children’s hospital of pittsburgh’s clinical services building · children’s hospital of...

94
Children’s Hospital of Pittsburgh’s Clinical Services Building Pittsburgh, PA Final Thesis Report Gloria Brashear Construction Management Option Advisor: Professor Horman

Upload: others

Post on 18-Oct-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Children’s Hospital of Pittsburgh’s 

Clinical Services Building Pittsburgh, PA 

 

 

 

Final Thesis Report 

Gloria Brashear 

Construction Management Option 

Advisor: Professor Horman 

Page 2: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Children’s Hospital of Pittsburgh

Clinical Services Building Pittsburgh, PA

Project Overview: . Size: 900,000 SF

. Number of stories: 12, above ground plane

. Delivery Method: Lump Sum

. Cost To-Date: $183,500,000

. Duration: 12.22.05 - 12.20.08

Gloria Brashear - Department of Architectural Engineering, Construction Management Option

The Pennsylvania State University

http://www.engr.psu.edu/ae/thesis/portfolios/2008/gsb146/

Project Team: . Owner: University of Pittsburgh Medical Center Health System

. Construction Manager: Dick Corporation

. Owner Representative: Oxford Development Company

. Architect/Engineer: Astorino

. General Contractor: Barton Malow – P.J. Dick, A Joint Venture

Architecture: . Pursuing LEED Certification

. Approx. 40% of construction is renovations to

existing facilities

. 262 private rooms

. 6th floor atrium and rooftop garden

. Building focuses on family and healing by use of

child-friendly aesthetics

Structural: . Typically 5-1/2” composite steel deck

. 3-1/2” lightweight concrete fill for achieving fire

rating

. Spread footers

. 320’ expansion joint connecting new building to

existing

. Floor to floor height of new construction

matches existing at 12’-6”

Mechanical: . Redundant AHU system, except 9th floor use of HEPA filters

. Main mechanical components located on 10th floor

. South side to expansion joint of new construction ties into north

side to expansion joint of old construction

. Multiple AHUs for each quad of building all dumping to one plenum

Electrical: . 3 separate feeds, any 1 of these 3 can power up the entire

Building

. 480V for most of the building

. 3 circuit types; normal service, critical care (uninterrupted

power), and emergency power (backs up all equipment)

. Energy conscious by use of fluorescent lighting

Plumbing: . 2 feeds to building’s redundant system

. Pressure booster pumps in basement due to height of building

. Primary medical gas source located in basement under mid-site

garage

. Reverse osmosis system for 4th floor labs and dialysis

Fire Protection: . Mostly a normal wet system

. Dry pendant system in garage

. Dry chemical system built into kitchen smoke hoods

. Booster pumps used to maintain pressure to higher floors

Page 3: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

3

Table of Contents  Abstract                     2 Table of Contents                   3 Acknowledgements                   5 Executive Summary                   7 I. Project Overview                      8 

Building Systems Summary                9             Project Team                   10 Client Information                 11 Site Plan & Local Conditions               11 Project Schedule                 12 Project Cost                   13 

II. Research 1: Implementing a LEED™ Documentation Process       14   Background                   14   Goal                     14   Methods                   14     Research of LEED™               14     Pittsburgh General Contractor Survey         15       Introduction               15       LEED™ Survey Responses           16       Summary of LEED™ Survey Responses       22     LEED™ Submittals in Specifications           23     LEED™ Submittal Form             25   Conclusion                   27   Works Cited                   28 III. Research 2: Feasibility of Using Virtual Modeling         29   Background                   29   Goal                     29   Methods                   29 

    Research of Virtual Modeling           29     Interview with MIS Project Leader, P.J. Dick, Inc.       31       Introduction               31       Case Study               31       Modeling In House             32       Virtual Modeling & the Clinical Services Building     32 

    Software Review               33     Research of BIM Consultants            37   Conclusion                   38   Works Cited                   39 

IV. Breadth 1: Mechanical Breadth              40   Background                   40 

Page 4: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

4

  Problem                   40   Proposal                   42   Goals                     42   Analysis                   42     Calculations & Material Selection           42     Cost Considerations               47     Schedule Impact               49   Conclusion                   51   Works Cited                   52 V. Breadth 2: Structural                 53   Background                   53   Problem                   53   Proposal                   54   Goals                     55   Analysis                   56     Calculations & Material Selection           56     Cost Considerations               58     Schedule Impact               60     LEED™ Considerations             63   Conclusion                   63   Works Cited                   64 VI. Appendix A                   65   A.I. Project Delivery Method              66   A.II. Site Plan                   67   A.III. Schedule (25‐30 activity)             68   A.IV. Schedule (by floor)               71 VII. Appendix B                   76   B.I. Survey Cover Sheet               77   B.II. Survey Questions               78   B.III. 05310 Steel Deck Specifications           79   B.IV. LEED Submittal Form               87 VIII. Appendix C                   88   C.I. Model CG3‐BDL                 89   C.II. Steel LEED™ Backup Documents            91       

Page 5: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

5

Acknowledgements  I would like to thank the following people for their help and guidance throughout the course of my senior thesis work:  Astorino Architect & Engineers   Catherine Sheane, P.E. – Sustainable Design Manager  Barton Malow – P.J. Dick, A Joint Venture   Adam Majcher (P.J. Dick) – Area Superintendent   Bob Salvatora (P.J. Dick) – Project Manager    Bryan McConnell (P.J. Dick) – Project Engineer   Christie Lichina (P.J. Dick) – Project Administrative Assistant   Frank Babik (P.J. Dick) – Sr. Project Manager   Jeff Turconi (P.J. Dick) – Executive Vice President     John Dobbins (Barton Malow) – Director Field Operations   Loren Luedeman (Barton Malow) – Project Engineer    Paul Beecher(P.J. Dick) – Project Engineer    Brashear Construction Consulting, Inc.   Timothy R. Brashear, P.E.  Jendoco Construction Corporation   Dominic Dozzi   Mike Kuhn  K2 Integrated Project Solutions    Richard Gausman – Sr. Project Manager  Mascaro Construction Company, LP   Ron Cortes   John West  Massaro Corporation   Dan Dick   Mark Hartman    Dan Keifer  Oxford Development Company  

Page 6: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

6

The Pennsylvania State University    Antonio Verne – AE Structural Student   Chris Nicolais – AE Mechanical Student   Corey Wilkinson – Advanced Engineering Aid   Cory Abramowicz – AE Mechanical Student   Jeremy Powis – AE Structural Student   Justin Purcell – AE Structural Student    Lee Ressler – AE Structural Student   Prof. M. Kevin Parfitt – Associate Professor Architectural Engineering   Max Chien – AE Mechanical Student   Prof. Michael Horman – Associate Professor Architectural Engineering   Nassir Marafi – AE Structural Student   Prof. Robert Holland – Associate Professor Architecture   Staff of the Engineering Copy Center   Stephen Haines – AE Mechanical Student   Steve Stein – AE Structural Student      Will Tang – AE Structural Student    University of Pittsburgh Medical Center        I would also like to thank my friends and family for their support and guidance during my time at Penn State.  

Page 7: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

7

Executive Summary  This senior thesis report is an in depth study of the Children's Hospital of Pittsburgh's Clinical Services Building, in Pittsburgh, PA. Research of two critical industry issues as well as two technical analyses has been included in this report. The technical analyses address the cost and schedule associated with the recommended improvements, and the critical industry issues are researched in relation to the Clinical Services Building.   The Leadership in Energy and Environmental Design (LEED) Green Building Rating System™ study focuses on implementing a documentation process for obtaining LEED™ certification. This study focuses on the general contractor's point of view. A broad area of research is used as well as a study of Pittsburgh industry professionals. This provides a general overview of the LEED™ impact on the construction industry, as well as the way it relates to the Western PA region. Through research findings, a method to incorporate LEED™ into the specification and submittal process is addressed.   The Building Information Modeling (BIM) study focuses on the feasibility of using virtual modeling for general contractors. This study utilizes research, first‐hand knowledge, and interviews to provide an all encompassing view of BIM in the industry. In particular, this research is applied to the Clinical Services Building and the Western PA construction market. While BIM is fairly new to this region and market, solutions to improve this knowledge gap are seen through a software review and information on obtaining a BIM consultant.   The mechanical technical analysis focuses on replacing the existing non‐functioning hood system in the hospital kitchen. In addition, all other components to this system will be replaced and brought up to code. A hood system from Gaylord Industries is being used, and an alternative route of ductwork is proposed. This system yields a savings of $38,262.55 on material alone when compared to the original proposed contract work.   The structural technical analysis focuses on improving the floor between column lines 1‐5 and K‐P in the existing building. This area has experienced surface cracking caused by corrosion of the form deck. A form deck from United Steel Deck is proposed and the cost and scheduling impacts are analyzed. The system adds an additional 32 days per floor to the schedule, but does not take on a significant effect in the entire project schedule when compared to the improvements made to the building's life cycle. 

Page 8: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

8

 Project Overview  The Clinical Services Building is a modern, technologically sophisticated building, located in the Lawrenceville suburb of Pittsburgh, PA. This project is pursuing LEED™ certification, and aims to be a landmark for the city, as well as a breakthrough design for healthcare facilities across the country.   This 900,000 SF hospital has many unique attributes, such as a 6th floor atrium and rooftop garden, vibrant use of colors on the interior and exterior, and many comforts typically found in a home. The design of this hospital aims to incorporate family, healing, sustainability, and state‐of‐the‐art technology. Approximately 40% of the total construction on the Clinical Services Building is renovations to a previously existing hospital.   

Image I.a: Building Facade 

Image I.b: 6th Floor Atrium & Rooftop Garden 

Page 9: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

9

Building Systems Summary  Demolition:  The Clinical Services Building was constructed on the site of the former St. Francis Medical Center. Much of the original building was maintained, but a great deal of interior construction and exterior façade was demolished. On the existing facilities, care was taken to protect against asbestos. In particular, precautions were taken to maintain safe conditions for future patients, such as protection and sealing of spaces to remain. Also, HEPA filters and proper ventilation protocol was utilized to ensure LEED™ compliance during this process.  Structural Steel Frame:  The structural framing was constructed using one tower crane located on the south side of the building along Penn Avenue. The crane provided by the Construction Manager had a hook height of 251’‐4” and a jib length of 262’‐6”. The crane utilized two pick sites directly next to the crane on either side; both were easily accessible by the main roadway. Steel erection for the first five floors was consistent throughout. Upon sequencing the remaining floors, each floor was divided into the east and the west half.  Cast in Place Concrete:  Due to soil conditions, spread footers were used for the foundation system. A 5‐1/2” thick composite steel deck with 3‐1/2” lightweight concrete fill for achieving the appropriate fire rating is used on all floors in the new building. The existing building uses 5" thick floors with the construction types varying due to multiple renovations. A 320’ expansion joint runs the course of the building connecting the existing building on the north to the new building on the south. Floor to floor heights in the existing building was 12’‐6” and the new building is being constructed to match this height.     Mechanical System:  The mechanical system uses a redundant air handling system with the exception of the 9th floor, which uses HEPA filters. The main components and equipment of the system are contained on the 10th floor. The south side of the building will use the new mechanical system utilities. However, on the north side, much of the existing mechanical equipment will remain. The east side of the building lets out the system exhaust, while the west side pulls fresh air into the system. There are multiple air handling units (AHU) which dump into a common plenum. For the new building, there are 3 main AHUs on the southwest wing and 4 AHUs on the southeast wing. On the existing building side, 4 new AHUs nicknamed “Big Blue” take care of the remaining half 

Page 10: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

10

of the building. Special care was taken to ensure that humidity, mold, and bacteria are non‐existent for future occupants.  Electrical System:  The electrical system has 3 separate feeds, any of which can power up the entire building if necessary. The power enters the building at 15kV, and transformers drop this power to 5kV. There are 3 circuit types; normal service, critical care (uninterrupted), and emergency power. All necessary medical equipment is backed by the emergency system for safety purposes. Most of the building is on a 480V / 270 V circuit with a small portion of the building on 120V / 208V.  Facade:  The facade consists of brick, copper cladding, manufactured stone, metal panels, storefront, and curtain wall. All of these materials are used throughout the entire building envelope. The brick used consists of three types, all of which match existing structures on the campus. Manufactured stone, which is a bright yellow color, is used to outline the atrium on the sixth floor. Brightly colored metal wall panels are used throughout the surface to accent the building design. Storefront lines the hospital drive‐thru on the south side of the building. Structural performance curtain wall runs vertically through the corners of the south and east side of the building. These allow a great deal of light to enter the building, and bring a sense of the outdoors to the patients.   Project Team    Owner – University of Pittsburgh Medical Center   Owner Representative – Oxford Development Company   Construction Manager – Dick Corporation   Architect & Engineers – Astorino Architects & Engineers   General Contractor – Barton Malow – P.J. Dick, A Joint Venture  To view the project delivery method, see Appendix A.I.  

Page 11: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

11

Client Information  Children’s Hospital of Pittsburgh of UPMC is a world renowned pediatric care facility. Both the U.S. News & World Report and Child magazine have named Children’s one of the best pediatric hospitals in the United States. Currently, Children’s has outgrown their facilities in the Pittsburgh community of Oakland. The move to Lawrenceville will provide families and employees with less traffic, more parking, and state of the art facilities.   The design of the Clinical Services Building is meant to inspire transformation as well as improve the comfort level for all who enter. The vibrant colors will give children a positive experience of the hospital, as well as provide overnight or short term accommodations for families.   Site Plan & Local Conditions  Multiple projects on this campus will be under construction simultaneously. This thesis focuses solely on the Clinical Services Building which is accented in bold on the site plan, which can be found in Appendix A.II.  

