activity

5.2.3 Total Phenolic Content 108

5.3 Brine Shrimp Lethality Test 110

5.4 Antimicrobial Activity 111

5.4.1 Disc Diffusion Method 112

5.4.2 Microdilution Method 116

5.5 Tyrosinase Inhibitory Activity 121

5.6 Acetylcholinesterase (AChE) Inhibitory Activity 123

5.6.1 TLC Bioautographic Assay for

Acetylcholinesterase 123

5.6.2 Microplate Assay for acetylcholinesterase 125

5.7 Cyclooxygenase-2 (COX-2) Inhibitory Activity 128

6 EXPERIMENTAL 130

6.1 General Experimental Procedures 130

6.2 Plant Materials 131

6.3 Isolation of Chemical Constituents of Bauhinia

rufescens Lam. 131

6.3.1 Isolation of 4-(2′-Hydroxyphenethyl)-5-

methoxy-2-methylphenol (141) 133

6.3.2 Isolation of 6-Methoxy-7-methyl-8-

hydroxydibenz[b,f] oxepin (138) 134

6.3.3 Isolation of Bauhiniside (142) 134

6.3.4 Isolation of Menisdaurin (99) 135

6.3.5 Isolation of Menisdaurilide (143) 135

6.3.6 Isolation of Sequoyitol (94) 136

6.3.7 Isolation of α-Amyrin Acetate (139) 136

6.3.8 Isolation of β-Sitosterol 3-O-β-D-

xylopyranoside (7) 137

6.3.9 Isolation of Mixture of β-Sitosterol (10)

and Stigmasterol (14) 137

6.3.10 Isolation of Triglyceride: Glyceryl

trilinoleate (140) 138

6.3.11 Isolation of Linoleic Acid (104) 138

Page 10: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

xi

6.4 Isolation of Chemical Constituents of Ficus

platyphylla Del 139

6.4.1 Isolation of 3,4-Dihydroxybenzoic acid

anhydride (150) 140

6.4.2 Isolation of Ficuside A (158) 141

6.4.3 Isolation of Ficuside B (159) 141

6.4.4 Isolation of Epicatechin (62) 142

6.4.5 Isolation of Hordenine (164) 143

6.4.6 Isolation of Lupeol (16) 143

6.4.7 Isolation of Lupeol Acetate (163) 144

6.4.8 Isolation of α-Amyrin Acetate (139) 144

6.5 Bioactivity Studies 145

6.5.1 Chemicals and Instrumentation for

Bioactivity Assay 145

6.5.2 Microorganisms for Bioactivity Assay 145

6.5.3 Antioxidant Assay 146

6.5.3.1 2,2-Diphenyl-2-picrylhydrazyl

(DPPH) Radical-Scavenging Assay 146

6.5.3.2 β-Carotene–Linoleic Acid Assay 146

6.5.3.3 Determination of Total Phenolic

Content 147

6.5.4 Cytotoxicity Assay against Brine Shrimp 148

6.5.4.1 Hatching Shrimp 148

6.5.4.2 Brine shrimp assay 148

6.5.5 Antimicrobial Assay 148

6.5.5.1 Antimicrobial Disc Diffusion

Assay 148

6.5.5.2 Microdilution Assay 149

6.5.6 Tyrosinase Inhibitory Assay 149

6.5.7 Acetylcholinesterase Inhibitory Assay 150

6.5.7.1 TLC Bioautographic Method for

Acetylcholinesterase Inhibition 150

6.5.7.2 Microplate Method for 151

Page 11: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

xii

Acetylcholinesterase Inhibition

6.5.8 Cyclooxygenase-2 Inhibitory Assay 151

7 CONCLUSIONS AND RECOMMENDATIONS 153

7.1 Phytochemical Studies 153

7.2 Bioactivity Studies 154

7.3 Recommendations 156

REFERENCES 157

Appendices A - S 177 – 267

Page 12: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

xiii

LIST OF TABLES TABLE NO. TITLE PAGE

2.1 Bioactivities and Phytochemicals from Bauhinia and

Ficus species 31

3.1 Percentage Yield and Appearance of Crude Extracts of

B. rufescens 34

3.2 NMR Spectroscopic Data of Compound (138) 46

3.3 NMR Spectroscopic Data of Compound (142) 48

3.4 NMR Spectroscopic Data of Compound (7) 66

4.1 Percentage Yield and Appearance of Crude Extracts of

F. platyphylla 71

4.2 NMR Spectroscopic Data of Compound (158) 85

4.3 NMR Spectroscopic Data of Compound (62) 96

4.4 NMR Spectroscopic Data of Compound (163) 101

5.1 Antioxidant Activity of the Extracts of B. rufescens and

F. platyphylla 107

5.2 β-Carotene Bleaching Assay of the Extracts of B.

rufescens and F. platyphylla 108

5.3 Total Phenolic Content assay of the Extracts of B.

rufescens and F. platyphylla 109

5.4 Antioxidant Correlation 110

5.5 Brine Shrimp Assay of B. rufescens and F. platyphylla 111

5.6 Diameter of Zone of Inhibition for the Crude Extracts

and Isolated Compounds 114

5.7 Minimum Inhibition Concentration (MIC) and

Minimum Microbicidal Concentration (MMC) of Crude

Extracts and Isolated Compounds

118

Page 13: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

xiv

5.8 TLC Bioautographic Assay of The Crude Extracts and

Isolated Compounds 124

5.9 Acetylcholinesterase Inhibitory Activity 127

5.10 COX-2 Inhibitory Activity 129

Page 14: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

xv

LIST OF SCHEMES SCHEME NO. TITLE PAGE

3.1 The EIMS Fragmentation Pattern of Compound (138) 45

3.2 Fragment ions from Compound (142) 56

3.3 Proposed Biosynthetic Pathway for Compounds (142) 59

3.4 The ESIMS Fragmentation Pattern of Compound (99) 61

3.5 Condensation of Cyclohexenecyanomethylene (148) to

Menisdaurin (99) 61

4.1 The EIMS Fragmentation Pattern of Compound (150) 73

4.2 Biosynthetic Pathway for Compounds (150) 74

4.3 The ESIMS Fragmentation Pattern of Compound (158) 75

4.4 Biosynthetic Pathway for Compounds (158) and (159) 95

4.5 The EIMS Fragmentation Pattern of Compound (62) 96

4.6 The EIMS Fragmentation Pattern of Compound (164) 98

4.7 The EIMS Fragmentation Pattern of Compound (16) 99

6.1 Flow Chart for the Isolation Process of B. rufescens 132

6.2 Flow Chart for the Isolation Process of F. platyphylla 140

Page 15: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

xvi

LIST OF FIGURES FIGURE NO. TITLE PAGE

3.1 IR Spectrum of Compound (141) 37

3.2 1H NMR Spectrum of Compound (141) 38

3.3 1H-1H COSY Spectrum of Compound (141) 39

3.4 13C NMR and DEPT Spectra of Compound (141) 40

3.5 HREIMS Spectrum of Compound (141) 41

3.6 HMQC Spectrum of Compound (141) 42

3.7 HMBC Spectrum of Compound (141) 43

3.8 HMBC Correlations of Compound (141) 44

3.9 IR Spectrum of Compound (142) 49

3.10 1H NMR Spectrum of Compound (142) 50

3.11 1H-1H COSY Spectrum of Compound (142) 51

3.12 13C NMR and DEPT Spectra of Compound (142) 52

3.13 HMBC Correlations of Compound (142) 53

3.14 HMQC Spectrum of Compound (142) 54

3.15 HMBC Spectrum of Compound (142) 55

3.16 ESIMS Spectrum of Compound (142) 57

4.1 HMBC Correlations of Compound (150) 73

4.2 IR Spectrum of Compound (158) 77

4.3 HRESIMS Spectrum of Compound (158) 78

4.4 ESI Spectrum of Compound (158) 79

4.5 1H NMR Spectrum of Compound (158) 80

4.6 1H-1H COSY Spectrum of Compound (158) 81

4.7 13C NMR and DEPT Spectra of Compound (158) 82

4.8 HMQC Spectrum of Compound (158) 83

4.9 HMBC Spectrum of Compound (158) 84

Page 16: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

xvii

4.10 HMBC Correlations of Compound (158) 85

4.11 IR Spectrum of Compound (159) 87

4.12 HRESIMS Spectrum of Compound (159) 88

4.13 1H NMR Spectrum of Compound (159) 89

4.14 1H-1H COSY Spectrum of Compound (159) 90

4.15 13C NMR and DEPT Spectra of Compound (159) 91

4.16 HMQC Spectrum of Compound (159) 92

4.17 HMBC Spectrum of Compound (159) 93

4.18 HMBC Correlations of Compound (159) 94

5.1 DPPH Reaction 105

5.2 Percentage Inhibition of DPPH Radical Assay of Crude

Extracts from B. rufescens 105

5.3 Percentage Inhibition of DPPH Radical Assay of Crude

Extracts from F. platyphylla 106

5.4 Oxidation of Linoleic acid 108

5.5 Oxidation Process of Tyrosinase 121

5.6 Tyrosinase Inhibitory Activity of B. rufescens 122

5.7 Tyrosinase Inhibitory Activity of F. platyphylla 122

5.8 Hydrolysis of Acetycholinesterase 123

5.9 Acetylcholinesterase Inhibitory Activity of B. rufescens 126

5.10 Acetylcholinesterase Inhibitory Activity of F. platyphylla 126

5.11 Cyclization of Arachidonic acid 128

Page 17: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

xviii

LIST OF ABBREVIATIONS

α - Alpha

AA - Ascorbic Acid

Abs - Absorbance

Ac - Acetone

β - Beta

br - broad

BHT - Butylated hydroxytoluene

BCB - β-carotene bleaching

BaCl2 - Barium chloride

BSLT - Brine Shrimps Lethality Test

c - concentration 13C - Carbon-13

CC - Column Chromatography

COSY - Correlation Spectroscopy

CDCl3 - Deuterated chloroform

CD3COCD3 - Deuterated acetone

CHCl3 - Chloroform

cm - Centimeter

cm-1 - Per centimeter

1D - 1 Dimension

2D - 2 Dimension

δ - Chemical shift

d - doublet

dd - doublet of doublets

ddd - doublet of doublets of doublets

dq - doublet of quartet

dt - doublet of triplet

Page 18: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

xix

DCM - Dichloromethane

DEPT - Distortionless Enhancement by Polarization Transfer

DMSO - Dimethyl sulfoxide

DPPH - 2,2-Diphenyl-1-picrylhydrazyl

EtOAc - Ethyl acetate

EIMS - Electron Impact Mass Spectrometry

ESIMS - Electrospray Ionization Mass Spectrometry

Et2O - Diethyl ether

EtOH - Ethanol

FT-IR - Fourier Transform Infrared

γ - Gamma

GC - Gas Chromatography

GC-MS - Gas Chromatography-Mass Spectrometry 1H - Proton

HRESIMS - High Resolution Electrospray Ionization Mass Spectrometry

HMBC - Heteronuclear Multiple Bond Correlation

HMQC - Heteronuclear Multiple Quantum Coherence

H2O - Water

H2SO4 - Sulfuric acid

Hz - Hertz

HCl - Hydrochloric acid

IR - Infrared

IC50 - Inhibition Concentration at 50%

J - coupling constant

KBr - Potassium bromide

K2HPO4 - Potassium phosphate dibasic anhydrous

λ - Lamda

L - Liter

LD - Detection Limit

lit. - Literature

MgSO4.7H2O - Magnesium sulfate heptahydrate

MIC - Minimum Inhibition Concentration

MMC - Minimum Microbicidal Concentration

MS - Mass Spectrometry

Page 19: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

xx

M+ - Molecular ion

m/z - mass to charge ion

MeOH - Methanol

m.p - melting point

MgSO4 - Magnesium sulphate

MHz - Megahertz

mg - Miligram

m - multiplet

min. - Minute(s)

mm - milimeter

mL - mililiter

NA - Nutrient agar

NB - Nutrient broth

NMR - Nuclear Magnetic Resonance

nm - nanometer

NaOH - Sodium hydroxide

NaCl - Sodium chloride

O2 - Oxygen

PE - Petroleum ether

ppm - parts per million

q - quartet

Rf - retention factor

rpm - Revolutions per minute

SD - Standard Deviation

s - singlet

t - triplet

td - triplet of doublets

tr - Retention time

tr - trace

TLC - Thin Layer Chromatography

µM - Micro molar

UV - Ultraviolet

VLC - Vacuum Liquid Chromatography

Page 20: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

xxi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Spectral Data of 6-Methoxy-7-methyl-8-hydroxydibenz[b,f] oxepin (138) 177

A1 IR spectrum of 6-Methoxy-7-methyl-8-hydroxydibenz[b,f] oxepin (138) 177

A2 EIMS spectrum of 6-Methoxy-7-methyl-8-hydroxydibenz[b,f] oxepin (138) 178

A3 13C NMR spectrum of 6-Methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin (138) 179

A4 DEPT spectra of 6-methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin (138) 180

A5 1H NMR spectrum of 6-methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin (138) 181

A6 1H-1H COSY spectrum of 6-Methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin (138) 182

A7 HMQC spectrum of 6-Methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin (138) 183

A8 HMBC spectrum of 6-Methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin (138) 184

B Spectral Data of Menisdaurin (99) 185

B1 IR spectrum of Menisdaurin (99) 185

B2 1H NMR spectrum of Menisdaurin (99) 186

B3 13C NMR spectrum of Menisdaurin (99) 187

B4 DEPT spectra of Menisdaurin (99) 188

B5 1H-1H COSY spectrum of Menisdaurin (99) 189

B6 HMQC spectrum of Menisdaurin (99) 190

B7 HMBC spectrum of Menisdaurin (99) 191

B8 ESIMS spectrum of Menisdaurin (99) 192

C Spectral Data of Menisdaurilide (143) 193

C1 IR spectrum of Menisdaurilide (143) 193

Page 21: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

xxii

C2 EIMS spectrum of Menisdaurilide (143) 194

C3 13C NMR spectrum of Menisdaurilide (143) 195

C4 1H NMR spectrum of Menisdaurilide (143) 196

C5 1H-1H COSY spectrum of Menisdaurilide (143) 197

C6 DEPT spectra of Menisdaurilide (143) 198

C7 HMQC spectrum of Menisdaurilide (143) 199

D Spectral Data of Sequoyitol (94) 200

D1 IR spectrum of Sequoyitol (94) 200

D2 1H NMR spectrum of Sequoyitol (94) 201

D3 1H-1H COSY spectrum of Sequoyitol (94) 202

D4 13C NMR spectrum of Sequoyitol (94) 203

D5 DEPT spectra of Sequoyitol (94) 204

D6 HMQCspectrum of Sequoyitol (94) 205

D7 EIMS spectrum of Sequoyitol (94) 206

E Spectral Data of α-Amyrin acetate (139) 207

E1 EIMS spectrum of α-Amyrin acetate (139) 207

E2 IR spectrum of α-Amyrin acetate (139) 208

E3 1H NMR spectrum of α-Amyrin acetate (139) 209

E4 13C NMR spectrum of α-Amyrin acetate (139) 210

E5 DEPT spectra of α-Amyrin acetate (139) 211

E6 HMQC spectrum of α-Amyrin acetate (139) 212

F Spectral Data of β-Sitosterol 3-O-β-D-xylopyranoside (7) 213

F1 IR spectrum of β-Sitosterol 3-O-β-D-xylopyranoside (7) 213

F2 1H NMR spectrum of β-Sitosterol 3-O-β- D-xylopyranoside (7) 214

F3 1H-1H COSY spectrum of β-Sitosterol 3-O-β-D-xylopyranoside (7) 215

F4 13C NMR spectrum of β-sitosterol 3-O-β-D-xylopyranoside (7) 216

F5 DEPT spectra of β-Sitosterol 3-O-β-D-xylopyranoside (7) 217

G Spectral Data of β-Sitosterol (10) and Stigmasterol (14) 218

G1 GC spectrum of β-Sitosterol (10) and Stigmasterol (14) 218

G2 EIMS spectrum of β-Sitosterol (10) 219

Page 22: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

xxiii

G3 EIMS spectrum of Stigmasterol (14) 220

G4 IR spectrum of β-Sitosterol (10) and Stigmasterol (14) 221

G5 1H NMR spectrum of β-Sitosterol (10) and Stigmasterol (14) 222

H Spectral Data of Glyceryl trilinoleate (140) 223

H1 IR spectrum of Glyceryl trilinoleate (140) 223

H2 13C NMR spectrum of Glyceryl trilinoleate (140) 224

H3 1H NMR spectrum of Glyceryl trilinoleate (140) 225

H4 HMQC spectrum of Glyceryl trilinoleate (140) 226

I Spectral Data of Linoleic acid (104) 227

I1 IR spectrum of Linoleic acid (104) 227

I2 1H NMR spectrum of Linoleic acid (104) 228

I3 13C NMR spectrum of Linoleic acid (104) 229

I4 EIMS spectrum of Linoleic acid (104) 230

J Spectral Data of 3,4-Dihydroxybenzoic acid anhydride (150) 231

J1 IR Spectrum of 3,4-Dihydroxybenzoic acid anhydride (150) 231

J2 1H NMR Spectrum of 3,4-Dihydroxybenzoic acid anhydride (150) 232

J3 Expansion of 1H-1H COSY Spectrum of 3,4-Dihydroxybenzoic acid anhydride (150) 233