                

    

Image I.c: Children's Hospital's campus  

Page 12: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

12

Much of this campus will still be in use during construction, so parking for those employees, as well as the construction related parking is vital to the site logistics. Once the City of Pittsburgh granted occupancy of the building, 250 underground parking spots became available to trade contractors. The existing mid site garage also provides parking for contractors. In addition to these two large parking garages, various surface parking lots and street parking is available. Existing buildings will be utilized as offices for the contractors with the majority occupying St. Francis Plaza.  The design of this building makes it stand out dramatically from the local skyline. This allows for the new construction to become the focal point of this Pittsburgh’s Lawrenceville community.  The City of Pittsburgh will not allow the main road, Penn Avenue, to be closed for any reason. The arrows on the site plan reference the pattern for construction traffic. Flaggers have been utilized on the site to regulate construction and public access. The project fence and extent lines are also highlighted on the site plan. In addition to the changes made on site, changes were made to traffic lights in the vicinity. Additional lights were added surrounding the area for proper traffic flow once the building is occupied.     Project Schedule  The Clinical Services Building schedule is very complex and lengthy, encompassing 152 pages when printed. The building is projected to take approximately three years to complete from the perspective of the general contractor. Work had begun on this project before the general contractor was selected. You will not see this work on the project schedule, being that this assignment is written from the general contractor's perspective. The work done prior to Barton Malow – P.J. Dick (BMPJD) receiving notice of the project award consists of excavation, various demolition, foundation, and the award to the steel contractor. Also, the progression of trades through this building took a spiral effect up the floors of the building. This was done to maximize subcontractor time on site. This is visible in the schedule when some trades are working simultaneously throughout the 12 stories of the building. Also, much of the project's schedule is taken on a floor by floor and quad by quad of each floor approach.   See Appendix A.III for the 25‐30 activity schedule, and Appendix A.IV for the schedule broken down by floor. 

Page 13: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

13

Project Cost    Total Project Cost:     Due to owner confidentiality this figure will not be released.   Total Building Cost:         $183,500,000   Total Building Cost / SF:         $183,500,000 / 900,000 SF = $203.89 / SF    Major Building Systems Costs:     Mechanical: $28,608,940.00           Cost/SF: $31.79     Electrical: $22,530,959.00           Cost/SF: $25.03     Plumbing: $9,658,900.000           Cost/SF: $10.73     Concrete: $6,295,123.00           Cost/SF: $6.99     Structural Steel: $6,068,370.00           Cost/SF: $6.74     Masonry: $5,668,500.00     Finishes: $21,505,066.00     Elevators: $4,630,000.00     Fire Protection: $3,000,000.0           

Page 14: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

14

Implementing a LEED™ Documentation Process for General Contractors:   Background  This summer I had the opportunity to intern with Barton‐Malow ‐ P.J. Dick, A Joint Venture working on their LEED™ documentation process. Through this experience, I found many areas of the LEED™ program, on the general contractor side, that could use improvement.    Goal  Through various methods of research the general contractor's LEED™ documentation process, currently in use, will be evaluated and alternative methods will be proposed. Due to differing construction markets across the country, this report studies mid‐size general contractors with a strong focus in the Pittsburgh, PA market.    Methods  

‐ Research of LEED™   ‐ Pittsburgh General Contractor Survey ‐ LEED™ Submittals in Specifications ‐ LEED™ Submittal form 

 Research of LEED™:    "The frog does not drink up the pond in which it lives."     ‐ Chinese Proverb      <http://www.gardendigest.com/conserve.htm> 

 The popularity of green building is increasing every day. The public has vested a great interest in conserving our resources and protecting our environment. With the construction industry booming, it is essential for general contractors to remain at the forefront of these practices.    The Clinical Services Building was designed to meet the LEED™ New Construction v2.1. While this building was designed to meet LEED™ specifications in both the new and existing structures, the USGBC specifies that if a building " will be more than half vacant during a renovation, the council considers it new construction" (Cortese). There is a 

Page 15: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

15

great demand for new construction, but renovations also hold a great deal of potential for LEED™ design aspects. In 2006, the USGBC performed a study that found "by retrofitting buildings, owners can save 90 cents per square foot annually, on average, in energy and other costs and earn back their investment in 2 to 2 ½ years" (Cortese).   With the possibilities for green building increasing daily, the USGBC is also doing its part to keep up with the trends. The LEED™ process is now 100% online, and is promoted to be extremely user‐friendly ("USGBC Upgrades LEED Documentation and Certification Process"). The USGBC website provides various means of learning about certification. One item that was of particular assistance in my research was the ability to see the online sample submission forms. With general contractors having the ability to see these forms first‐hand, they can ensure they are receiving the appropriate documentation from subcontractors. Not only is this capability more user‐friendly, it also expedites the paperwork process, and should leave all parties fully informed.    Pittsburgh General Contractor Survey:  Introduction A survey of general contractors in Pittsburgh was conducted as the springboard for further research areas. The survey was directed at general contractors located in Pittsburgh, PA. With the market differing across the country, I felt that it was important to focus solely on the city the Clinical Services Building is being constructed to provide insight to my thesis.   Due to the geographic region, it was difficult to obtain a large amount of survey responses. Needless to say, I believe the following responses display a fair view of the construction market and LEED™ for general contractors in Pittsburgh, PA.   The following is the responses to the survey questions, with each interviewee labeled alphabetically for anonymity. A summary of the responses can be found after the survey. For a copy of the cover letter see Appendix B.I and Appendix B.II for a copy of the questions.   

Page 16: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

16

LEED™ Survey Responses 1. How familiar are you with LEED™ and green building? 

A.  Around a 9. 

B.  As far as somebody in the construction industry, a 9 or 10, working on 3rd. On the 2 prior there was not a LEED consultant, did submission online for certification. Currently there is an outside consultant on this project. More hands on experience than others at [company name]. 

C.  Very, LEED Accredited in Summer of 2005. 

D.  I am moderately familiar with the LEED standards. 

E.  LEED Accredited Professional, familiarity would be around a 9. 

F.  Around a 9, will be certified soon. 

G.  I have been involved in several projects during the bidding phase, but this is my first project that I have been involved in the construction phase. 

H.  Definitely a 9, very familiar, certified almost two years ago. Worked on two since that time, one is close to being certified. Currently on third project which has green elements but is no longer pursuing certification. Also on a LEED committee at [company name] which trains employees less experienced with LEED.  

I.  Probably a 7. 

2. With regard to the subcontractors that you work with, how familiar with LEED™ do you feel they are? 

A.  Half of them know what they are doing and half of them don’t, it would be about a 5. 

B.  Everybody knows what it is. About a 4 or 5 on experience, think the subcontractor industry has a long way to go. Drywall and paint suppliers are more familiar, due to recycled content and VOC requirements. Mechanical contractors are a little better due to commissioning. 

C.  Depends on the sub and how sophisticated they are.  Some of the larger ones are very familiar, especially the MEP trades. 

D.  Most of the subcontractors are not very familiar with the LEED standards; they base their bids for their scope of the project on the LEED language specified in the Contract Documents. 

E.  Now it has been getting better, probably a 6. 

F.  Probably a 2. 

G.  The subcontractors have all been involved in at least one other project that has been LEED certified.  They know the requirements and are complying. 

Page 17: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

17

H.  With the subcontractors that I have worked with, on a 1 to 10 scale, a 3. Mostly mechanical subcontractors are the most familiar with LEED. 

I.  4. 

3. How helpful do you feel the architects that you work with are with regard to questions and information required for LEED™ documents? 

A.  Depends on the architect and depends on the project, about a 6 or 7. Worked with some that are very attentive and some that are not. 

B.  Would say most are an 8. They're pretty good. 

C.  Again, depends what firm you are working with, some are very familiar while others are not. 

D.  Typically, the Architect incorporates the LEED requirements in the General Conditions of the specifications.  When questions arise with products specified in the specifications, they are normally helpful in either allowing substitutions that are equal to the specified item and also meet the LEED certified material requirements. 

E.  Varies a lot, depending on their experience, on average 7 – 8. 

F.  About a 5 or 6. Everybody is still getting an understanding of the process. 

G.  The architect knows what needs to be done to get the LEED certification, but he has problems with his engineers specifying materials that do not meet the LEED requirements. 

H.  Certain firms in Pittsburgh are very familiar; it’s usually the larger firm with multiple disciples or services. A lot of smaller firms use is as a marketing strategy. With regard to architects usually working with, more in a 6 ‐7 range, but still depends on type of firm.  

I.  5. 

4. How many green projects have you worked on? Have any of them not obtained LEED™ certification? 

A.  Any that were going for certification achieved it. There were times that the owner chose to not continue with it, but all that attempted achieved. Worked on about 10 completed or in process LEED projects. 

B.  On third. None have fallen through. 

C.  Worked on two, neither has been certified as of yet. 

D.  Two, one Gold certified and one Silver certified. 

E.  Currently [company name] has 3 under construction. Prior to this, about 3 other LEED certified projects were constructed, all of which have obtained certification. 

Page 18: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

18

F.  Worked on about 4 green buildings, not certified (done before LEED term was standard, around 1996). Currently working on 2nd LEED project. 

G.  This is the first project that I have done the construction phase of LEED. This project will receive the LEED certificate. 

H.  Two so far, one will be certified soon. The paperwork has been submitted to the USGBC and is waiting for the certification to be approved. The third project has green elements, but is no longer pursuing certification due to cost.  

I.  Worked on 2 LEED certified projects, and all have obtained certification.  

5. What credits have you found are the most difficult to obtain? 

A.  Depends on project type. Currently working on a lab, the most difficult credits are the HVAC credits. Across the board, water consumption credits are difficult due to owner resistance, local infrastructure, and building codes. In Western PA, there is usually not a water shortage, so most people in the area are not attuned; it’s not a more popular avenue around here. 

B.  FCS certification, chain of custody requirements is very hard to receive, very cumbersome, very difficult. Indoor air quality, flush out of HVAC system prior to occupancy. Must finish punch list, paint, work, then flush out for a period of 10 ‐ 17 days. Most of projects have very aggressive schedules, this delay is difficult.  LEED changed the structure of the points from manufacturing to harvesting and manufacturing, which makes it more difficult to get this point.  For example, windows are easy, they're usually from Pittsburgh, but the harvest location with aluminum and glass on windows is usually difficult. 

C.  On‐site renewable energy, building re‐use (all new projects), increased ventilation and controllability of systems – thermal comfort. 

D.  Recycled content.  The requirements for tracking the tonnage of waste versus recycled material are cumbersome and the LEED requirements need to be confirmed with all of the supporting documentation. 

E.  Certified wood, due to chain of custody. Construction Waste Management is a significant amount of work. Most others have to do with design. Indoor air quality puts restriction on contractor during construction. Recycled content is not too difficult due to the increased availability of recycled products and materials available. 

F.  It’s a lot of design credits. But from a contractor standpoint, materials and resources are difficult because they are typically more expensive and harder to find. 

G.  I would say the credit for locally manufactured materials. 

H.  Issues that have to do with water management (i.e. impervious paving, rainwater reclamation, etc.) and indoor air quality items. These items are challenging to achieve and the owners usually find budget problems or long term maintenance issues with incorporating them in to the project. Indoor air quality management issues tend to be pricey and usually get value engineered out. 

I.  The most difficult credit to obtain is commissioning.  

Page 19: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

19

6. What do you find to be the greatest difficulty with the LEED™ program especially in Pittsburgh? 

A.  The education of those that have not done it before. When you have a subcontractor that has not done a LEED project before, you are educating them along the way. There are a lot of owners that think they want to do it but don’t know how. There is often not enough planning at the beginning of the process. Also, the  selection of an educated team. 

B.  Hope that sometime in career the whole process of certification and filing seems to take too long. It could take a year to get actual certification from the green building alliance. It's unsatisfactory. A lot of owners and architects advertise that they have green buildings, but legally that isn't the case yet. One project was finished and took 10 ‐ 12 months to get approval. Also, waste diversion from landfills. 60% of waste on a new job is drywall materials. Do not know of anyone in Pittsburgh that can recycle drywall materials and that is a difficult challenge. A way has not been discovered that is cost efficient due to man hours required to strip drywall to be recycled.   

C.  Most owners do not want to absorb the additional costs associated with LEED applications, but like the idea of applying whatever green elements they can without added costs, like low VOC content, etc. 

D.  Ensuring that the LEED requirements are incorporated with the bid.  Additionally, after the bid is awarded, the subcontractors are not aware of the complete and comprehensive requirements related to their scope of work and the cost that may be associated with them. 

E.  Drywall recycling, because a lot of construction waste is drywall scrap. Drywall is a big quantity item with a big volume. There are not places in Pittsburgh that can accommodate this need. 

F.  The documentation process, requesting information from subcontractors, verifying it, and handing it off to the architect. 

G.  The cost of implementation. Most owners do not want to spend the money. 

H.  Pittsburgh is becoming much more aware and is trying to becoming a green city. Owners immediately think there are premium costs involved. They need better education and awareness of the life cycle cost not the first cost.  

I.  A lack of a clearly defined format that really should be followed for submissions. 

7. How would you describe the client’s eagerness to deliver a LEED certified building? 

A.  Owner often knows the term, but doesn’t take the time to fully understand the timeline and budget needed to achieve it. Primarily, non‐profit organizations that are progressive thinkers are very interested, because they know it’s the right thing to do. One major Pittsburgh based client is very interested in this in the long term and feel that it is profitable. They realize the benefits and as a corporation they are committed to it. 

B.  Everybody says it because it's a cool thing to say right now. Once they see the additional cost they are not as eager. They do not have the foresight to see how this will improve their yearly costly and productivity. It really takes someone that can step out of the box to do it. Once they see the cost impact they don't like it as much. 

Page 20: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

20

C.  Some are very eager to be “green”, for example [client name] has a partnership with the USGBC and all new branches will be certified Silver. 

D.  Owners are increasingly more eager to have LEED certified buildings for numerous reasons.  Some funding is based on LEED points, building life cycle costs are minimized, and in some instances possible clients require a LEED certified building. 

E.  All of the public clients are very eager to do this, private clients aren’t always that eager. A lot of developers don’t see the benefit and don’t want to spend the extra money. 

F.  Medium to low eagerness, due to perception of cost.

G.  [Client Name] can get money from the government for implementation of the program, so they are very eager to get the LEED certification. 

H.  6 out of 10. Usually after you begin to explain the process they start to see the budget being put together. Clients are always eager due to marketing, but most don’t realize what’s involved until they start the process. 

I.  The customers are certainly wanting to do this, but do not want to add additional cost. 

8. Have you seen LEED™ requirements implemented in construction documents? 

A.  Have seen some, but it has been pretty vague. It has not been to the level they would like to see it, but are starting to address the issue. Some clients that have done enough provide very detailed descriptions in documents, but first timers are not always as good. 

B.  Have started to see that recently and it is helpful. 

C.  Yes, mostly VOC content, site items, mechanical systems and commissioning items. 

D.  Yes.  In both of the LEED projects I have worked on, the LEED requirements were defined in the General Conditions and in most instances in each of the specification sections as well. 

E.  Yes, this helps makes the subcontractor aware, although they are pretty vague. It does not list specifics, and would require additional information to meet requirements. 

F.  Have not seen any good examples of this in the past, mostly dictated what you are doing to get the proper requirements. 

G.  Yes, on this project. Specifically IAQ requirements and low VOC’s. 

H.  I’m seeing more of it, mainly in the specifications. More detailed LEED information in specifications and not on drawings. Address more in a contract performance, not in a drawing 

I.  Vaguely described in specifications, but there is certainly a lack of coordination with LEED requirements and the general specifications that architects use. Appears to be a lack of transforming project specific specifications from Master Spec inclusive of issues that LEED needs to address.  

Page 21: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

21

9. Please leave any additional comments related to the Pittsburgh area with regard to LEED™. 

A.  Pittsburgh is at the forefront, in the top 5 in the country. Started early and have been in the forefront ever since. The Green Building Alliance is based in Pittsburgh and has promoted the sustainability idea throughout the city. GBA is one of the first chapters. Ten years ago, Pittsburgh was starting to use green building; they were the #1 city. Now, they’re slowly dropping as other major cities are embracing the ideas of green building. Unlike these cities, we have very little public policy that supports green building. Those cities have mandatory laws, which are causing their numbers to jump. In spite of that, Pittsburgh is still in the top of the list. More of grassroots than mandated. 

B.  Think that there is interest on the general contractor side, and the subcontractors will start buying into this and being more responsible if it's going to stick around. 

C.  None. 

D.  None. 

E.  The Pittsburgh area is pretty progressive with LEED. There are quite a few LEED buildings in the city compared to other cities across the country. 

F.  It’s still very new to Pittsburgh; the more familiar people are the better it will be. Everyone needs to be more educated on this. 

G.  None.  

H.  Pittsburgh is doing a good job of trying to take a leadership role in promoting an educating. There is a good organization of non‐profit type groups, trying to change the image of Pittsburgh from that of a dirty steel city. Our population isn’t increasing, and building owners are not as progress with LEED. Often green building is not being done because it’s a good thing, but because it works out. Every [client name] is at least LEED silver. Some organizations like this have decided across the board that they are doing LEED building. While certain people are taking this initiative, Pittsburgh is still somewhat conservative and not as driven as other geographic regions. 

I.  None.  

Figure II.a: Survey Responses  

Page 22: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

22

 Summary of LEED™ Survey Responses   Question 1: Familiarity of General Contractors On average, the general contractors felt their experiences were an 8‐9.  Question 2: Familiarity of Subcontractors On average, the general contractors felt the subcontractors had varied experiences as described around a 4‐5. The numbers vary due to trade type, with the MEP trades averaging to be higher in experience.   Question 3: Helpfulness and Familiarity of Architects On average, the general contractors felt the architects' helpfulness and experience came in around 6‐7. The numbers vary due to experience, with the larger firms noted as being, on average, much higher.  Question 4: Number of Green and LEED™ Projects Worked On Due to difference in experience and job title within the companies, the general contractors had varying responses to this question. On average, each interviewee had worked on 3‐4 LEED™ or green projects.   Question 5: Most Difficult Credits Many credits were discussed, with FSC chain of custody, harvest location, HVAC, commissioning, and materials/resources being the most popular.  Question 6: Most Difficult Aspects of LEED™ in Pittsburgh, PA Due to various company sizes and experiences, many aspects were discussed. The most frequently discussed aspects were drywall recycling, education of the masses in LEED™, cost and inclusion in the bidding process, and the actual structure or defined steps of the LEED™ process.   Question 7: Client's Eagerness to Implement LEED™ In general, most clients want to implement LEED™ into their project, but have a poor perception of the cost. Often, the clients want to deliver a LEED™ building but do not know all that the process entails.   Question 8: LEED in Construction Documents Most general contractors surveyed have seen LEED™ implemented in the construction documents. However, most noted that these guidelines need better definition. 

Page 23: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

23

LEED™ Submittals in Specifications:  LEED™ requirements were included in the Clinical Services Building's specifications under section 01352. In addition to this documentation, placing specific requirements in each specification section may assist the LEED™ submittal process.   The following example shows a possible way to enhance the specifications on part of the architect. As a general contractor, specifying that these details be included would save a lot of time during the submittal approval process. This example shows a proposed addendum to the specifications for the Steel Deck, section 05310. See below addendum for preview of "Submittal" section of the specifications. To view the original specifications section, see Appendix B.III.   Addendum to Specifications Section 05310:  1.02 SUBMITTALS  Add: "F. LEED™ Submittal form for each specific material.  

1. MR 3.1: List of proposed materials salvaged, reused, or refurbished   a. Identify material cost. 2. MR 4.1 and 4.2: List of proposed materials with recycled content. 

    a. Indicate cost, post‐consumer recycled content, and post‐industrial      recycled content for each product having recycled content.  3. MR 5.1 and 5.2: List of proposed regionally manufactured materials and   regionally extracted, harvested, or recovered materials.     a. Identify each regionally manufactured material, its source, and cost.     b. Identify each regionally extracted, harvested or recovered material, its      source, and cost."   

Page 24: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

24

 

 

Figure II.b: 05310, Steel Deck Specifications Preview

Page 25: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

25

LEED™ Submittal Form:  In order expedite the process of documentation exchange from subcontractor to general contractor to architect; I have compiled a LEED™ submittal form to be used. This form incorporates all necessary information required to obtain LEED™ credit. For simplicity, I made the form for obtaining the MR credits, which are the most common credits for general contractors.   Key items on this form to look for are: 

‐ Description/definition of each credit ‐ Designation of credit name and number ‐ Check box for material documentation/back‐up ‐ Box to insert company specific logo ‐ Subcontractor signature and date 

 I found each of these items to be important additions to the submittal paperwork process. Through my internship experience, I found myself having to describe terminology used by LEED™ to the subcontractor. While this information is provided in the LEED™ section of the specifications (01352) having it reiterated on the form helps subcontractors in a hurry.   One of the greatest difficulties that I came across was the differentiation of post‐consumer and post‐industrial recycled content. Often, I received submittal forms with recycled content claims that did not match up to the back‐up documentation provided. I found this to be especially true when the subcontractor did not know the difference between the two forms of recycled content. Consequently, a series of phone calls and emails would get this problem resolved. If the proposed form was used, this delay may be eliminated. By providing the credit number and brief definition, the subcontractor is pointed in the right direction to fill out the paperwork properly.   Another challenge I came across was defining manufacturer and harvest location. Some subcontractors would give mileage and leave out the actual address, while others would solely provide the city. For proper documentation, I added the lines to provide a full address. This way, the architect can plug the locations into the map provided by the USGBC to see ensure these locations and distances are within the limits provided. By making this minor adjustment to the submittal process, the same delay with questioning via email and phone may be eliminated.   The following example shows a way to cover all MR credits under one form as well as provide all information required for LEED™ credit. For the paper copy of this form, see Appendix B.IV. 

Page 26: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

26

 

LEED™ Submittal Form  

Figure II.c: LEED™ Submittal Form 

Page 27: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

27

Conclusion  For a mid‐size general contractor, the possibilities that LEED has to offer were displayed through a survey, examples, and varied research. While most general contractors have experience constructing green buildings and working with LEED, there is still a gap with getting information passed from subcontractor to architect. The proposed solutions, of changes in the specifications and the LEED™ submittal form, may reduce this gap in the future.  

Page 28: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

28

Works Cited  Cortese, Amy. " 'Green' Buildings Don't Have to Be New." The New York Times.  27 January 2008.   "LEED." U.S. Green Building Council. 2008. 30 March 2008.  <http://www.usgbc.org/DisplayPage.aspx?CategoryID=19>.   New Construction & Major Renovation v2.2 Reference Guide. Washington: U.S. Green Building Council, 2006.  

"USGBC Upgrades LEED Documentation and Certification Process." Greener Buildings.    5 January 2006. 10 March 2008. <http://www.greenerbuildings.com/news_detail.cfm?Page=1&NewsID=30029>.  

 

Page 29: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

29

Feasibility of Using Virtual Modeling for General Contractors:    Background  After attending the PACE Roundtable, on October 24, 2007, at the Pennsylvania State University, I found the latest buzzword in the construction industry is BIM (Building Information Modeling). While definitions and uses of this term have varied, the one consistency was that this design technique is not just an industry fad, but a practice that is here to stay. The original intention of my research was to evaluate the feasibility of using BIM for general contractors, but I determined that this topic was vastly changing in practice, even as my research increased.    Goal  Through various methods of research, the feasibility and implementation of BIM will be evaluated for use by general contractors. With so many forms of BIM being examined and employed in the industry, I will focus on modeling and digital fabrication only.   Methods  

‐ Research of Virtual Modeling ‐ Interview with MIS Project Leader with P.J. Dick, Inc. ‐ Software Review ‐ Research of BIM Consultants 

  Research of Virtual Modeling:    "“If a picture contains one thousand words... A model contains one thousand   pictures”     ‐ Edward McCracken (former CEO – SGI)     <http://www.cdi‐grp.net/Home_Page.html> 

 Building information modeling (BIM), is an idea 25 years in the making (Sanders). Over the years, there has been a steady movement in the industry to adopt this idea, but it still has yet to have a significant impact as a standard across the board. The automobile and airline manufacturing industries have both successfully adopted some form of virtual modeling, while its use in building construction still seems to be lagging. 

Page 30: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

30

However, significant advantages appear to be available for its use within construction. By allowing the designers and builders to work on one collective model, process gaps are eliminated and a collaborative design‐build process is achieved (Sanders). Success with a project's usage of virtual modeling does however require acceptance, compatibility, and perhaps contractual reliability and responsibility, amongst the project participants. Until designers, owners, and builders are able to work together on common grounds and understanding and respect for the process, the full effects of modeling will never come to realization.   While a joint effort is needed on part of the construction participants, compatibility needs to come into play on the software side. In the past, other industries have over come this hurdle with great success. For example, other computer operating systems have agreed to create interoperability between systems, like Apple's ability to use Microsoft Office products (Sanders). Once this barrier is broken for modeling software, a collaborative effort among the construction industry will be within reach.   FMI Corporation (a widely used construction management consulting firm) and the Construction Management Association of America (CMAA) conducted a survey of BIM use among owners nationwide. As a result of this survey and in addition to the aforementioned software growth and incompatibilities, the survey discovered that most owners did not understand the capital investment and commitments associated with the informational technology required ("Survey of Building and Construction Owners Finds BIM Use Growing While IT Investment Still Lags"). FMI suggested the following stepped approach be taken to enable companies to recognize its need for investing in this new technology.   

‐ Make the decision to adopt BIM, and make it a priority ‐ Communicate early and often about this practice ‐ Document areas that BIM would be beneficial ‐ Work with other industry professionals that have used BIM ‐ Use technology to educate and train ‐ Persuade top management to support new technology 

 Major efforts to develop industry‐wide standards are now in the works with NIBS (National Institute of Building Sciences). Currently, they are addressing the basics and the process of data being exchanged between applications. While great strides are being made, the National BIM Standards insist "you can't automate what you don't understand" (Kraus, 4). Industry professionals need to come together in this effort and share their knowledge and experience with this technology.    

Page 31: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

31

Interview with MIS Project Leader with P.J. Dick, Inc.:  Introduction Upon speaking with Mr. Dennis DiPalma, the MIS Project Leader for the general contractor on the Children's Hospital's Clinical Services Building (CSB), I was able to understand the role of the general contractor in the BIM process on this particular building. While modeling was utilized by the architect to visualize the building, it was not used by the general contractor. A 3D walk through and fly over had been compiled for the owner's visualization of the project. These were also available on the Children's Hospital website and worked as a great public relations tool.   The following questions were addressed in the interview: 

‐ Why was 3D modeling not used on the CSB? ‐ How have you used 3D modeling on other projects? ‐ What benefits do you see virtual modeling having for general contractors? ‐ What disadvantages do you see virtual modeling having for general contractors? ‐ How can ideas of 3D modeling be used on portions of this project? ‐ What software do you use? ‐ How long does the average project take using 3D modeling? ‐ How did you get started on utilizing virtual modeling? ‐ Was it an easy start‐up? ‐ What are additional comments that you may have related to virtual modeling? 