J4 13C NMR Spectrum of 3,4-Dihydroxybenzoic acid anhydride (150) 234

J5 DEPT Spectra of 3,4-Dihydroxybenzoic acid anhydride (150) 235

J6 Expansion of HMQC Spectrum of 3,4-Dihydroxybenzoic acid anhydride (150) 236

J7 Expansion of HMBC Spectrum of 3,4-Dihydroxybenzoic acid anhydride (150) 237

J8 EIMS Spectrum of 3,4-Dihydroxybenzoic acid anhydride (150) 238

K Spectral Data of Epicatechin (62) 239

K1 IR spectrum of Epicatechin (62) 239

K2 EIMS spectrum of Epicatechin (62) 240

K3 1H NMR spectrum of Epicatechin (62) 241

K4 1H-1H COSY spectrum of Epicatechin (62) 242

K5 13C NMR spectrum of Epicatechin (62) 243

Page 23: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

xxiv

K6 DEPT Spectra of Epicatechin (62) 244

K7 HMQC spectrum of Epicatechin (62) 245

L Spectral Data of Hordenine (164) 246

L1 IR spectrum of Hordenine (164) 246

L2 1H NMR spectrum of Hordenine (164) 247

L3 1H-1H COSY spectrum of Hordenine (164) 248

L4 13C NMR spectrum of Hordenine (164) 249

L5 DEPT spectra of Hordenine (164) 250

L6 HMQC spectrum of Hordenine (164) 251

L7 EIMS spectrum of Hordenine (164) 252

M Spectral Data of Lupeol (16) 253

M1 IR spectrum of Lupeol (16) 253

M2 EIMS spectrum of Lupeol (16) 254

M3 1H NMR spectrum of Lupeol (16) 255

M4 13C NMR spectrum of Lupeol (16) 256

M5 DEPT spectra of Lupeol (16) 257

N Spectral Data of Lupeol acetate (163) 258

N1 IR spectrum of Lupeol acetate (163) 258

N2 EIMS spectrum of Lupeol acetate (163) 259

N3 1H NMR spectrum of Lupeol acetate (163) 260

N4 13C NMR spectrum of Lupeol acetate (163) 261

N5 DEPT spectra of Lupeol acetate (163) 262

O Pearson’s Correlation for Antioxidant 263

P Brine Shrimps Lethality after 24 Hours 264

Q Test Samples Inhibitions against Acetylcholinesterase 265

R Test Samples Inhibitions against Cyclooxygenese 2 266

S Publications 267

Page 24: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

1

1 CHAPTER 1

INTRODUCTION

1.1 Background of Study

Over the centuries human being has relied on plants for basic needs such as

food, clothing, and shelter, which are produced from matrices or storage parts of a

plant i.e. leaves, woods, fibers, fruits, tubers etc. Plants have also been utilized for

some other purposes, such as, poisons used for hunting, hallucinogens used for ritual

purposes, stimulants for endurance, and hunger suppression, as well as medicines.

The plant chemicals used for these latter purposes are largely the secondary

metabolites, which are derived biosynthetically from plant primary metabolites,

carbohydrates, amino acids, and lipids. The substances are also not directly involved

in the growth, development, or reproduction of plants [1, 2]. These secondary

metabolites can be classified into several groups according to their chemical classes,

such as flavonoids, alkaloids, terpenoids and coumarins.

The plant medicines initially took the form of crude drugs such as tinctures,

teas, poultices, powders, and other herbal formulations. The specific plants to be used

and the methods of application for particular ailments were passed down through oral

history. Eventually information regarding medicinal plants was recorded in herbals

[3]. The first written record on the medicinal uses of plants appeared in about 2600

BC from the Sumerians and Akkaidians [4]. The “Ebers Papyrus”, the best known

Egyptian pharmaceutical record, which documented over 700 drugs, represents the

history of Egyptian medicine dated from 1500 BC. The Chinese “Materia Medica”,

describes more than 600 medicinal plants, well documented dating from about 1100

BC [5]. Documentation of the Ayurvedic system recorded in Susruta and Charaka

Page 25: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

2

date from about 1000 BC [6]. The Greeks also contributed substantially to the

rational development of the herbal drugs. Dioscorides, the Greek physician (100

A.D.), described more than 600 medicinal plants in his work “De Materia Medica”

[4].

Drug discovery from medicinal plants include numerous fields of inquiry and

various methods of analysis. The process typically begins with a botanist who

collects and identifies the plants of interest. Collection may involve species with

known biological activity for which active compounds have not been isolated or may

involve taxa collected randomly for a large screening program [3]. Consequently, a

number of drugs have been developed from natural products, for examples,

anticancer drug vincristine (1) from Vinca rosea, narcotic analgesic morphine (2)

from Papaver somniferum, antimalarial drug artemisinin (3) from Artemisia annua

and antibiotic penicillin G (4) from Penicillium sp [7].

N

N

H

N

N

OH

COOMe

H

HO COOMe

CHOMeO

COOMe

(1)

O

HO

HO

NH H

(2)

N

N

OO

H H

COOH

H

(4)

O

H

H

H

OO

(3)

Natural products are used directly in the ‘natural’ pharmaceutical industry,

consequently traditional medicine programmes are incorporated into the primary

health care systems in some parts of the world, such as Mexico, China, Nigeria and

Malaysia [8]. Conventional methods of drug discovery from natural products could

be viewed based on two approaches. Bioassay-guided isolation, where a drug targets

Page 26: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

3

are exposed to crude extracts, any evidence of activity in an extract will then go

through fractionation and isolation of the active compound. Secondly, is the isolation

of a number of natural compounds (compounds library) suitable for undergoing any

bioactivity screening [7].

Modern drug discovery approach involving High-Throughput Screening

(HTS), where, applying full automation and robotics in which hundreds of molecules

can be screened using several assays within a short time, and with very little amounts

of compounds. In order to incorporate natural products in the modern HTS

programmes, a natural product library (a collection of dereplicated natural products)

is required. This will allow dereplication; a process by which one can eliminate re-

isolation of similar compounds from various extracts. In an attempt to improve the

dereplication, a number of techniques are to be developed, including liquid

chromatography–photo-diode-array detector (LC-PDA), liquid chromatography–

mass spectrometry (LC-MS) and liquid chromatography–nuclear magnetic resonance

spectroscopy (LC-NMR) [9].

1.2 Medicinal Plants

Medicinal plants have had a sort of continuous and critically controlled

clinical trial, represent a primary source for the discovery of new drugs. It is,

therefore, amazing that many medicinal plants from the Mediterranean (Greek–

Latin–Arabic) tradition were over looked for so long by Modern medicine.

The birth of drug discovery is closely connected to the study of plant natural

products and was shaped by two seminal events, the isolation of morphine (2) from

opium by the pharmacist Serturner in 1817 and the introduction in the clinics of

Antipyrin (phenazone) 70 years later, in 1887. The isolation of a pure compound

responsible for the medicinal properties of a crude drug marked the beginning of

medicinal chemistry, triggering the transition from botanical extracts to pure

molecules and eventually leading to the isolation of the active substance of most

drugs. The importance of medicinal plants can be ascertained from the fact that

Page 27: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

4

according to the World Health Organization (WHO) estimates, 80% of the World’s

population fulfill their healthcare needs from phytomedicinal sources [10].

1.3 Statement of the Problem

The plants from Fabaceae and Moraceae families have been claimed to have

medicinal applications which include antidiabetic, antitumor, antihypertensive,

antimicrobial infections. The bioactivities exhibited are associated to the presence of

various classes of secondary metabolites in the plants, such as flavonoids, alkaloids,

terpenoids, phenyl propanoids and glycosides. Thus, there are need to investigate the

bioactive compounds present in the Bauhinia rufescens (Fabaceae) and Ficus

platyphylla (Moraceae).

1.4 Objectives of Research

The objectives of this research are to isolate the chemical constituents of

Bauhinia rufescens (Fabaceae) and Ficus platyphylla (Moraceae) and to evaluate

bioactivity of the crude extracts and the isolated compounds for antioxidant,

antimicrobial, antityrosinase, brine shrimp lethality test, antiacetylcholinesterase and

antiinflammatory inhibitors. The research is divided into two parts. The first part is to

isolate and identify the phytochemicals from the dried samples followed by the study

of bioactivity of crude extracts and pure compounds.

1.5 Significance of the Research

This study is to ascertain the medicinal values of Bauhinia rufescens

(Fabaceae) and Ficus platyphylla (Moraceae) through phytochemicals and bioactivity

studies and make necessary recommendations that could lead to a scientific evidence

of their medicinal applications.

Page 28: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

5

1.6 Scope of Work

This research is focused on the Bauhinia rufescens (Fabaceae; leaves and

stem bark) and Ficus platyphylla (Moraceae; stem bark) for the studies on their

chemical constituents and bioactivities. The dried samples will be extracted using

soxhlet extraction with different organic solvents in an increasing polarity gradient.