 Case Study The general contractor elected to not unilaterally use virtual modeling on the hospital because of the newness of the technology, the purported cost, and the inability to find a convincing consultant who would otherwise work with the contractor to perform the modeling. Awhile after the start of this project, the general contractor implemented modeling on two other projects. The pilot project was an office building where the core and shell constructions were modeled in a 3D aspect. While the mechanical, electrical, and plumbing (MEP) work was not modeled, benefits of this process were still seen. The model was able to show interferences and coordination issues with the curtain wall, structural steel, foundations, and windows. This project modeling was completed by an intern (hired by the contractor) and it was reported to take approximately 545 man hours. According to the contractor, a significant portion of the time was spent learning the software, because the intern did not have prior experience with the software. Nonetheless, the limited use of BIM on this project was deemed a success.   After this beneficial building model experience, use of 5D modeling was explored by the contractor on a college research building. This was outsourced to a consultant and was completed in approximately 3 months due mostly to multiple project suspensions/restarts. While this model did not yield significant findings for the 5D 

Page 32: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

32

components of cost and schedule, this modeling provided a double check and visualization of the installation materials and methods, clearances, and coordination requirements that was once seen on paper, in a less effective manner.  Project  Model Type  Man Hours  Completed By Office Building  3D  545  In House Research Building  5D  480  Out Sourced 

 

 Not only did outsourcing the research building allow for the use of 5D modeling, it also took less man hours to complete, by an experienced and reliable professional. While this type of outsourcing may have a greater delivery cost (than the use of interns or in‐house staff), the capabilities within modeling are perceived to be greater and the quality and reliability of the work product would presumably outweigh the additional cost. Additionally, outsourced professionals typically carry Errors and Omissions insurance and/or can be held liable for the cost to correct their own work. For general contractors similar to this, outsourcing the modeling work proves to be the best option.   Modeling In House Currently, there is still a difficulty with general contractors trying to learn how building information modeling fits into their current operations and project profitability. The aforementioned general contractor uses Vico software for BIM which has Constructor, Cost Manager, Estimator, and Control, and focuses on the contractor aspect of construction, thereby providing several potential advantages and efficiencies for eventual cost savings. Using in house modeling services, the typical building core and shell can be completed in 2‐3 months, with the bulk of that time being spent learning the working of the software. Over time, the learning curve should dissipate thereby reducing these inherent inefficiencies.  Before a project can begin, the contractor must first decide their modeling goal. In essence, decide what they want to get out of the model. For example, the contractor may want to explain to the superintendent the sequencing for steel erection and where the crane will be located.   Virtual Modeling and the Clinical Services Building In order to use this process on a smaller scale, modeling could be used on portions of the building where perceived coordination complexities may exists, such as in unique structural steel framing areas and coordination of MEP or critical process systems. Because the Clinical Services Building was very large in scale and involved many complex and integrated installations, ideas such as this could have potentially been used. This may have reduced or even eliminated the concern with cost. As in‐house experience with virtual modeling was lacking, the smaller aspects such as the MEP or structural 

Figure III.a: Modeling Use for General Contractor

Page 33: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

33

components could have been outsourced. Here again, some critical coordination and more costly issues may have been avoided.    Software Review:  Through my education at Penn State I've worked with Autodesk software. While I'm not well versed in these products, I have developed a basic knowledge of AutoCAD and its use in 2D modeling. After speaking with Dennis DiPalma of P.J. Dick, I found that they were using Vico software for modeling. After reviewing both Vico and Autodesk's websites, I was able to view information on both company's 3D ‐ 5D modeling software.   Locating, unbiased research as it relates to the pros and cons of the available software packages was unsuccessful. The 2008 software is fairly new, and reviews of these products were very biased and mostly available on blog sites. This led to a dead‐end in my research, so I decided to take a first‐hand look at these products. At Penn State we have Revit Architecture 2008 available for our use, and I was able to download a free trial of Constructor 2008 off the Vico website.   Working with these two products side‐by‐side, I was able to see a great deal of similarities and differences right from the start.   

Page 34: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

34

   

White background, 4 point navigation           Very similar visual displays        Grid on white background, "x" marks (0,0) point      

Figure III.b Software Visual Display 

Page 35: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

35

The standard screen views have visual similarities, but the starting point or origin of the documents differ. Revit Architecture uses a white background with 4 navigational points, allowing the user to pick their own point of reference. On the contrary, Constructor provides a grid with an "x" marking the origin.

Figure III.c: Toolbars 

Constructor has additional pull‐down options such as Structural, MEP, 5D, Estimating, and Sequencing. Revit has seperate software to use these applications 

One major difference in the two systems is the ability to incorporate other fields. Constructor makes it easy to bring the MEP and structural aspects into the model. On the flip side, Revit uses separate software programs to model MEP and structural. Essentially, Revit is targeted to the architecture side of the industry while Constructor targets the builder.   To show some very basic elements of the programs, I took at very simple example of building a 50'‐0" wall. While selecting the "wall" button on the toolbar was the same for both programs, drawing the wall was very different. In Revit the dimensions of the wall show while drawing, which allows a 50'‐0" wall to be constructed very easily. On the contrary, Constructor draws a wall without dimensions, and I was unable to find an option in toolbar to show dimensions while drawing. Constructor did provide a pull down bar to change the wall thickness on the main toolbar upon opening the "wall" option. With the original manufacturer settings, it was clearly easier to use Revit.   Next, I used the "door" option in both programs. Similar to the "wall" button, these are set up alike, but draw very different. In Revit, dimensions again are displayed, so it makes alignment easy. Constructor does not display dimensions, and caused my door placement to be off center.    One advantage I found in this example was the user‐friendly aspects of Constructor.  

Page 36: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

36

Figure III.d: Door Settings 

Measurements visible for door placement, however default door shows up                     Door Default settings, user‐friendly way to change door types      

Page 37: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

37

The door example shows the ease of changing the building characteristics to show qualities unique to that building. This gives the user a more hands on and easy experience when modeling. Although I have prior experience with Autodesk products, I found myself favoring many qualities in the Vico software as well. After reading through the user guide on Constructor 2008, I believe that I would recommend this software to future general contractors.    Research of BIM Consultants: 

For mid‐size general contractors, outsourcing building modeling may be a viable option. Upon looking for possible consultants for the Clinical Services Building, I found two possible companies to review; NovusTekton and Complete Digital Integration (CDI). Companies such as these state they are able to put "geometry, non‐graphical information, and linked information" into a model ("Getting to the Starting Line with BIM and VDC", 3).  

Figure III.e: Information Input for Modeling   <http://www.cdi‐grp.net/> 

One major benefit of outsourcing to a consultant is their ability to combine multiple fields of work into one collaborative work. Consultants are capable of taking the MEP, structural, architectural, and construction aspects and combining them into a model. In addition, they are able to devote the time required for a fluid final product ("Getting to the Starting Line with BIM and VDC", 8). Until the methods for using modeling become more user‐friendly, consultants have the ability to complete work in a shorter amount of time than doing this work in‐house for a general contractor. This was also seen in the case study shown above in the interview.  

Page 38: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

38

While the cost may deter some general contractors from using this service, the benefits surely outweigh finances. For the construction team, there are the following benefits of modeling: 

‐ Reduce cost and coordination delays associated with the processing of RFIs (Requests For Information) from the Owner/Architect 

‐ Improve construction inefficiencies, reduce surprises ‐ See schedule in a visually stimulating manner and track causation for 

construction delays ‐ Improve schedule and trade coordination 

Consulting firms hold a vast amount of knowledge and dedication to the modeling process, and the benefits already available with modeling are amplified due to the firms' extensive experience with digital designs and construction knowledge. 

Conclusion 

Through research, interviews, and first‐hand experience, I was able to see virtual modeling from the eyes of a general contractor new to this technology. From the mind‐set of a mid‐size general contractor on the Clinical Services Building, hiring an outside source to do the modeling would have been the best solution to the coordination and sequencing problems. If in house modeling was chosen, Vico Software's Constructor 2008 would have been the most suited software program to complete the project. 

 

 

 

Page 39: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

39

Works Cited 

"Collaboration Administration". Adding Value to Model Integration and Design Collaboration. Complete Digital Integration. 10 January 2008. <http://www.cdi‐grp.net/>. 

Foley, John. "Blueprint for Change". Information Week. 26 January 2004: 1‐2. 10 January 2008. <http://www.informationweek.com/story/showArticle.jhtml%3FarticleID=17500908>.  

"Getting to the Starting Line with BIM and VDC". Adding Value to Model Integration and Design Collaboration. Complete Digital Integration. 10 January 2008. 1‐9. <http://www.cdi‐grp.net/>.  

Kraus, William E., PE. "What role is there for AACE International to Play in the Area of Building Information Modeling (BIM)?" The AACE International Journal of Cost Estimation, Cost/Schedule Control, and Project Management. February 2008: 3‐4.  Sanders, Ken, FAIA. "Why building information modeling isn't working...yet." Architectural Record. 26 March 2008. <http://archrecord.construction.com/features/digital/archives/0409feature‐1.asp>.   "Services". Building Information Modeling. NovusTekton. 20 March 2008. <http://www.novustekton.com/service.htm>.  "Survey of Building and Construction Owners Finds BIM Use Growing While IT Investment Still Lags". Cadalyst Integrating Technology for Manufacturing, AEC and GIS. 12 December 2007. 26 March 2008. <http://aec.cadalyst.com/aec/News/Survey‐of‐Building‐and‐Construction‐Owners‐Finds‐B/ArticleStandard/Article/detail/478681>.    

Page 40: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

40

 Mechanical Breadth   Background  In the existing basement of the Clinical Services Building, there is a kitchen which is to be renovated per the contract. There is an existing hood system which is to be tied into the new kitchen equipment. During the bidding process, the contractor discovered that the hood manufacturer is no longer in business. Consequently, it was very difficult to find subcontractors that would tie their work into the outdated fire protection and water wash‐down system.    Problem  The current water‐wash system is non‐functioning and the prospective subcontractors do not want the risk of tying in two non‐compatible systems. Attempts to keep cost down on this unforeseen condition have been made, but are becoming very challenging. While the designers wish to salvage as much as possible in the kitchen area, the multitude of proposal requests, requests for information, and revisions to the scope of work is causing a delay in the building schedule.  

     

   

      

Kitchen area being evaluated 

Figure IV.a: Basement Kitchen Equipment

Page 41: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

41

  

Figure IV.b: Water Wash Down System 

Existing water wash down control panel for existing hoods 

Figure IV.c: Existing Non‐Functioning Hood System

3 Hoods as part of existing hood system 

Page 42: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

42

Proposal   In order to meet present building codes and have a fully functioning kitchen ventilation system, a new hood as well as ductwork is being proposed. The construction documents show the new ductwork for the existing hood (which is to stay per the construction documents) exhausting at the low roof. In order to reduce cost, alternative ductwork and location of building exhaust will be evaluated. This revision to the scope will work to provide time saving results to the schedule.   Goals  The goal of this research is to provide a hood system and all requirements necessary to make a fully functioning system. A feasible change to this system will provide an end to the scheduling delay plaguing this area of the building. In addition, this change hopes to provide a financially viable option for the owner.    Analysis  

‐ Calculations & Material Selection ‐ Cost Considerations ‐ Schedule Impact 

 Calculations & Material Selection:  Room Area = 2,490 ft²  Room Volume = 32,370 ft³ (room height = 13 ft)  Section 15290 ‐ Ductwork Insulation states the following:  

General Exhaust ‐ Kitchen Hood Thickness: (2) 1‐1/2" Type: Layers of Fire Insulating Blanket Jacket: None 

 Section 15890 ‐ Ductwork states the following:  

‐SMACNA HVAC Duct Construction Standards ‐ Metal and Flexible and NFPA 96 ‐16 gage carbon steel or 18 gage stainless steel, using continuous external welded joints as indicated in the schedule 

Page 43: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

43

Hood System:  Material: 304L‐SS‐STL Press. Class Inches W.C.: 4 (EF‐229) Seal Class: B Notes: Kitchen hood exhaust ductwork exposed to view shall be Type 304L stainless steel, and kitchen hood exhaust ductwork concealed from view shall be carbon steel. 

 Calculation (First Attempt):  

 32,370 ft³ x 10 ACH = 5,395 CFM <AIA Table 7.2>   

* This was done in error. This table is to be used for SUPPLY air and NOT for EXHAUST air as originally thought.  Calculation (Second Attempt): 

2,490 ft² x 0.7 CFM/ ft² = 1,743 CFM <ASHRAE 62.1, Exhaust Ventilation, Table 6.4> 

 *This was done in error. This table is to be used for ventilation for the ROOM, and does NOT take into account heat produced by ranges and kitchen equipment as originally thought.  