The crude extracts will be fractionated using vacuum liquid chromatography (VLC).

Purification of the fractions will be carried out by gravity column

chromatography (CC) to obtain the pure compounds. An elucidation of chemical

structure for the isolated compounds in pure forms will be conducted using

spectroscopic techniques, which includes; UV, IR, 1H NMR, 13C NMR, 2D NMR

(COSY, HMQC, HMBC) and mass spectrometry.

Finally, the bioactivity studies, including DPPH radical scavenging assay,

total phenolic content assay, β-carotene/linoleic acid bleaching assay, brine shrimp

lethality test, antibacterial, antifungal, antityrosinase, acetylcholinesterase, anti-

inflammatory assays will be carried out on the crude extracts and pure compounds.

Page 29: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

157

8 REFERENCES

1. Çakılcıoğlu, U., Sengün, M. T., and Türkoğlu, I. An ethnobotanical survey of

medicinal plants of Yazıkonak and Yurtba districts of Elazığ

province,Turkey. Journal of Medicinal Plants Research. 2010. 4(7):567-572.

2. Devendra, B. N., Srinivas, N., and Solmon, K. S. A comparative

pharmacological and phytochemical analysis of in vivo and in vitro

propagated Crotalaria species. Asian Pacific Journal of Tropical Medicine.

2012. 5(1):37-41.

3. Balunas, M. J. and Kinghorn, A. D. Drug discovery from medicinal plants.

Life Sciences. 2005. 78(5):431-441.

4. Samuelsson, G. Drugs of natural origin: a textbook of pharmacognosy. 4th ed

ed. Stockholm: Swedish Pharmaceutical Press. 1999.p. 15-36.

5. Cragg, G. M., Newman, D. J., and Snader, K. M. Natural Products in Drug

Discovery and Development. Journal of Natural Products. 1997. 60(1):52-

60.

6. Shoeb, M. Anticancer agents from medicinal plants Bangladesh Journal of

Pharmacology. 2006. 1:35-41

7. Satyajit, S. D. and Lutfun, N. Chemistry for Pharmacy students: General,

Organic and Natural Product Chemistry. Chichester, West Sussex, England:

John Wiley and Sons. 2007.p. 283-359.

8. World Health, O., Traditional Medicine Strategy. 2005: Geneva. p. 1-10.

Page 30: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

158

9. Beghyn, T., Deprez-Poulain, R., Willand, N., Folleas, B., and Deprez, B.

Natural Compounds: Leads or Ideas? Bioinspired Molecules for Drug

Discovery. Chemical Biology and Drug Design. 2008. 72(1):3-15.

10. Jurna, I. Sertürner und Morphin – eine historische Vignette. Schmerzforum.

2003. 17(4):280-283.

11. Lewis, G. B., Schrire, B. M., and Lock , M., Legumes of the world 2005,

Royal Botanical Gardens, Kew, UK. p. 7-10.

12. McKey, D., ed. Legumes and nitrogen: the evolutionary ecology of a

nitrogen-demanding lifestyle. 1994 Royal Botanic Gardens, Kew, UK. Pg

211–228

13. Graham, P. H. and Vance, C. P. Legumes: importance and constraints to

greater use. Plant Physiology 2003. 131:872 – 877.

14. Gupta, D., Bleakley, B., and Gupta, R. K. Dragon's blood: Botany, chemistry

and therapeutic uses. Journal of Ethnopharmacology. 2008. 115(3):361-380.

15. Gao, T., Sun, Z., Yao, H., Song, J., Zhu, Y., Ma, X., and Chen, S.

Identification of Fabaceae plants using the DNA barcode matK. Planta

Medica. 2011. 77(1):92-94.

16. Sanjib, S., Jamil A., S., Himangsu, M., Faroque, H., Md., A., Md., M. H., and

Geoffrey A., C. Ethnomedicinal, phytochemical, and pharmacological profile

of the genus Dalbergia L. (Fabaceae) Phytopharmacology. 2013. 4(2):291-

346.

17. Li, W., Asada, Y., and Yoshikawa, T. Flavonoid constituents from

Glycyrrhiza glabra hairy root cultures. Phytochemistry. 2000. 55(5):447-456.

18. Ma, X., Zheng, C., Hu, C., Rahman, K., and Qin, L. The genus Desmodium

(Fabaceae) traditional uses in Chinese medicine, phytochemistry and

pharmacology. Journal of Ethnopharmacology. 2011. 138(2):314-332.

Page 31: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

159

19. Ayo, R. G. and College, S. Phytochemical constituents and bioactivities of

the extracts of Cassia nigricans Vahl : A review. Journal of Medicinal

Plants. 2010. 4(14):1339-1348.

20. Silva, K. L. and Cechinel, F. V. Plantas do gênero Bauhinia: composição

química e potencial farmacológico. Química Nova. 2002. 25:449-454.

21. Robertson, K. R. and Sytsma, K. J., Rosales in Encyclopædia Britannica

Online. 2013. p. pg 213.

22. Jagtap, U. B. and Bapat, V. A. Artocarpus: A review of its traditional uses,

phytochemistry and pharmacology. Journal of Ethnopharmacology. 2010.

129(2):142-166.

23. Jackson, R. G. S. A., Grasielly, R. S., Edigênia, C. C. A., Fabrício, S. S.,

Julianeli, T. L., Luciano, A. A. R., Xirley, P. N., José, M. B. F., Lucindo, J.

Q. J., and Márcio, R. V. S. Medicinal Plants and Natural Compounds from

the Genus Morus (Moraceae) with Hypoglycemic Activity: A Review. in

Glucose Tolerance.2012. p. 189-206.

24. Kuete, V., Metuno, R., Keilah, P. L., Tshikalange, E. T., and Ngadjui, B. T.

Evaluation of the genus Treculia for antimycobacterial, anti-reverse

transcriptase, radical scavenging and antitumor activities. South African

Journal of Botany. 2010. 76(3):530-535.

25. Amponsah, I. K. Chemical constituents, antiinflammatory, antioxidant and

antimicrobial activities of the stem bark and leaves of Ficus exasperata

(vahl) PhD. Kwame Nkrumah University of Science and Technology 2012

26. Lansky, E. P., Paavilainen, H. M., Pawlus, A. D., and Newman, R. A. Ficus

spp. (fig): Ethnobotany and potential as anticancer and anti-inflammatory

agents. Journal of Ethnopharmacology. 2008. 119(2):195-213.

27. Burkill, H. M. The Useful Plants of West Tropical Africa. Vol. I Royal

Botanic Gardens, Kew 1985.p. 1–6.

Page 32: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

160

28. Ugwah-Oguejiofor, C. J., Bello, S. O., Okolo, R. U., Etuk, E. U., Ugwah, M.

O., and Igbokwe, V. U. Ficus platyphylla promotes fertility in female Rattus

norvegicus Wistar strain: a preliminary study. Reproductive Biology and

Endocrinology. 2011. 9:145.

29. Chindo, B. A., Anuka, J. A., McNeil, L., Yaro, A. H., Adamu, S. S., Amos,

S., Connelly, W. K., Lees, G., and Gamaniel, K. S. Anticonvulsant properties

of saponins from Ficus platyphylla stem bark. Brain Research Bulletin. 2009.

78(6):276-282.

30. Sandermann, W. Chapter 11 - Terpenoids: Metabolism. in Comparative

Biochemistry, F Marcel, Editor. Academic Press.1962. p. 591-630.

31. Iribarren, A. M. and Pomilio, A. B. Sitosterol 3-O-α-D-xyluronofuranoside

from Bauhinia candicans. Phytochemistry. 1987. 26(3):857-858.

32. Iribarren, A. M. and Pomilio, A. B. Sitosterol 3-O-α-riburonofuranoside from

Bauhinia candicans. Phytochemistry. 1985. 24(2):360-361.

33. Iribarren, A. M. and Pomilio, A. B. Sitosterol 3-O-β-D-xylopyranoside from

Bauhinia candicans. Phytochemistry. 1984. 23(9):2087-2088.

34. Achenbach, H., Stöcker, M., and A. Constenla, M. Flavonoid and other

constituents of Bauhinia manca. Phytochemistry. 1988. 27(6):1835-1841.

35. Viana, E. P., Santa-Rosa, R. S., Almeida, S. S. M. S., and Santos, L. S.

Constituents of the stem bark of Bauhinia guianensis. Fitoterapia. 1999.

70(1):111-112.

36. Athikomkulchai, S., Ruangrungsi, N., Sekine, T., Sumino, M., Igarashi, K.,

and Ikegami, F. Chemical constituents of Bauhinia sirindhorniae. Natural

Medicines. 2003. 57:150-153.

37. Rao, Y. K., Fang, S.-H., and Tzeng, Y.-M. Antiinflammatory activities of

flavonoids and a triterpene caffeate isolated from Bauhinia variegata.