       

2,490 ft²  

              

Figure IV.d: Area 

Page 44: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

44

Calculation (Third Attempt):    Evaluation of proposed work:    Ductwork is planned to be exhausted through the Low Roof. According to the   HVAC Schedule for Exhaust Fans, the hood system is to use an exhaust fan   labeled "EF‐229" which an airflow of 18,500 CFM.       This study will propose rerouting the ductwork to reduce cost and mechanical   congestion.   Current layout of building:    Exhaust: East Side of Building   Intake:  West Side of Building  Minimum separation distance between building and exhaust is 1/2 of L.:  

L = 0.09 √Q (√DF ‐ U/400)  <ASHRAE 62.1, Exhaust Ventilation> 

 Q= exhaust air volume, 250 cfm per million BTU/h (per Appendix F3) DF = dilution factor, 15 (per Table F.2) U= 0  

 L = 43.8 ft. 1/2L = 21.9 ft. OK! (nearest building is 35 ft. away from east side)  

Hood:   For complete specs of the hood, see Appendix C.I.   

Gaylord Industries Model "CG3‐BDL" Water Wash Ventilator   

    

Page 45: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

45

Wall Canopy water wash  ventilator model   

Figure IV.e; Model CG3‐BDL 

Figure IV.f: Cut Away  

All parts in compliance with NFP‐96  3 Position Damper    1. Exhaust Cycle    2. Wash Cycle    3. Fire Cycle   

Page 46: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

46

Ductwork:  

With an 18,500 CFM fan, ductwork has been sized to 60x24. This has been confirmed using the Ductulator®:   18,500 CFM @ 0.08 friction per 100 ft of duct = 60x24. 

Attempts to reduce the size of this ductwork failed (as seen in Attempts 1 and 2 of this section).   The re‐routed ductwork will maintain the 60x24 size.  

 Location of reroute:    In order to reduce congestion, the re‐routing of the ductwork will follow the  

current path, running vertically between column lines 4.4 and 4.9. The current path exits the building on the lower roof. This report proposes exhausting the hood out of the building on the 5th floor on the north side of the building.  

Figure IV.g: Exhaust existing on 5th floor

5th floor cut away of drawings showing location of proposed 5th floor exhaust exit from the building 

Page 47: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

47

 Cost Considerations: 

 Due to difficulty obtaining actual prices from manufacturers, cost has been taken from RS Means Building Construction Cost Data 2008.   The lbs/lf of ductwork was taken from the same manual using reference graph R233100‐20.  The following table details the take‐off for the ductwork: 

 ductwork:  lf.  lbs per lf.  lbs. 60 x 24  127.6  27.0 3445.226 x 8   3.0  11.5 34.534 x 8   3.0  14.0 42.022 x 8   3.0  10.0 30.018 x 12  10.0  10.0 100.024 x 16  8.0  13.5 108.028 x 16  10.0  15.5 155.042 x 18  12.0  20.0 240.0TOTAL:  176.6    4154.7

Figure IV.h: Ductwork  

Page 48: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

48

 23 07 13.10 Duct Thermal Insulation             

3185 ‐ Ductwork blanket type, fiberglass, flexible, 2‐1/2" thick       

         S.F.  Material  Labor  Equipment  Total   Total Including O&P    

         2472.4  $0.32  $2.23  $0.00  $2.55  $3.86    

TOTAL:        $778.81  $5,513.45  $0.00  $6,292.26  $9,543.46                                 

12 31 13.13. Rectangular Metal Ducts             

1050 ‐ Stainless steel, type 304, 2,000 to 5,000 lbs.          

         lbs.  Material  Labor  Equipment  Total   Total Including O&P    

         4154.7  $3.25  $4.51  $0.00  $7.76  $10.55    

TOTAL:        $13,502.78  $18,737.70  $0.00  $32,240.47  $43,832.09                                 

23 37 15.40 HVAC Louvers                

2500 ‐ Dual combination, automatic exhaust             

         S.F.  Material  Labor  Equipment  Total   Total Including O&P    

         10.00  $51.00  $18.10  $0.00  $69.10  $84.00    

TOTAL:        $510.00  $181.00  $0.00  $691.00  $840.00                                 

23 34 16.10 Centrifugal Type HVAC Fans             

7418 ‐ Roof mounted kitchen exhaust, aluminum, centrifugal, belt drive, 1‐1/2 HP, 24‐1/2"          Ea.  Material  Labor  Equipment  Total   Total Including O&P    

         1.00  $2,125.00  $209.00  $0.00  $2,334.00  $2,650.00    

TOTAL:        $2,125.00  $209.00  $0.00  $2,334.00  $2,650.00                                 

23 38 13.20 Kitchen Ventilation                

6110 ‐ Exhaust hoods, Water wash type              

         L.F.   Material  Labor  Equipment  Total   Total Including O&P    

         21.00  $2,450.00  $143.00  $0.00  $2,593.00  $2,925.00    

TOTAL:        $51,450.00  $3,003.00  $0.00  $54,453.00  $61,425.00                                 

TOTAL:                    $96,010.73  $118,290.55   Figure IV.i: Cost of Mechanical  

Page 49: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

49

Schedule Impact:  The following crews are required to perform the mechanical improvements. 

23 07 13.10 Duct Thermal Insulation          

3185 ‐ Ductwork blanket type, fiberglass, flexible, 2‐1/2" thick       

         S.F.  Daily Output  Labor Hours  Crew             2472.4  280.00  0.06  Q‐14    

TOTAL:        8.83  148.34                              

12 31 13.13. Rectangular Metal Ducts          

1050 ‐ Stainless steel, type 304, 2,000 to 5,000 lbs.       

         lbs.  Daily Output  Labor Hours  Crew             4154.7  225.00  0.11  Q‐10    

TOTAL:        18.47  457.02                              

23 37 15.40 HVAC Louver             

2500 ‐ Dual combination, automatic exhaust          

         S.F.  Daily Output  Labor Hours  Crew             10.00  20.00  0.40  1 Sheet    

TOTAL:        0.50  4.00                              

23 34 16.10 Centrifugal Type HVAC Fans          

7418 ‐ Roof mounted kitchen exhaust, aluminum, centrifugal, belt drive, 1‐1/2 HP, 24‐1/2"          Ea.  Daily Output  Labor Hours  Crew             1.00  4.00  5.00  Q‐20    

TOTAL:        0.25  5.00                              

23 38 13.20 Kitchen Ventilation          

6110 ‐ Exhaust hoods, Water wash type           

         L.F.   Daily Output  Labor Hours  Crew             21.00  7.10  3.38  Q‐10    

TOTAL:        3  70.98                              

 Figure IV.j: Daily Output and Labor 

Page 50: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

50

 Q‐14  Bare Cost  Including O&P  Cost Per Labor‐Hour    Hr.  Daily  Hr.   Daily  Bare Cost  W/ O&P 1 Asbestos Worker  $43.10  $344.80  $67.85  $542.80  $38.80  $61.08 1 Asbestos Apprentice  $34.50  $276.00  $54.30  $434.40       16 L.H., Daily Total     $620.80     $977.20  $38.80  $61.08 

  

1 Sheet  Bare Cost  Including O&P  Cost Per Labor‐Hour    Hr.  Daily  Hr.   Daily  Bare Cost  W/ O&P 1 Sheet  $45.30  $724.80  $69.85  $1,117.60                           16 L.H., Daily Total     $724.80     $1,117.60       

  

Q‐10 for 2 activities  Bare Cost  Including O&P  Cost Per Labor‐Hour    Hr.  Daily  Hr.   Daily  Bare Cost  W/ O&P 4 Sheet Metal Workers  $45.30  $1,449.60  $69.85  $2,235.20  $84.56  $130.40 2 Sheet Metal Apprentice  $36.25  $580.00  $55.90  $894.40       16 L.H., Daily Total     $2,029.60     $3,129.60  $84.56  $130.40 

  

Q‐20  Bare Cost  Including O&P  Cost Per Labor‐Hour    Hr.  Daily  Hr.   Daily  Bare Cost  W/ O&P 1 Sheet Metal Worker  $45.30  $362.40  $69.85  $558.80  $41.37  $63.87 1 Sheet Metal Apprentice  $36.25  $290.00  $55.90  $447.20       .5 Electrician  $45.55  $182.20  $67.85  $271.40       32 L.H., Daily Total     $834.60     $1,277.40  $41.73  $63.87 

  

  Work Completed:  

Insulation: 9 days Ducts: 19 days Louver: 1 day Fan: 1 day Hood: 3 days 

 Total: 32 days   

 

Figure IV.k: Crew Q‐14 

Figure IV.l: Sheet 

Figure IV.m: Crew Q‐10 

Figure IV.n: Crew Q‐20 

Page 51: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

51

Summary of Reductions to Cost and Schedule:  If the original plan (to take the ductwork to the roof to exit, this would add an additional 113 linear feet. This would increase the insulation and ductwork required.   

23 07 13.10 Duct Thermal Insulation                   

3185 ‐ Ductwork blanket type, fiberglass, flexible, 2‐1/2" thick             

         S.F.  Daily Output  Labor Hours  Material  Labor  Equipment  Total   Total w/ O&P    

         4046  280.00  0.06  $0.32  $2.23  $0.00  $2.55  $3.86    

TOTAL:     14.45  224.76  $1,274.49  $9,022.58  $0.00  $10,297.07  $15,617.56                                       

12 31 13.13. Rectangular Metal Ducts                   

1050 ‐ Stainless steel, type 304, 2,000 to 5,000 lbs.                

         lbs.  Daily Output  Labor Hours  Material  Labor  Equipment  Total   Total w/ O&P    

         7205.7  225.00  0.11  $3.25  $4.51  $0.00  $7.76  $10.55    

TOTAL:     32.03  24.75  $23,418.53  $32,497.71  $0.00  $55,916.23  $76,020.14                                       

  

 TOTAL Cost at 5th floor exhaust:  $118,290.55 TOTAL Cost at Low Roof exhaust: $156,552.70  SAVINGS on material: $38,262.15  TOTAL Schedule on 5th floor exhaust: 32 days TOTAL Schedule on Low Roof exhaust: 52 days  SAVINGS on schedule: 20 days   Conclusion  The mechanical improvements in the basement kitchen area will bring the hood and ductwork to code requirements. Re‐routing the ductwork will provide a cost reduction of $38,262.15 to the contractually proposed work on materials alone and benefit the schedule by saving 20 days. Although many roadblocks were encountered in this analysis, the final proposed revision to the scope of work proved to be beneficial to the building completion.

Figure IV.o: Comparison of LR Exhaust 

Page 52: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

52

Works Cited  "ANSI/ASHRAE Standard 62.1‐2007." ASHRAE Standard Ventilation for Acceptable  Indoor Air Quality. Atlanta, GA: ASHRAE, Inc. 2007.   "Classic CG3 Series Water Wash Ventilators." Gaylord Industries, Inc. 2008. 11 April 2008. <http://www.gaylordusa.com/cg3‐overview.html>.   Ductulator. The Trane Company. La Crosse, WI: American‐Standard Inc. 1996.  Mossman, Melville J. PE., sr. ed. RS Means Mechanical Cost Data. Kingston, MA: RS Means Co., Inc., 2008.  "Ventilation Requirements for Areas Affecting Patient Care in Hospitals & Outpatient Facilities, AIA Table 7.2" Clean Air Solutions. 2008. 1 April 2008. <http://www.filterair.info/pdf/AIA%20DHHS%20Ventilation%20Requirements%20for%20Areas%20Affecting%20Patient%20Care%20in%20Hospitals.pdf>.   

Page 53: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building     

53

Structural Breadth   Background  On the existing building, the general contractor was responsible to replace the existing 2” top slab due to wear and tear and visible cracking on multiple floors. Upon tearing up the slab, the contractor found that the existing form deck was corroded and this was causing the continuous surface cracking. The original form deck and topping was completed in 1968, but was repaired multiple times before the current construction project began in 2005. The main areas of concern occur between column lines 1‐5 and K‐P.    Problem   The 6th floor contains the most problems with corroded form deck. The 3rd and 1st floors also have areas of deck failure. The cause of this problem has been reported to be penetrations for mechanical and electrical needs. Upon reviewing the contract documents, all floors between these column lines have similar penetrations, and therefore have the potential to cause damage in the future. Because there is not a specific piece of mechanical or electrical equipment causing the damage, all penetrations in this area should be treated as potential hazards.   

Figure V.a: Form Deck

Corroded form deck induced by mechanical and plumbing penetrations 

Page 54: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building     

54

   

  

    

   Proposal  The current scope of work for the contractor consists of chipping out problem areas and replacing those portions. While this may be a viable option for the present, it may not be beneficial in the future. In order to increase the life cycle of this building, as well as prevent aesthetic impurities of cracking, replacing all form deck between column lines 1‐5 and K‐P is being proposed in this structural analysis. 

Figure V.b: Form Deck 

The surface cracking can be seen around the edges  The warped and corroded dork deck can be seen in the center  Below the decking plumbing can be seen  

Page 55: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building     

55

    

              

   

Goals  The goal of this research is to provide a structurally sound floor for the Clinical Services Building. In addition, this improvement to the flooring should increase the building's life cycle and aesthetics. By eliminating the concern for future cracking, it will near the project to final completion. Consequently it will benefit the project schedule by preventing unforeseen conditions in the flooring.   

    

 

      

28' 

20' 

Typical Bay 

Figure V.c: Typical Bay for floors 1‐10, scan of original plans from 1968, therefore may appear very blurry

Figure V.d: Topping Slab 

Visual of surface topping cracking

Page 56: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building     

56

 Analysis  

‐ Calculations & Material Selection ‐ Cost Considerations ‐ Schedule Impact ‐ LEED™ Considerations   

Calculations & Material Selection:    Non‐Composite Form Deck & Slab for Typical Bay Infill Beams @ 7' O.C. Needed: 5" thick slab, 2" deck, 3" lightweight concrete  Loading:   Live Loads:     Lab/Ward: 80psf <per Specifications>   Dead Loads:     Deck: 3 psf <per USD Design Manual>     Concrete:  115 pcf x 3 in slab = 28.75psf <per USD Design Manual>     Superimposed: 15 psf     W = 1.4 (3psf + 28.75psf + 15 psf) + 1.7 (80psf)    W = 201.45 psf  United Steel Deck: 

concrete slabs on UF2X form deck, 24 GA, 5” slab, @ 7’ spans 4x4 – W2.9 x 2.9 mesh, 

   Uniform Total Load = 212 psf 

 201.45psf < 212psf ‐ OK!    

Page 57: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building     

57

DECK TYPE: UF2X

CONCRETE WEIGHT: 115 pcf

YIELD STRENGTH: 60

PITCH: 6.0 in

FLANGE WIDTH: 2.0 in

OPENING WIDTH: 4.0 in

DEPTH: 2.0 in

GAGE: 24

MOMENT OF INERTIA: 0.232 in4/ft

POSITIVE SECTION MODULUS: 0.192 in3/ft

NEGATIVE SECTION MODULUS: 0.2 in3/ft

AREA OF STEEL: 0.889 in2/ft

BEARING CAPACITY (4" Width): 990.0 lb/ft

SHEAR CAPACITY: 3220.0 lb/ft

CONCRETE THICKNESS: 5 in

PONDING ALLOWANCE: 0%

SPAN CONDITION: Triple

MAXIMUM ALLOWABLE SPAN: 9.26 ft

Positive Bending due to Combination of Point Load and Uniform Load(CT) controls the maximum span.

   

Figure V.e: UF2X Form Deck 

Page 58: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building     

58

Cost Considerations:  Due to difficulty obtaining actual prices from manufacturers, cost has been taken from RS Means Building Construction Cost Data 2008.   

Page 59: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building     

59

 03 11 13.35 Forms In Place, Elevated Slabs          7000 ‐ Edge forms to 6" high, on elevated slab, 4 use                L.F.  Material  Labor  Equipment  Total  Total Including O&P                $0.18  $2.31 $0.00 $2.49 $3.80    

TOTAL:  1635  $294.30  $3,776.85  $0.00  $4,071.15  $6,213.00                        

03 22 05.50 Welded Wire Fabric             0650 ‐ Sheets 4x4 ‐ W2.9 X W2.9 (6x6) 61 lb. per C.S.F.        

         C.S.F.  Material  Labor  Equipment  Total  Total Including O&P                $31.50  $25.50 $0.00 $57.00 $76.00    

TOTAL:  6368  $200,592.00  $162,384.00  $0.00  $362,976.00  $483,968.00                        

03 31 05.35 Normal Weight Concrete, Ready Mix       0150 ‐ 3000 psi                 

         C.Y.  Material  Labor  Equipment  Total  Total Including O&P                $100.00  $0.00 $0.00 $100.00 $110.00    

TOTAL:  983  $98,271.60  $0.00  $0.00  $98,271.60  $108,098.77                        

03 31 05.70 Placing Concrete              1400 ‐ Elevated slabs, less than 6" thick, pumped        

         C.Y.  Material  Labor  Equipment  Total  Total Including O&P                $0.00  $14.90 $5.55 $20.45 $29.00    

TOTAL:  983  $0.00  $14,642.47  $5,454.07  $20,096.54  $28,498.77                        

03 35 29.30 Finishing Floors             0200 ‐ Manual screed, bull float, manual float, manual steel trowel    

         S.F.  Material  Labor  Equipment  Total Total Including O&P    

            $0.00  $0.66 $0.00 $0.66  $0.98    TOTAL:  63680  $0.00  $42,028.80  $0.00  $42,028.80  $62,406.40    

                    

05 31 33.50 Form Decking             6240 ‐ 24 gauge, 2" deep galvanized             

         S.F.  Material  Labor  Equipment  Total Total Including O&P    

            $2.01  $0.39 $0.04 $2.44  $2.95    TOTAL:  63680  $127,996.80  $24,835.20  $2,547.20  $155,379.20  $187,856.00    

                    

TOTAL:              $682,823.30  $877,040.93   

Figure V.f: Cost of Structure  

Page 60: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building     

60

While the final cost of the proposed work is fairly high ($877,040.93) the life cycle benefits are numerous. The damaged areas to be removed and replaced (the 99.5'x64' space) was originally built in 1968. Only 37 years later, tremendous flaws in the system emerged. The determined cause of the structural failure was mechanical and plumbing penetrations. During the present construction on the Clinical Services Building, new mechanical ductwork and plumbing will be tied into existing, and there still remains the possibility for future form deck corrosion and concrete cracking. The additional penetrations require by the new system will increase the possibility of this condition. By replacing the decking and concrete, the structural integrity and future aesthetics are guaranteed.   Schedule Impact: 

Figure V.g: Daily Output and Labor 

03 11 13.35 Forms In Place, Elevated Slabs    7000 ‐ Edge forms to 6" high, on elevated slab, 4 use          L.F.  Daily Output  Labor Hours  Crew             1635  500 0.06 C‐1    TOTAL:     3.27  98.1                        

03 22 05.50 Welded Wire Fabric       0650 ‐ Sheets 4x4 ‐ W2.9 X W2.9 (6x6) 61 lb. per C.S.F.  

         C.S.F.  Daily Output  Labor Hours  Crew             6368  27 0.593 2 Rodm    TOTAL:     235.86  3776.22                        

03 31 05.70 Placing Concrete        1400 ‐ Elevated slabs, less than 6" thick, pumped  

         C.Y.  Daily Output  Labor Hours  Crew             983  140 0.457 C‐20    TOTAL:     7.02  449.23                        

03 35 29.30 Finishing Floors       0200 ‐ Manual screed, bull float, manual float, manual steel trowel 

         S.F.  Daily Output  Labor Hours  Crew             63680  1,265 0.019 C‐10    TOTAL:     50.33  1209.92                        

05 31 33.50 Form Decking          6240 ‐ 24 gauge, 2" deep galvanized       

         S.F.  Daily Output  Labor Hours  Crew             63680  3,600 0.009 E‐4    TOTAL:     17.69  573.12                        

Page 61: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building     

61

The following crews are required to perform the structural improvements. 

Crew C‐1  Bare Cost  Including O&P  Cost Per Labor‐Hour    Hr.  Daily  Hr.   Daily  Bare Cost  W/ O&P 3 Carpenters  $38.10  $914.40  $59.30  $1,423.20  $36.14  $56.24 1 Laborer  $30.25  $242.00  $47.05  $376.40       32 L.H., Daily Total     $1,156.40     $1,799.60  $36.14  $56.24 

Rodm  Bare Cost  Including O&P  Cost Per Labor‐Hour    Hr.  Daily  Hr.   Daily  Bare Cost  W/ O&P 2 Rodmen  $43.00  $688.00  $70.55  $1,128.80                           16 L.H., Daily Total     $688.00     $1,128.80       

Crew C‐20  Bare Cost  Including O&P  Cost Per Labor‐Hour    Hr.  Daily  Hr.   Daily  Bare Cost  W/ O&P 1 Laborer Foreman  $24.25  $194.00  $38.15  $305.20  $23.92  $37.15 5 Laborers  $22.25  $890.00  $35.00  $1,400.00       1 Cement Finisher  $27.00  $216.00  $40.25  $322.00       1 Equip. Oper.   $28.85  $230.80  $43.80  $350.40       2 Gas Engine Vibrators     $76.00     $83.60       1 Concrete Pump     $656.00     $721.60  $11.44  $12.58 64 L.H., Daily Total     $2,262.80     $3,182.80  $35.36  $49.73 

C‐10  Bare Cost Including O&P Cost Per Labor‐Hour    Hr.  Daily Hr.  Daily Bare Cost W/ O&P 1 Laborer  $30.25  $242.00 $47.05 $376.40 $34.75 $51.88 2 Cement Finishers  $37.00  $592.00 $54.30 $868.80   16 L.H., Daily Total     $834.00 $1,245.20 $34.75 $51.88 

E‐4  Bare Cost  Including O&P  Cost Per Labor‐Hour    Hr.  Daily  Hr.   Daily  Bare Cost  W/ O&P 1 Struc. Steel Foreman  $45.00  $360.00  $81.20  $649.60  $43.50  $78.46 3 Struc. Steel Workers  $43.00  $1,032.00  $77.55  $1,861.20       1 Welder, 300 amp     $132.20     $145.42  $4.13  $4.54 16 L.H., Daily Total     $1,392.00     $2,510.80  $47.63  $83.01 

Figure V.d: Daily Output and Labor  

Figure V.h: Crew C‐1  

Figure V.i: Rodmen  

Figure V.j: Rodmen  

Figure V.k: Crew C‐10 

Figure V.l: Crew E‐4 

Page 62: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building     

62

Work Completed Per Floor (as shown on 6th floor, a typical floor):  

Edge forms: 0.3 days WWF: 23.6 days Elevated slabs: 0.7 days Finishing: 5 days Form Decking: 1.8 days 

 Total: 31.4 days / floor  

  

While this structural change adds 32 days onto the schedule, it does not affect the final cleaning and punchlist. Because this project was partial renovations and partial new construction, the trades were able to move throughout the floors to do work if a specific area was delayed. This is evident in the schedule. While it appears that some tasks took a great deal of time, they were actually being flip‐flopped throughout the building to increase productivity. Essentially, if the next area wasn’t ready to be worked on, they continued on to another area that was ready, returning to the original area at a later time. Therefore, 32 days does not hinder the productivity, schedule, or sequencing of the hospital. In addition, 32 days can be reduced with a more organized parade of trades throughout the floor.   

Figure V.m: Schedule Impact   

Page 63: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building     

63

Work Cost Per Floor (Including O&P):  

Edge forms: $1,799.60 x .3 days = $539.88 WWF: $1,128.80 x 23.6 days = $26,639.68 Elevated Slabs: $3,182.80 x .7 days = $2,227.96 Finishing: $1,245.20 x 5 days = $6,226.00 Form Decking: $2,510.80 x 1.8 days = $4,519.44  

Total Cost for Floors 1‐10: $401,529.60   

LEED™ Considerations from a General Contractor Standpoint:  The form deck selected meets LEED™ credits MR 3.1, MR 4.1 & 4.2, MR 5.1 & 5.2  

‐ AISI states that at a minimum 25% of steel products are recycled  ‐ AISC states that steel can be recycled or salvaged  ‐ Manufacturer location:          14 Harmich Road         South Plainfield, NJ 07080‐4808 

For the detailed LEED™ submittal sheet see Appendix B.IV and for back‐up documentation see Appendix C.II.   Conclusion  The proposed structural improvement will improve the life cycle of the Clinical Services Building. The total cost for floors 1‐10 is $401,529.60. In addition to the cost, this proposal adds 32 days to the project schedule. While this seems like a large addition to the schedule, it does not show a significant impact on the overall project schedule. The LEED™ credits obtained through this analysis are MR 3.1, 4.1 or 4.2, and 5.1 or 5.2.  

Page 64: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building     

64

 Works Cited  Bouras Industries Home Page. 2008. 10 January 2008. <http://www.njb‐united.com/usd.htm>.  United Steel Deck Design Manual and Catalog of Products. Summit, NJ: Nicholas J. Bouras, Inc., 2002.   Waier, Philip R. PE., sr. ed. RS Means Building Construction Cost Data. Kingston, MA: RS Means Co., Inc., 2007.    

Page 65: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

65

   

Appendix A 

Page 66: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Owner: UPMC 

Steel: Sipple Steel 

CM:  Dick  

Corporation 

A/E:  Astorino  

Architects & Engineers 

Foundation & Excavation: Mosites 

GC: Barton Malow—P.J. Dick, A Joint Venture 

Telecommunication: Johnson Controls 

Subcontractor Subcontractor  Subcontractor 

Project Delivery Method: 

Owner  Representative: 

Oxford  Development Company  

Negotiated Fee 

Cost + Fee 

Lump Sum 

Lump Sum 

GMP 

Page 67: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

45th St

43rd St

44th St

45 St 

Garwood Way 

Existing 

 Surface Parking Lot 

Future Research Building 

Existing St. Francis Plaza 

Existing Surface Parking Lot 

N.E. Addition

Existing Central Plant

Future Exp.

Existing

East Pavilion 

Med. Office Bldg. 

N.W. Addition 

CSB South Tower Addition 

Existing

Clinical 

Services 

Penn

 Ave. 