Phytotherapy Research. 2008. 22(7):957-962.

Page 33: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

161

38. Shang, X. Y., Li, S., Wang, S. J., Yang, Y. C., and Shi, J. G. Chemical

constituents of Bauhinia aurea. Journal of Asian Natural Products Research.

2012. 14(10):966-972.

39. El-Sayyad, S. M., Sayed, H. M., and Mousa, S. A. Chemical constituents and

preliminary anthelmintic activity of Ficus platyphylla (Del). Bulletin of

Pharmaceutical Sciences. 1986. 9:164-77.

40. Li, Y. C. and Kuo, Y. H. A monoterpenoid and two simple phenols from

heartwood of Ficus microcarpa. Phytochemistry. 1998. 49(8):2417-2419.

41. Tuyen, N. V., Kim, D. S. H. L., Fong, H. S., Soejarto, D. D., Khanh, T. C.,

Tri, M. V., and Xuan, L. T. Structure elucidation of two triterpenoids from

Ficus fistulosa. Phytochemistry. 1999. 50(3):467-469.

42. Lee, E. H., Kim, H. J., Song, Y. S., Jin, C., Lee, K.-T., Cho, J., and Lee, Y. S.

Constituents of the Stems and Fruits of Opuntia Ficus indica var. saboten

Archives of Pharmaceutical Research. 2003. 26(12):1018-1023.

43. Singh, D., Singh, B., and Goel, R. K. Traditional uses, phytochemistry and

pharmacology of Ficus religiosa: A review. Journal of Ethnopharmacology.

2011. 134(3):565-583.

44. Kiem, P. V., Cuong, N. X., Nhiem, N. X., Thu, V. K., Ban, N. K., Minh, C.

V., Tai, B. H., Hai, T. N., Lee, S. H., Jang, H. D., and Kim, Y. H. Antioxidant

activity of a new C-glycosylflavone from the leaves of Ficus microcarpa.

Bioorganic and Medicinal Chemistry Letters. 2011. 21(2):633-637.

45. Somwong, P., Suttisri, R., and Buakeaw, A. New sesquiterpenes and phenolic

compound from Ficus foveolata. Fitoterapia. 2013. 85:1-7.

46. Hanson, J. R., Martyn Berry, and Drayton, C. Natural Products:The

Secondary Metabolites ed. Abel E W, Davies A G, Phillips, D, and Woollins,

JD: Royal Society of Chemistry, Cambridge, UK. 2003.p. pg. 21-14.

47. Iribarren, A. M. and Pomilio, A. B. Components of Bauhinia candicans.

Journal of Natural Products. 1983. 46(5):752-753.

Page 34: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

162

48. Zhao, Y. Y., Cui, C. B., Cai, B., Han, B., and Sun, Q. S. A new

phenanthraquinone from the stems of Bauhinia variegata L. Journal of Asian

Natural Products Research. 2005. 7(6):835-838.

49. Neto, M. M., Neto, M. A., Filho, R. B., Lima, M. A. S., and Silveira, E. R.

Flavonoids and alkaloids from leaves of Bauhinia ungulata L. Biochemical

Systematics and Ecology. 2008. 36(3):227-229.

50. Lim, H., Kim, M. K., Lim, Y., Cho, Y. H., and Lee, C. H. Inhibition of cell-

cycle progression in HeLa cells by HY52, a novel cyclin-dependent kinase

inhibitor isolated from Bauhinia forficata. Cancer Letters. 2006. 233(1):89-

97.

51. Braca, A., Nunziatina, D. T., Lorenzo, D. B., Pizza, C., Politi, M., and

Morelli, I. Antioxidant Principles from Bauhinia tarapotensis. Journal of

Natural Products. 2001. 64(7):892-895.

52. Damu, A. G., Kuo, P. C., Shi, L. S., Li, C. Y., Kuoh, C.-S., Wu, P. L., and

Wu, T. S. Phenanthroindolizidine Alkaloids from the Stems of Ficus septica.

Journal of Natural Products. 2005. 68(7):1071-1075.

53. Simo, C. C. F., Kouam, S. F., Poumale, H. M. P., Simo, I. K., Ngadjui, B. T.,

Green, I. R., and Krohn, K. Benjaminamide: A new ceramide and other

compounds from the twigs of Ficus benjamina (Moraceae). Biochemical

Systematics and Ecology. 2008. 36(3):238-243.

54. Subramaniam, G., Ang, K. K. H., Siewbee, N. G., Buss, A. D., and Butler, M.

S. A benzopyrroloisoquinoline alkaloid from Ficus fistulosa. Phytochemistry

Letters. 2009. 2(2):88-90.

55. Ueda, J. Y., Takagi, M., and Shinya, K. Aminocaprophenone- and

Pyrrolidine-Type Alkaloids from the Leaves of Ficus septica. Journal of

Natural Products. 2009. 72(12):2181-2183.

56. Havsteen, B. H. The biochemistry and medical significance of the flavonoids.

Pharmacology and Therapeutics. 2002. 96(2–3):67-202.

Page 35: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

163

57. Kuo, Y. H., Yeh, M. H., and Huang, S. L. A novel 6-butyl-3-

hydroxyflavanone from heartwood of Bauhinia purpurea. Phytochemistry.

1998. 49(8):2529-2530.

58. Yadava, R. N. and Tripathi, P. A novel flavone glycoside from the stem of

Bauhinia purpurea. Fitoterapia. 2000. 71(1):88-90.

59. Ferreres, F., GiIzquierdo, A., Vinholes, J., Silva, S. T., Valentão, P., and

Andrade, P. B. Bauhinia forficata Link authenticity using flavonoids profile:

Relation with their biological properties. Food Chemistry. 2012. 134(2):894-

904.

60. Xu, W., Chu, K., Li, H., Zhang, Y., Zheng, H., Chen, R., and Chen, L. Ionic

liquid-based microwave-assisted extraction of flavonoids from Bauhinia

championii (Benth.) Benth. Molecules. 2012. 17:14323-14335.

61. Gaspar, D. M., Arruda, A. C., Arruda, M. S. P., and Müller, A. H.

Methoxyflavones from Ficus maxima. Phytochemistry. 1997. 45(8):1697-

1699.

62. Pistelli, L., Chiellini, E. E., and Morelli, I. Flavonoids from Ficus pumila.

Biochemical Systematics and Ecology. 2000. 28(3):287-289.

63. Yarmolinsky, L., Huleihel, M., Zaccai, M., and Benshabat, S. Potent antiviral

flavone glycosides from Ficus benjamina leaves. Fitoterapia. 2012.

83(2):362-367.

64. Choo, C. Y., Sulong, N. Y., Man, F., and Wong, T. W. Vitexin and isovitexin

from the Leaves of Ficus deltoidea with in-vivo α-glucosidase inhibition.

Journal of Ethnopharmacology. 2012. 142(3):776-781.

65. Donia, A. E. R. M., Soliman, G. A., Zaghloul, A. M., Alqasoumi, S. I.,

Awaad, A. S., Radwan, A. M., and Basodan, O. A. Chemical constituents and

protective effect of Ficus ingens (Miq.) on carbon tetrachloride-induced acute

liver damage in male Wistar albino rats. Journal of Saudi Chemical Society.

2013. 17(1):125-133.

Page 36: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

164

66. Boudet, A. M. Evolution and current status of research in phenolic

compounds. Phytochemistry. 2007. 68(22–24):2722-2735.

67. Stafford, H. A. Chapter Two The evolution of phenolics in plants. in Recent

Advances in Phytochemistry, JT Romeo, Varin, RIL, and Luca, VD, Editors.

Elsevier.2000. p. 25-54.

68. Nageshwar, G., Anuradha, S., Radhakrishnaiah, M., and Narayana, L.

Distribution pattern of phenolic constituents in species of Bauhinia; Linn. and

its taxonomic significance. Proceedings: Plant Sciences. 1986. 96(1):1-7.

69. Shang, X. Y., Li, S., Wang, S. J., Yang, Y. C., and Shi, J. G. Chemical

constituents of Bauhinia aurea. Zhongguo Zhong Yao Za Zhi. 2006.

31(23):1953-1955.

70. Qiao, l. Z., Wu, Z., Zheng, Z., Lu, X., Liang, H., Cheng, W., Zhang, Q., and

Zhao, Y. Phenolic acid derivatives from Bauhinia glauca subsp. pernervosa

Acta Pharmaceutica Sinica. 2011. 46(8).

71. Lee, T. H., Kuo, Y. C., Wang, G. J., Kuo, Y. H., Chang, C. I., Lu, C. K., and

Lee, C. K. Five New Phenolics from the Roots of Ficus beecheyana. Journal

of Natural Products. 2002. 65(10):1497-1500.

72. Riviere, C., Pawlus, A. D., and Merillon, J. M. Natural stilbenoids:

distribution in the plant kingdom and chemotaxonomic interest in Vitaceae.

Natural Product Reports. 2012. 29(11):1317-1333.

73. Anjaneyulu, A., Reddy, A., Reddy, D., Ward, R., Adhikesavalu, D., and

Cameron, T. Pacharin: a new dibenzo(2,3-6,7) oxepin derivative from

Bauhinia racemosa Lamk. Tetrahedron 1984. 40:4245–4252.

74. Kittakoop, P., Kirtikara, K., Tanticharoen, M., and Thebtaranonth, Y.

Antimalarial preracemosols A and B, possible biogenetic precursors of

racemosol from Bauhinia malabarica Roxb. Phytochemistry. 2000.

55(4):349-352.

Page 37: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

165

75. Boonphong, S., Puangsombat, P., Baramee, A., Mahidol, C., Ruchirawat, S.,

and Kittakoop, P. Bioactive Compounds from Bauhinia purpurea Possessing

Antimalarial, Antimycobacterial, Antifungal, Anti-inflammatory, and

Cytotoxic Activities. Journal of Natural Products. 2007. 70(5):795-801.

76. Sardari, S., Nishibe, S., and Daneshtalab, M. Coumarins, the bioactive

structures with antifungal property. in Studies in Natural Products Chemistry,

R Atta ur, Editor. Elsevier.2000. p. 335-393.

77. Elgamalps, M. H. A., Elewa, N. H., Elkhrisy, E. A. M., and Duddeck, H. 13C

NMR chemical shifts and carbon-proton coupling constants of some

furocoumarins and furochromones. Phytochemistry. 1979. 18:139-143.

78. Khattab, A. A. Coumarin constituents of some Egyptian Ficus species.

Bulletin of Faculty of Pharmacy. 1993. 31:19-20.

79. Gribble, G. W. Chapter 5b - Natural products containing a cyclohexane,

cyclohexene, or cyclohexadiene subunit. in Second Supplements to the 2nd

Edition of Rodd's Chemistry of Carbon Compounds, S Malcolm, Editor.

Elsevier: Amsterdam.1991. p. 375-445.

80. Chen, C. C., Chen, Y. P., Hsu, H. Y., Lee, K. H., Tani, S., and McPhail, A. T.

Bauhinin, a new nitrile glucoside from Bauhinia championii. Journal of

Natural Products. 1985. 48:933-7.

81. Fort, D. M., Jolad, S. D., and Nelson, S. T. Lithospermoside from Bauhinia

fassoglensis (Fabaceae). Biochemical Systematics and Ecology. 2001.

29(4):439-441.

82. Kuo, Y. H. and Yeh, M. H. Chemical constituents of heartwood of Bauhinia

purpurea. Journal of the Chinese Chemical Society. 1997. 44:379-383.

83. Sahu, G. and Gupta, P. A review on Bauhinia variegata. International

Research Journal of Pharmacy. 2012. 3(1):48-51.

84. Sashidhara, K. V., Singh, S. P., Misra, S., Gupta, J., and Misra-Bhattacharya,

S. Galactolipids from Bauhinia racemosa as a new class of antifilarial agents

Page 38: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

166

against human lymphatic filarial parasite, Brugia malayi. European Journal

of Medicinal Chemistry. 2012. 50:230-235.

85. Jeong, W. S. and Lachance, P. A. Phytosterols and Fatty Acids in Fig (Ficus

carica, var. Mission) Fruit and Tree Components. Journal of Food Science.

2001. 66(2):278-281.

86. Hosamani, K. M. and Pattanashettar, R. S. Occurrence of unusual fatty acids

in Ficus benghalensis seed oil. Industrial Crops and Products. 2003.

18(2):139-143.

87. Eddy, N. O., Ameh, P., Gimba, C. E., and Ebenso, E. E. Chemical

information from GCMS of Ficus platyphylla gum and its corrosion

inhibition potential for mild steel in 0.1 M HCl. International Journal of

Electrochemical Science. 2012. 7:5677-5691.

88. Pettit, G. R., Numata, A., Iwamoto, C., Usami, Y., Yamada, T., Ohishi, H.,

and Cragg, G. M. Antineoplastic Agents. 551. Isolation and Structures of

Bauhiniastatins 1−4 from Bauhinia purpurea . Journal of Natural Products.

2005. 69(3):323-327.

89. Hassan, H. S., Sule, M. I., Usman, M. A., Usman, M., and Ibrahim, A.

Preliminary phytochemical and antimicrobial screening of the stem bark

extracts of Bauhinia rufescens Lam. Bayero Journal of Pure and Applied

Sciences. 2009. 2(2):53-55.

90. Sosa, S., Braca, A., Altinier, G., Della Loggia, R., Morelli, I., and Tubaro, A.

Topical anti-inflammatory activity of Bauhinia tarapotensis leaves.

Phytomedicine. 2002. 9(7):646-653.

91. Annan, K. and Houghton, P. J. Antibacterial, antioxidant and fibroblast

growth stimulation of aqueous extracts of Ficus asperifolia Miq. and

Gossypium arboreum L., wound-healing plants of Ghana. Journal of

Ethnopharmacology. 2008. 119(1):141-144.

Page 39: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

167

92. Ao, C., Li, A., Elzaawely, A. A., Xuan, T. D., and Tawata, S. Evaluation of

antioxidant and antibacterial activities of Ficus microcarpa L. fil. extract.

Food Control. 2008. 19(10):940-948.

93. Alimuddin, S., Hemlata, R., and Patel, N. M. Evaluation of Antimicrobial

activity of stem bark of Ficus bengalensis Linn. Collected from different

geographical regions. Pharmacognosy Journal. 2010. 2(7):178-180.

94. Taha, M. S., Fawkeya, A. A., Zeinab, I. E., and Ahmed, M. M. Two new

polyphenolic compounds from Ficus retusa L."variegata" and the biological

activity of the different plant extracts Journal of Pharmacognosy and

Phytotherapy. 2011. 3(7):89-100.

95. Meyre, S. C., Yunes, R. A., Delle Monache, F., Santos, A. R., Schmeling, L.

O., Gadotti, V. M., Liz, F., and Cechinel, F. V. Phytochemical and

pharmacological analysis of Bauhinia microstachya (Raddi) Macbr.

(Leguminosae). Zeitschrift für Naturforschung. 2001. 56(11-12):939-42.

96. Gupta, M., Mazumder, U. K., Kumar, R. S., Gomathi, P., Rajeshwar, Y.,

Kakoti, B. B., and Selven, V. T. Anti-inflammatory, analgesic and antipyretic

effects of methanol extract from Bauhinia racemosa stem bark in animal

models. Journal of Ethnopharmacology. 2005. 98(3):267-273.

97. Jung, H. W., Son, H. Y., Minh, C. V., Kim, Y. H., and Park, Y. K. Methanol

extract of Ficus leaf inhibits the production of nitric oxide and

proinflammatory cytokines in LPS-stimulated microglia via the MAPK

pathway. Phytotherapy Research. 2008. 22(8):1064-1069.

98. Ajayi, A. M., Tanayena, J. K., Balogun, S. O., Ibrahim, A., Ezeonwumelu, J.

O. C., Kiplagat, D., Oyewale, A. A., Oloro, J. O., Goji, A. D. T., and Adzu,

B. Antiinflammatory and Analgesic Properties of Ethanolic Stem Bark

Extract of Ficus trichopoda in Rats. Pharmacognosy Journal. 2011. 2(18):43-

47.

99. Menezes, C., Kunal, G., Reema, N., Satyanarayana, D., and Jagadish, K.

Analgesic and anti-inflammatory activity of Ficus glomerata in experimental

Page 40: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

168

animal models. International Journal of Pharmaceutical Sciences and

Nanotechnology. 2011. 4:1501-1504, 4 pp.

100. Arunachalam, K. and Parimelazhagan, T. Anti-inflammatory, wound healing

and in-vivo antioxidant properties of the leaves of Ficus amplissima Smith.

Journal of Ethnopharmacology. 2013. 145(1):139-145.

101. Fuentes, O., Arancibia, A. P., and Alarcón, J. Hypoglycemic activity of

Bauhinia candicans in diabetic induced rabbits. Fitoterapia. 2004. 75(6):527-

532.

102. Wu, Z. B., Zhao, Y. Y., Yang, X. W., and Liang, H. Flavonoids from

Bauhinia glauca subsp. pernervosa. Chemical and Pharmaceutical Bulletin.

2009. 57(6):628-631.

103. Filho, V. C. Chemical composition and Biological Potential of plants from

the Genus Bauhinia. Phytotheraphy Research. 2009. 23:1347-1354.

104. Aliyu, A. B., Ibrahim, M. A., Musa, A. M., Ibrahim, H., Abdulkadir, I. E.,

and Oyewale, A. O. Evaluation of antioxidant activity of leave extract of

Bauhinia rufescens Lam. (Caesalpiniaceae). Journal of Medicinal Plants

Research. 2009. 3(8):563-567.