Shared Staging Area

Existing Mid‐Site Garage 

44th St 

LEGEND: 

Site Fencing  

Project Extents  

Tower Crane 

Pick Site 

Hoist 

Construction Gate 

Flagger 

Trash Chute 

Construction Traffic  

Scale: 1/16” = 7.22’ 

 

Penn Avenue to remain open at all times per City of Pittsburgh 

Page 68: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

ID Task Name Duration Start Finish

1 BMPJD Receive Notice of Award 0 days Thu 12/22/05 Thu 12/22/05

18 Award Packages 37 days Fri 12/23/05 Mon 2/13/06

2 Steel Erection 166 days Mon 1/9/06 Mon 8/28/06

19 Coordination Drawings 179 days Tue 2/28/06 Fri 11/3/06

15 Interior Demolition (Old Building) 25 days Mon 3/6/06 Fri 4/7/06

14 Plumbing 251 days Thu 4/13/06 Thu 3/29/07

20 Major Material Deliveries 136 days Thu 4/27/06 Thu 11/2/06

3 Division 17 Construction 556 days Mon 5/15/06 Mon 6/30/08

21 Risers 134 days Mon 5/15/06 Thu 11/16/06

12 Mechanical 194 days Thu 6/8/06 Tue 3/6/07

13 Electrical 229 days Thu 6/15/06 Tue 5/1/07

6 Exterior Studs and Sheathing 126 days Mon 7/17/06 Mon 1/8/07

23 All Roofing Work 250 days Mon 7/31/06 Fri 7/13/07

17 Vendor Selection 234 days Tue 8/1/06 Fri 6/22/07

25 Elevators 475 days Fri 10/6/06 Thu 7/31/08

10 Windows 147 days Thu 1/11/07 Fri 8/3/07

11 Doors 208 days Tue 3/13/07 Thu 12/27/07

26 Punchlist 373 days Tue 4/17/07 Thu 9/18/08

24 Helipad 57 days Tue 5/1/07 Wed 7/18/07

16 Full Enclosure 0 days Tue 8/28/07 Tue 8/28/07

22 Owner Deliver Medical Equipment 0 days Thu 1/31/08 Thu 1/31/08

7 Installation 36 days Tue 5/27/08 Tue 7/15/08

9 Testing 9 days Wed 7/16/08 Mon 7/28/08

8 Commission 15 days Wed 7/30/08 Tue 8/19/08

4 Substantial Completion 0 days Fri 9/19/08 Fri 9/19/08

5 Project Completion 0 days Mon 12/22/08 Mon 12/22/08

12/22

ec Dec Jan Jan Jan Jan Jan Feb Feb Feb Feb Mar Mar Mar Mar Apr 2 Apr 9 Apr 1 Apr 2 Apr 3 May May May May Jun Jun Jun Jun Jul 2, Jul 9, Jul 1 Jul 2 Jul 3 Aug Aug Aug Aug Sep Sep Sep Sep Oct 1 Oct 8 Oct 1 Oct 2 Oct 2 Nov Nov Nov Nov Dec Dec Dec Dec Dec Jan Jan Jan Jan

Task Split Progress Milestone Summary Project Summary External Tasks External Milestone Deadline

Page 1

Project: ScheduleDate: Tue 4/8/08

Page 69: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

ID Task Name Duration

1 BMPJD Receive Notice of Award 0 days

18 Award Packages 37 days

2 Steel Erection 166 days

19 Coordination Drawings 179 days

15 Interior Demolition (Old Building) 25 days

14 Plumbing 251 days

20 Major Material Deliveries 136 days

3 Division 17 Construction 556 days

21 Risers 134 days

12 Mechanical 194 days

13 Electrical 229 days

6 Exterior Studs and Sheathing 126 days

23 All Roofing Work 250 days

17 Vendor Selection 234 days

25 Elevators 475 days

10 Windows 147 days

11 Doors 208 days

26 Punchlist 373 days

24 Helipad 57 days

16 Full Enclosure 0 days

22 Owner Deliver Medical Equipment 0 days

7 Installation 36 days

9 Testing 9 days

8 Commission 15 days

4 Substantial Completion 0 days

5 Project Completion 0 days

8/28

1/31

Feb Feb Feb Feb Mar Mar Mar Mar Apr 1 Apr 8 Apr 1 Apr 2 Apr 2 May May May May Jun Jun Jun Jun Jul 1, Jul 8, Jul 1 Jul 2 Jul 2 Aug Aug Aug Aug Sep Sep Sep Sep Sep Oct 7 Oct 1 Oct 2 Oct 2 Nov Nov Nov Nov Dec Dec Dec Dec Dec Jan Jan Jan Jan Feb Feb Feb Feb Mar Mar Mar Mar Mar Apr 6 Apr 1 Ap

Task Split Progress Milestone Summary Project Summary External Tasks External Milestone Deadline

Page 2

Project: ScheduleDate: Tue 4/8/08

Page 70: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

ID Task Name Duration

1 BMPJD Receive Notice of Award 0 days

18 Award Packages 37 days

2 Steel Erection 166 days

19 Coordination Drawings 179 days

15 Interior Demolition (Old Building) 25 days

14 Plumbing 251 days

20 Major Material Deliveries 136 days

3 Division 17 Construction 556 days

21 Risers 134 days

12 Mechanical 194 days

13 Electrical 229 days

6 Exterior Studs and Sheathing 126 days

23 All Roofing Work 250 days

17 Vendor Selection 234 days

25 Elevators 475 days

10 Windows 147 days

11 Doors 208 days

26 Punchlist 373 days

24 Helipad 57 days

16 Full Enclosure 0 days

22 Owner Deliver Medical Equipment 0 days

7 Installation 36 days

9 Testing 9 days

8 Commission 15 days

4 Substantial Completion 0 days

5 Project Completion 0 days

9/19

12/22

r 2 Apr 2 May May May May Jun Jun Jun Jun Jun Jul 6, Jul 1 Jul 2 Jul 2 Aug Aug Aug Aug Aug Sep Sep Sep Sep Oct 5 Oct 1 Oct 1 Oct 2 Nov Nov Nov Nov Nov Dec Dec Dec Dec Jan Jan Jan Jan Feb Feb Feb Feb Mar Mar Mar Mar Mar Apr 5 Apr 1 Apr 1 Apr 2 May May May May May Jun Jun Jun Jun Jul 5,

Task Split Progress Milestone Summary Project Summary External Tasks External Milestone Deadline

Page 3

Project: ScheduleDate: Tue 4/8/08

Page 71: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

ID Task Name Duration Start Finish Predecessors

1 GC Receive Notice of Project Award 0 days Thu 12/22/05 Thu 12/22/052 Award Packages 37 days Thu 12/22/05 Fri 2/10/064 Fabrication Materials 210 days Mon 2/13/06 Fri 12/1/06 23 Coordination Drawings 179 days Tue 2/28/06 Fri 11/3/065 Material Delivery 158 days Wed 4/26/06 Fri 12/1/066 Sub Basement 111 days Mon 11/27/06 Mon 4/30/077 Ductwork 55 days Mon 11/27/06 Fri 2/9/078 Interior Metal Studs & Drywall 41 days Mon 12/4/06 Mon 1/29/079 Piping 33 days Mon 12/18/06 Wed 1/31/07

10 Power & Lighting 22 days Tue 1/2/07 Wed 1/31/0711 Telecommunications 59 days Thu 1/25/07 Tue 4/17/0712 Ceilings 19 days Mon 2/26/07 Thu 3/22/0713 Finishes 19 days Thu 3/8/07 Tue 4/3/0714 Final Cleaning 5 days Tue 4/10/07 Mon 4/16/0715 Punchlist 1 day Mon 4/30/07 Mon 4/30/07 1416 Basement 432 days? Thu 5/11/06 Fri 1/4/0817 Plumbing 205 days Thu 5/11/06 Wed 2/21/0718 Fire Protection 169 days Thu 5/11/06 Tue 1/2/0719 Masonry 135 days Mon 5/22/06 Fri 11/24/0623 Telecommunications 205 days Fri 10/20/06 Thu 8/2/0722 Ductwork 89 days Fri 10/27/06 Wed 2/28/0720 Drywall 44 days Tue 12/26/06 Fri 2/23/0721 Power & Lighting 118 days Mon 1/15/07 Wed 6/27/0724 Finishes 113 days Mon 6/18/07 Wed 11/21/0725 Fixtures 48 days Thu 6/28/07 Mon 9/3/07 2126 Final Cleaning 41 days Wed 10/24/07 Wed 12/19/0727 Punchlist 38 days? Wed 11/14/07 Fri 1/4/0828 1st Floor 583 days? Fri 3/31/06 Tue 6/24/0829 Plumbing 95 days Fri 3/31/06 Thu 8/10/0630 Ductwork 92 days Fri 3/31/06 Mon 8/7/0631 Masonry 80 days Wed 7/12/06 Tue 10/31/0632 Power & Lighting 306 days Tue 8/15/06 Tue 10/16/0733 Fire Protection 367 days Fri 10/20/06 Mon 3/17/0834 Telecommunications 318 days Fri 10/20/06 Tue 1/8/0835 Drywall 107 days Thu 9/27/07 Fri 2/22/0836 Finishes 62 days Fri 12/7/07 Mon 3/3/0837 Fixtures 67 days Fri 12/21/07 Mon 3/24/08 3238 Final Cleaning 44 days Thu 4/10/08 Tue 6/10/08 3739 Punchlist 49 days? Thu 4/17/08 Tue 6/24/08

12/22Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3

2006 2007 2008

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 1

Project: Schedule_Tech_2Date: Tue 4/8/08

Page 72: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

ID Task Name Duration Start Finish Predecessors

40 2nd Floor 595 days Mon 1/9/06 Fri 4/18/0841 Structural Steel 96 days Mon 1/9/06 Mon 5/22/0642 Plumbing 169 days Fri 3/31/06 Wed 11/22/0643 Ductwork 174 days Thu 4/6/06 Tue 12/5/0644 Power & Lighting 91 days Thu 6/29/06 Thu 11/2/0645 Fire Protection 378 days Fri 6/30/06 Tue 12/11/0746 Telecommunications 185 days Mon 9/11/06 Fri 5/25/0747 Pneumatic Tubing 387 days Thu 10/26/06 Fri 4/18/0848 Drywall 78 days Thu 1/11/07 Mon 4/30/0749 Fixtures 64 days Wed 2/7/07 Mon 5/7/07 4450 Finishes 179 days Tue 4/24/07 Fri 12/28/0751 Final Cleaning 36 days Thu 2/7/08 Thu 3/27/08 5052 Punchlist 31 days Thu 2/14/08 Thu 3/27/0853 3rd Floor 580 days Mon 1/9/06 Fri 3/28/0854 Structural Steel 96 days Mon 1/9/06 Mon 5/22/0655 Plumbing 144 days Thu 4/6/06 Tue 10/24/0656 Ductwork 147 days Mon 4/10/06 Tue 10/31/0657 Drywall 166 days Wed 5/10/06 Wed 12/27/0658 Power & Lighting 232 days Tue 7/11/06 Wed 5/30/0759 Fire Protection 210 days Tue 8/1/06 Mon 5/21/0760 Telecommunications 136 days Wed 12/20/06 Wed 6/27/0761 Pneumatic Tubing 55 days Tue 3/27/07 Mon 6/11/0762 Finishes 81 days Mon 4/16/07 Mon 8/6/0763 Fixtures 82 days Tue 8/28/07 Wed 12/19/07 5864 Final Cleaning 29 days Tue 1/22/08 Fri 2/29/08 6365 Punchlist 27 days Thu 2/21/08 Fri 3/28/0866 4th Floor 531 days Mon 2/13/06 Mon 2/25/0867 Structural Steel 58 days Mon 2/13/06 Wed 5/3/0668 Plumbing 132 days Tue 4/25/06 Wed 10/25/0669 Ductwork 195 days Tue 4/25/06 Mon 1/22/0770 Drywall 198 days Mon 5/29/06 Wed 2/28/0771 Power & Lighting 181 days Tue 8/15/06 Tue 4/24/0772 Fire Protection 216 days Mon 8/21/06 Mon 6/18/0773 Telecommunications 172 days Tue 12/5/06 Wed 8/1/0774 Pneumatic Tubing 37 days Mon 12/18/06 Tue 2/6/0775 Finishes 73 days Thu 4/26/07 Mon 8/6/0776 Fixtures 56 days Mon 8/20/07 Mon 11/5/07 7177 Final Cleaning 36 days Mon 11/19/07 Mon 1/7/08 7678 Punchlist 31 days Mon 1/14/08 Mon 2/25/08

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q32006 2007 2008

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 2

Project: Schedule_Tech_2Date: Tue 4/8/08

Page 73: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

ID Task Name Duration Start Finish Predecessors

79 5th Floor 582 days Mon 2/13/06 Tue 5/6/0880 Structural Steel 58 days Mon 2/13/06 Wed 5/3/0681 Ductwork 192 days Fri 4/28/06 Mon 1/22/0782 Plumbing 94 days Fri 6/30/06 Wed 11/8/0683 Drywall 166 days Fri 8/4/06 Fri 3/23/0784 Power & Lighting 142 days Wed 9/6/06 Thu 3/22/0785 Fire Protection 246 days Tue 9/5/06 Tue 8/14/0786 Telecommunications 207 days Fri 10/20/06 Mon 8/6/0787 Pneumatic Tubing 164 days Wed 2/7/07 Mon 9/24/0788 Finishes 57 days Tue 8/14/07 Wed 10/31/0789 Fixtures 56 days Wed 11/21/07 Wed 2/6/08 8490 Final Cleaning 19 days Thu 2/28/08 Tue 3/25/0891 Punchlist 28 days Fri 3/28/08 Tue 5/6/08 9092 6th Floor 528 days Mon 2/27/06 Wed 3/5/0893 Structural Steel 55 days Mon 2/27/06 Fri 5/12/0694 Ductwork 209 days Wed 5/3/06 Mon 2/19/0795 Plumbing 183 days Thu 6/8/06 Mon 2/19/0796 Drywall 182 days Wed 6/21/06 Thu 3/1/0797 Power & Lighting 186 days Fri 10/20/06 Fri 7/6/0798 Fire Protection 252 days Mon 9/11/06 Tue 8/28/0799 Telecommunications 183 days Fri 3/16/07 Tue 11/27/07