105. Pepato, M. T., Keller, E. H., Baviera, A. M., Kettelhut, I. C., Vendramini, R.

C., and Brunetti, I. L. Anti-diabetic activity of Bauhinia forficata decoction in

streptozotocin-diabetic rats. Journal of Ethnopharmacology. 2002. 81(2):191-

197.

106. Gayathri, M. and Kannabiran, K. Antidiabetic and ameliorative potential of

Ficus bengalensis bark extract in streptozotocin induced diabetic rats. Indian

Journal of Clinical Biochemistry. 2008. 23:394-400.

107. Singh, R. K., Mehta, S., Jaiswal, D., Rai, P. K., and Watal, G. Antidiabetic

effect of Ficus bengalensis aerial roots in experimental animals. Journal of

Ethnopharmacology. 2009. 123(1):110-114.

Page 41: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

169

108. Jahan, I. A., Nahar, N., Mosihuzzaman, M., Rokeya, B., Ali, L., Khan, A. K.

A., Makhmur, T., and Choudhary, M. I. Hypoglycaemic and antioxidant

activities of Ficus racemosa Linn. fruits. Natural Product Research. 2009.

23:399-408.

109. Hassan, F., El-Razek, A., and Hassan, A. Nutritional Value and

Hypoglycemic Effect of Prickly Cactus Pear (Opuntia Ficus indica) Fruit

Juice in Alloxan-Induced Diabetic Rats. Australian Journal of Basic and

Applied Sciences. 2011. 5(10):356-377.

110. Barata, L. Empirismo e ciência: fonte de novos medicamentos. Ciên Cult

2005. 57:1–4.

111. Kumar, R. S., Sivakumar, T., and Sunderam, R. S. Antioxidant and

antimicrobial activities of Bauhinia racemosa L. stem bark. Brazilian Journal

of Medical and Biological Research. 2005. 38:1015–1024.

112. Damu, A. G., Ping-Chung, K., Li-Shian, S., Chia-Ying, L., Chung-Ren, S.,

and Tian-Shung, W. Cytotoxic Phenanthroindolizidine Alkaloids from the

Roots of Ficus septica. Planta Medica. 2009. 75:1152–1156.

113. Xu, H., Wang, X. M., Wei, X., Li, J. Y., and Liu, K. A new chalcone from the

aerial roots of Ficus microcarpa. Chinese Chemical Letters. 2009. 20(5):576-

578.

114. Bernhoft, A. Bioactive compounds in plants – benefits and risks for man and

animals in The Norwegian Academy of Science and Letters. 2008. Norway:

Novus forlag, Oslo.

115. de Sousa, E., Zanatta, L., Seifriz, I., Creczynski-Pasa, T. B., Pizzolatti, M. G.,

Szpoganicz, B., and Silva, F. R. M. B. Hypoglycemic Effect and Antioxidant

Potential of Kaempferol-3,7-O-(α)-dirhamnoside from Bauhinia forficata

Leaves. Journal of Natural Products. 2004. 67(5):829-832.

116. Perez G, R. M., Zavala S, M. A., Perez G, S., and Perez G, C. Antidiabetic

effect of compounds isolated from plants. Phytomedicine. 1998. 5(1):55-75.

Page 42: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

170

117. Yadava, R. N. and Reddy, V. M. S. Anti-Inflammatory Activity of a Novel

Flavonol Glycoside from the Bauhinia Variegata Linn. Natural Product

Research. 2003. 17(3):165-169.

118. Zhao, Y., Cui, C., Cai, B., Han, B., and Sun, Q. Study on the constituents

with anticancer activities of alkaloids from Bauhinia variegata L. Zhongguo

Yaowu Huaxue Zazhi. 2004. 14:169-171.

119. Chiang, Y. M., Chang, J. Y., Kuo, C. C., Chang, C. Y., and Kuo, Y. H.

Cytotoxic triterpenes from the aerial roots of Ficus microcarpa.

Phytochemistry. 2005. 66(4):495-501.

120. Maillard, M. P., Recio-Iglesias, M. C., Saadou, M., Stoeckli-Evans, H., and

Hostettmann, K. Novel antifungal tetracyclic compounds from Bauhinia

rufescens Lam. Helvetica Chimica Acta. 1991. 74:791-9.

121. Wang, X., Wei, X., Tian, Y., Shen, L., and Xu, H. Antifungal Flavonoids

from Ficus sarmentosa var. henryi (King) Corner. Agricultural Sciences in

China. 2010. 9(5):690-694.

122. Gadotti, V. M., Santos, A. R. S., Meyre-Silva, C., Schmeling, L. O.,

Machado, C., Liz, F. H., and Filho, V. C. Antinociceptive action of the extract

and the flavonoid quercitrin isolated from Bauhinia microstachya leaves.

Journal of Pharmacy and Pharmacology. 2005. 57(10):1345-1351.

123. Aderogba, M. A., McGaw, L. J., Ogundaini, A. O., and Eloff, J. N.

Antioxidant activity and cytotoxicity study of the flavonol glycosides from

Bauhinia galpinii. Natural Product Research. 2007. 21(7):591-599.

124. Wang, X., Wei, X., Huang, X., Shen, L., Tian, Y., and Xu, H. Insecticidal

Constructure and Bioactivities of Compounds from Ficus sarmentosa var.

henryi. Agricultural Sciences in China. 2011. 10(9):1402-1409.

125. Kuete, V., Nana, F., Ngameni, B., Mbaveng, A. T., Keumedjio, F., and

Ngadjui, B. T. Antimicrobial activity of the crude extract, fractions and

compounds from stem bark of Ficus ovata (Moraceae). Journal of

Ethnopharmacology. 2009. 124(3):556-561.

Page 43: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

171

126. Baumgartner, B., Erdelmeier, C. A. J., Wright, A. D., Rali, T., and Sticher, O.

An antimicrobial alkaloid from Ficus septica. Phytochemistry. 1990.

29(10):3327-3330.

127. Dok-Go, H., Lee, K. H., Kim, H. J., Lee, E. H., Lee, J., Song, Y. S., Lee, Y.

H., Jin, C., Lee, Y. S., and Cho, J. Neuroprotective effects of antioxidative

flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether,

isolated from Opuntia Ficus indica var. saboten. Brain Research. 2003.

965(1–2):130-136.

128. Sermboonpaisarn, T. and Sawasdee, P. Potent and selective

butyrylcholinesterase inhibitors from Ficus foveolata. Fitoterapia. 2012.

83(4):780-784.

129. Mu, L. H., Li, J. B., Yang, J. Z., and Zhang, D. M. New dibenz[ b, f] oxepins

from Cercis chinensis Bunge. Journal of Asian Natural Products Research.

2007. 9(7):649-653.

130. Van, B. M., Daenens, P., Cokelaere, M. M., and Janssen, G. Isolation and

Structure Elucidation of the Major Simmondsin Analogs in Jojoba Meal by

Two-Dimensional NMR Spectroscopy. Journal of Agricultural Food

Chemistry. 1994. 42:2684-7.

131. Baumgartner, S., Genner-Ritzmann, R., Haas, J., Amado, R., and Neukom, H.

Isolation and identification of cyclitols in carob pods (Ceratonia siliqua L.).

Journal of Agricultural Food Chemistry. 1986. 34:827-9.

132. Binder, R. G. and Haddon, W. F. Cyclitols of soybean leaves. Journal of

Agricultural Food Chemistry. 1984. 32:685-7.

133. Seigler, D. S., Pauli, G. F., Fröhlich, R., Wegelius, E., Nahrstedt, A., Glander,

K. E., and Ebinger, J. E. Cyanogenic glycosides and menisdaurin from

Guazuma ulmifolia, Ostrya virginiana, Tiquilia plicata, and Tiquilia

canescens. Phytochemistry. 2005. 66(13):1567-1580.

134. Bachmann, T. L., Ghia, F., and Torssell, K. B. G. Lignans and lactones from

Phyllanthus anisolobus. Phytochemistry. 1993. 33(1):189-191.

Page 44: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

172

135. Mukherjee, R. and Axt, E. M. Cyclitols from Croton celtidifolius.

Phytochemistry. 1984. 23(11):2682-2684.

136. Krishnaswamy, N. R., Prasanna, S., Seshandri, T. R., and Vedantham, T. N.

C. α- and β-Amyrin esters and sitosterol glucoside from Spilanthes acmella.

Phytochemistry. 1975. 14(7):1666-1667.

137. Miranda, R. R. S., Silva, G. D. F., Duarte, L. P., Fortes, I. C. P., and Filho, S.

A. V. Structural determination of 3β-stearyloxy-urs-12-ene from Maytenus

salicifolia by 1D and 2D NMR and quantitative 13C NMR spectroscopy.

Magnetic Resonance Chemistry. 2006. 44(2):127-131.

138. Saxena, V. K. and Albert, S. β-Sitosterol-3-O-β-D-xylopyranoside from the

flowers of Tridax procumbens Linn. Journal of Chemical Sciences. 2005.

117(3):263-266.

139. Yokosuka, A., Kawakami, S., Haraguchi, M., and Mimaki, Y. Seven new

triterpene glycosides from the pericarps of Stryphnodendron fissuratum.

Phytochemistry Letters. 2011. 4:259-266.

140. Anjoo Kamboj and Ajay Kumar Saluja. Isolation of stigmasterol and β-

sitosterol from petroleum ether extract of aerial parts of Ageratum conyzoides

(Asteraceae). International Journal of Pharmacy and Pharmaceutical

Sciences. 2011. 3(1):94-96.

141. Kumar, R., Bansal, V., Tiwari, A. K., Sharma, M., Puri, S. K., Patel, M. B.,

and Sarpal, A. S. Estimation of Glycerides and Free Fatty Acid in Oils

Extracted From Various Seeds from the Indian Region by NMR

Spectroscopy. Journal of the American Oil Chemists' Society. 2011.

88(11):1675-1685.

142. Zaka, S., Saleem, M., Shakir, N., and Khan, S. A. Fatty Acid Composition of

Bauhinia variegata and Bauhinia malabarica Seed Oils - Comparison of their

Physico-Chemical Properties. Fette, Seifen, Anstrichmittel. 1983. 85(4):169-

170.

Page 45: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

173

143. Termentzi, A., Zervou, M., and Kokkalou, E. Isolation and structure

elucidation of novel phenolic constituents from Sorbus domestica fruits. Food

Chemistry. 2009. 116(1):371-381.

144. Wilfred, V. and Ralph, N. Phenolic Compound Biochemistry Springer, P.O.

Box 17, 3300 AA Dordrecht, The Netherlands. 2006.p. pg 15-18.

145. Yang, F. and Cao, Y. Biosynthesis of phloroglucinol compounds in

microorganisms - A review. Applied Microbiology and Biotechnology. 2012.

93(2):487-495.

146. Achkar, J., Xian, M., Zhao, H., and Frost, J. W. Biosynthesis of

phloroglucinol. Journal of the American Chemical Society. 2005.

127(15):5332-5333.

147. Buhlmann, P. Structure determination of organic compounds: tables of

spectral data: Springer. 2009.p.

148. Zeng, X., Qiu, Q., Jiang, C., Jing, Y., Qiu, G., and He, X. Antioxidant

flavanes from Livistona chinensis. Fitoterapia. 2011. 82(4):609-614.

149. Martin, T., Kikuzaki, H., Hisamoto, M., and Nakatani, N. Constituents of

Amomum tsao-ko and their radical scavenging and antioxidant activities.

Journal of the American Oil Chemists' Society. 2000. 77(6):667-673.

150. Neal, J. M., Sato, P. T., and McLaughlin, J. L. Cactus alkaloids. XI. Isolation

of tyramine, N-methyltyramine, and hordenine from Obregonia denegrii.

Economic Botany. 1971. 25(4):382-384.

151. Supaluk, P., Puttirat, S., Rungrot, C., Somsak, R., and Virapong, P. New

bioactive triterpenoids and antimalarial activity of Diospyros rubra Lec.

EXCLI Journal. 2009. 9:1-10.

152. Dai, J. and Mumper, R. J. Plant Phenolics: Extraction, Analysis and Their

Antioxidant and Anticancer Properties Molecules. 2010. 15:7313-7352.

Page 46: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

174

153. Aktumsek, A., Zengin, G., Guler, G. O., Cakmak, Y. S., and Duran, A.

Antioxidant potentials and anticholinesterase activities of methanolic and

aqueous extracts of three endemic Centaurea L. species. Food and Chemical

Toxicology. 2013. 55:290-296.

154. Argolo, A. C. C., Sant'Ana, A. E. G., Pletsch, M., and Coelho, L. C. B. B.

Antioxidant activity of leaf extracts from Bauhinia monandra. Bioresource

Technology. 2004. 95(2):229-233.

155. Torey, A., Sasidharan, S., Latha, L. Y., Sudhakaran, S., and Ramanathan, S.

Antioxidant activity and total phenolic content of methanol extracts of Ixora

coccinea. Pharmaceutical Biology. 2010. 48(10):1119-1123.

156. Karagözler, A. A., Erdağ, B., Emek, Y. Ç., and Uygun, D. A. Antioxidant

activity and proline content of leaf extracts from Dorystoechas hastata. Food

Chemistry. 2008. 111(2):400-407.

157. Compaoré, M., Lamien, C. E., Lamien-Meda, A., Vlase, L., Kiendrebeogo,

M., Ionescu, C., and Nacoulma, O. G. Antioxidant, xanthine oxidase and

lipoxygenase inhibitory activities and phenolics of Bauhinia rufescens Lam.

(Caesalpiniaceae). Natural Product Research. 2011. 26(11):1069-1074.

158. Alimi, H., Hfaiedh, N., Bouoni, Z., Hfaiedh, M., Sakly, M., Zourgui, L., and

Rhouma, K. B. Antioxidant and antiulcerogenic activities of Opuntia Ficus

indica f. inermis root extract in rats. Phytomedicine. 2010. 17(14):1120-1126.

159. Othman, A., Ismail, A., Ghani, N. A., and Adenan, I. Antioxidant capacity

and phenolic content of cocoa beans. Food Chemistry. 2007. 100:1523–1530.

160. Asuero, A., Sayago, A., and Gonzalez, A. The correlation coefficient: An

overview. Critical reviews in analytical chemistry. 2006. 36(1):41-59.

161. Taylor, R. Interpretation of the correlation coefficient: a basic review. Journal

of diagnostic medical sonography. 1990. 6(1):35-39.

Page 47: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

175

162. Manilal, A., Sujith, S., Seghal, G. K., Selvin, J., and Shakir, C. Cytotoxic

Potentials of Red Alga, Laurencia brandenii Collected from the Indian Coast.

Global Journal of Pharmacology. 2009. 3(2):90-94.

163. Mukherjee, P. K., Kumar, V., Mal, M., and Houghton, P. J.

Acetylcholinesterase inhibitors from plants. Phytomedicine. 2007. 14(4):289-

300.

164. Heinrich, M. and Lee Teoh, H. Galanthamine from snowdrop—the

development of a modern drug against Alzheimer’s disease from local

Caucasian knowledge. Journal of Ethnopharmacology. 2004. 92(2–3):147-

162.

165. Bertanha, C. S., Braguine, C. G., Moraes, A. C. G., Gimenez, V. M. M.,

Groppo, M., Silva, M. L. A., Cunha, W. R., Januário, A. H., and Pauletti, P.

M. Cyclooxygenase inhibitory properties of nor-neolignans from Styrax

pohlii. Natural Product Research. 2012. 26(24):2323-2329.

166. Blobaum, A. L. and Marnett, L. J. Structural and Functional Basis of

Cyclooxygenase Inhibition. Journal of Medicinal Chemistry. 2007.

50(7):1425-1441.

167. Oja, V., Chen, X., Hajaligol, M. R., and Chan, W. G. Sublimation

Thermodynamic Parameters for Cholesterol, Ergosterol, β-Sitosterol, and

Stigmasterol. Journal of Chemical and Engineering Data. 2008. 54(3):730-

734.

168. Jo, S., Lachumy, T., Sasidharan, S., Sumathy, V., and Zuraini, Z.

Pharmacological activity, phytochemical analysis and toxicity of methanol

extract of Etlingera elatior (torch ginger) flowers. Asian Pacific Journal of

Tropical Medicine. 2010. 3(10):769-774.

169. Karaman, İ., Şahin, F., Güllüce, M., Ögütçü, H., Şengül, M., and Adıgüzel, A.

Antimicrobial activity of aqueous and methanol extracts of Juniperus

oxycedrus L. Journal of Ethnopharmacology. 2003. 85(2–3):231-235.

Page 48: CHEMICAL CONSTITUENTS AND BIOACTIVITY STUDIES OF …eprints.utm.my/id/eprint/77828/1/AminuMuhammadPFS2014.pdf · 2018. 7. 4. · acetylcholinesterase inhibition using the microplate

176

170. Kubo, I., Kinst-Hori, I., Chaudhuri, S. K., Kubo, Y., Sánchez, Y., and Ogura,

T. Flavonols from Heterotheca inuloides: Tyrosinase Inhibitory Activity and

Structural Criteria. Bioorganic and Medicinal Chemistry. 2000. 8(7):1749-

1755.

171. Yang, Z., Zhang, D., Ren, J., Yang, M., and Li, S. Acetylcholinesterase

inhibitory activity of the total alkaloid from traditional Chinese herbal

medicine for treating Alzheimer’s disease. Medicinal Chemistry Research.

2012. 21(6):734-738.