100 Pneumatic Tubing 155 days Wed 2/14/07 Tue 9/18/07101 Finishes 64 days Tue 7/24/07 Fri 10/19/07102 Fixtures 38 days Fri 10/12/07 Tue 12/4/07 97103 Final Cleaning 24 days Fri 12/28/07 Wed 1/30/08104 Punchlist 25 days Thu 1/31/08 Wed 3/5/08 103105 7th Floor 564 days Mon 2/27/06 Thu 4/24/08106 Structural Steel 55 days Mon 2/27/06 Fri 5/12/06107 Plumbing 192 days Mon 5/15/06 Tue 2/6/07108 Ductwork 259 days Thu 6/15/06 Tue 6/12/07109 Drywall 212 days Wed 9/20/06 Thu 7/12/07110 Power & Lighting 220 days Tue 12/5/06 Mon 10/8/07111 Fire Protection 198 days Mon 12/11/06 Wed 9/12/07112 Telecommunications 184 days Fri 4/13/07 Wed 12/26/07113 Pneumatic Tubing 144 days Wed 3/14/07 Mon 10/1/07114 Finishes 74 days Tue 8/7/07 Fri 11/16/07115 Fixtures 49 days Tue 10/9/07 Fri 12/14/07 110116 Final Cleaning 28 days Thu 1/24/08 Mon 3/3/08117 Punchlist 21 days Thu 3/27/08 Thu 4/24/08 116

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q32006 2007 2008

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 3

Project: Schedule_Tech_2Date: Tue 4/8/08

Page 74: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

ID Task Name Duration Start Finish Predecessors

118 8th Floor 579 days Wed 3/8/06 Mon 5/26/08119 Structural Steel 55 days Wed 3/8/06 Tue 5/23/06120 Ductwork 263 days Tue 5/23/06 Thu 5/24/07121 Plumbing 134 days Fri 8/4/06 Wed 2/7/07122 Drywall 263 days Fri 8/11/06 Tue 8/14/07123 Power & Lighting 144 days Mon 1/8/07 Thu 7/26/07124 Fire Protection 218 days Tue 11/7/06 Thu 9/6/07125 Telecommunications 181 days Wed 11/8/06 Wed 7/18/07126 Pneumatic Tubing 185 days Wed 2/14/07 Tue 10/30/07127 Finishes 62 days Tue 9/25/07 Wed 12/19/07128 Fixtures 47 days Tue 12/4/07 Wed 2/6/08 123129 Final Cleaning 21 days Thu 3/27/08 Thu 4/24/08130 Punchlist 21 days Mon 4/28/08 Mon 5/26/08 129131 9th Floor 580 days Wed 3/8/06 Tue 5/27/08132 Structural Steel 55 days Wed 3/8/06 Tue 5/23/06133 Plumbing 241 days Tue 5/23/06 Tue 4/24/07134 Ductwork 287 days Thu 6/1/06 Fri 7/6/07135 Drywall 211 days Thu 8/17/06 Thu 6/7/07136 Power & Lighting 183 days Wed 2/28/07 Fri 11/9/07137 Fire Protection 201 days Wed 1/17/07 Wed 10/24/07138 Telecommunications 306 days Fri 11/3/06 Fri 1/4/08139 Pneumatic Tubing 139 days Thu 5/10/07 Tue 11/20/07140 Finishes 74 days Wed 9/5/07 Mon 12/17/07141 Fixtures 35 days Wed 11/21/07 Tue 1/8/08 136142 Final Cleaning 41 days Mon 3/3/08 Mon 4/28/08143 Punchlist 21 days Tue 4/29/08 Tue 5/27/08 142144 10th Floor 386 days Mon 3/20/06 Mon 9/10/07145 Structural Steel 13 days Mon 3/20/06 Wed 4/5/06146 Plumbing 223 days Thu 6/1/06 Mon 4/9/07147 Mechanical Mobile Crane 42 days Fri 9/22/06 Mon 11/20/06148 Ductwork 175 days Thu 10/26/06 Wed 6/27/07149 Telecommunications 120 days Mon 11/6/06 Fri 4/20/07150 Fire Protection 128 days Fri 10/20/06 Tue 4/17/07151 Drywall 58 days Thu 10/26/06 Mon 1/15/07152 Power & Lighting 47 days Fri 12/1/06 Mon 2/5/07153 Finishes 53 days Mon 2/5/07 Wed 4/18/07154 Final Cleaning 54 days Thu 4/19/07 Tue 7/3/07 153155 Punchlist 48 days Thu 7/5/07 Mon 9/10/07 154156 Low Roof 353 days Mon 3/27/06 Wed 8/1/07

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q32006 2007 2008

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 4

Project: Schedule_Tech_2Date: Tue 4/8/08

Page 75: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

ID Task Name Duration Start Finish Predecessors

157 Roof Steel 14 days Mon 3/27/06 Thu 4/13/06158 Deck Roof 9 days Mon 5/1/06 Thu 5/11/06159 Plumbing 77 days Fri 10/20/06 Mon 2/5/07160 Mechanical 204 days Fri 10/20/06 Wed 8/1/07161 11th Floor 239 days Wed 7/5/06 Mon 6/4/07162 Plumbing 213 days Wed 7/5/06 Fri 4/27/07163 Ductwork 106 days Tue 11/21/06 Tue 4/17/07164 Power & Lighting 36 days Mon 4/16/07 Mon 6/4/07165 Main Roof 87 days Thu 3/9/06 Fri 7/7/06166 Demolition 72 days Thu 3/9/06 Fri 6/16/06167 Structural Steel 21 days Fri 6/9/06 Fri 7/7/06168 12th Floor / Helipad 453 days? Mon 7/17/06 Wed 4/9/08169 Structural Steel 23 days Mon 7/17/06 Wed 8/16/06170 Plumbing 349 days Mon 8/21/06 Thu 12/20/07171 Drywall 270 days Fri 10/20/06 Thu 11/1/07172 Ductwork 264 days Wed 12/13/06 Mon 12/17/07173 Power & Lighting 130 days Tue 1/2/07 Mon 7/2/07174 Telecommunications 316 days Tue 1/2/07 Tue 3/18/08175 Helipad 57 days? Tue 5/1/07 Wed 7/18/07176 Finishes 27 days Wed 11/21/07 Thu 12/27/07177 Final Cleaning 5 days Thu 3/27/08 Wed 4/2/08178 Punchlist 10 days Thu 3/27/08 Wed 4/9/08179 13th Floor / Elevator Machine Room 1 day? Thu 12/22/05 Thu 12/22/05180 Structural Steel 18 days Wed 7/26/06 Fri 8/18/06181 Plumbing 129 days Mon 9/18/06 Thu 3/15/07182 Roofing 5 days Mon 10/2/06 Fri 10/6/06183 Ductwork 85 days Wed 12/20/06 Tue 4/17/07184 Final Cleaning 10 days Tue 6/12/07 Mon 6/25/07 183185 Punchlist 16 days Tue 6/19/07 Tue 7/10/07

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q32006 2007 2008

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 5

Project: Schedule_Tech_2Date: Tue 4/8/08

Page 76: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

76

   

Appendix B 

Page 77: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                     Construction Management Option 

                                       Department of Architectural Engineering                                                     The Pennsylvania State University 

 

Hello, my name is Gloria Brashear and I am currently a senior architectural engineering student at The Pennsylvania State University. I am pursuing a bachelor of architectural engineering with an option in Construction Management. One of the requirements to obtain this degree is to perform a senior capstone project studying a current construction project. 

My thesis focuses on a 13 story healthcare facility for the University Of Pittsburgh Medical Center. The project was fairly new to the LEED documentation process, and I am focusing my research on general contractors in the Pittsburgh, PA market.  

The goal of this thesis research is to address the following questions: 

‐ What documentation would provide a thorough transition of necessary information from subcontractor to general contractor? 

‐ What information is required by the architect that is missing from the initial process and can be added to the final process to obtain certification? 

Your aid in this research would be greatly appreciated. If you are able to schedule a fifteen minute phone interview, please contact me at the phone and email listed below. Your company name will be acknowledged as a participant unless you prefer to be reported anonymously.  

 

Thank you in advance for your help in this matter. 

Very Truly,  

 

Gloria Brashear 

Bachelor of Architectural Engineering Candidate 

Phone: 412‐979‐4206 

E‐mail: [email protected]  

http://www.engr.psu.edu/ae/thesis/portfolios/2008/gsb146/ 

 

 

Page 78: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                     Construction Management Option 

                                       Department of Architectural Engineering                                                     The Pennsylvania State University 

Survey to Pittsburgh General Contractors 

1. How familiar are you with LEED and green building? 2. With regard to the subcontractors that you work with, how familiar with LEED do you feel they 

are? 3. How helpful do you feel the architects that you work with are with regard to questions and 

information required for LEED documents? 4. How many green projects have you worked on? Have any of them not obtained LEED 

certification? 5.  What credits have you found are the most difficult to obtain? 6. What do you find to be the greatest difficulty with the LEED program especially in Pittsburgh? 7. How would you describe the client’s eagerness to deliver a LEED certified building? 8. Have you seen LEED requirements implemented in construction documents?  9. Please leave any additional comments related to the Pittsburgh area with regard to LEED. 

 

Page 79: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Children’s Hospital of Pittsburgh Clinical Services Building September 9, 2005

Astorino 2002102.00 STEEL DECK 05310 - 1

SECTION 05310 - STEEL DECK PART 1 - GENERAL 1.01 SUMMARY

A. This Section specifies steel deck and includes the following: 1. Steel roof deck. 2. Steel floor deck. 3. Deck screed angle at deck perimeters and deck openings for decks to receive concrete,

unless otherwise indicated. B. Related Sections include the following: 1. Section 01100 - Summary

a. Clinical Services steel deck Work scheduled to be substantially complete before work under this Contract begins.

a. Assigned Contractor: Clinical Services Building structural steel Contract and Work, including steel deck Work, assigned to the Contractor for this Project.

c. Clinical Services Building North additions steel deck Work which may be conducted simultaneously with work under this Contract.

2. Section 02352 – LEED Requirements 3. Section 01400 - Quality Requirements. 4. Section 03300 - Cast-In-Place Concrete. 5. Section 05120 - Structural Steel: Shear connectors. 6. Section 07811 - Sprayed Fire-Resistive Materials. 7. Section 09900 - Painting: Field painting. 1.02 SUBMITTALS A. Product data for each type of deck, accessory, and product specified. B. Shop drawings showing layout and types of deck panels, anchorage details, reinforcing

channels, pans, deck openings, special jointing, accessories, and attachments to other construction.

C. Product certificates signed by manufacturers of steel deck certifying that their products comply

with specified requirements. D. Welder certificates signed by Contractor certifying that welders comply with requirements

specified under the "Quality Assurance" Article.

Page 80: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Children’s Hospital of Pittsburgh Clinical Services Building September 9, 2005

Astorino 2002102.00 STEEL DECK 05310 - 2

E. Mill test reports signed by manufacturers certifying that their products comply with

requirements. 1.03 QUALITY ASSURANCE A. Installer Qualifications: Engage an experienced Installer who has completed steel deck similar

in material, design, and extent to that indicated for this Project and with a record of successful in-service performance.

B. Welding Standards: Comply with applicable provisions of AWS D1.1 "Structural Welding

Code--Steel" and AWS D1.3 "Structural Welding Code--Sheet Steel." 1. Certify that each welder has satisfactorily passed AWS qualification tests for welding

processes involved and, if pertinent, has undergone re-certification. 2. Field welders shall hold an un-expired certificate from the City of Pittsburgh Department

of Building Inspection. C. Fire-Test-Response Characteristics: Where indicated, provide steel deck panels identical to

those tested as part of an assembly for fire resistance per ASTM E 119 by a testing and inspection agency performing testing and follow-up services, that is acceptable to authorities having jurisdiction.

1. Fire-Resistance Ratings: As indicated by design designations listed in UL "Fire

Resistance Directory," or by Warnock Hersey or another testing and inspecting agency. 2. Labeling: Identify steel deck with appropriate markings of applicable testing and

inspecting agency. 1.04 DELIVERY, STORAGE, AND HANDLING A. Protect steel deck from corrosion, deformation, and other damage during delivery, storage, and

handling. B. Stack steel deck on platforms or pallets and slope to provide drainage. Protect with a

waterproof covering and ventilate to avoid condensation. PART 2 - PRODUCTS 2.01 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Epic Metals Corp.

Page 81: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Children’s Hospital of Pittsburgh Clinical Services Building September 9, 2005

Astorino 2002102.00 STEEL DECK 05310 - 3

2. United Steel Deck, Inc. 3. Vulcraft Group, Div. of Nucor Corp. 4. Wheeling Corrugating Co., Div. of Wheeling-Pittsburgh Steel Corp. 2.02 ROOF DECK

A. Steel Roof Deck: Fabricate panels without top-flange stiffening grooves to comply with “SDI Specifications and Commentary for Steel Roof Deck” in SDI Publication No. 30, and with the following:

1. Galvanized-Steel Sheet: ASTM A 653/A653M, Structural Steel, Grade 33 (230), G 60

(Z180) zinc coating. 2. Roof Deck: a. Type: Wide-rib roof deck, Ribs 6 inches (152 mm) on center; maximum 2-1/2

inch (64 mm) rib opening. Curved roof deck where indicated. b. Profile Depth: 1-1/2 inches (38 mm), unless otherwise indicated. c. Design Uncoated-Steel Thickness: Minimum 0.0358 inch (0.91 mm) (20 gage)

steel, unless otherwise indicated. d. Finish: Galvanized steel.

1) Where underside of deck is indicated to be exposed and painted provide shop-applied primer over galvanized steel. Galvanized steel shall be cleaned, pretreated and primed with manufacturer’s standard lead-free and chromate-free, baked-on, rust-inhibitive primer.

2.03 FLOOR DECK A. Composite Steel Floor Deck: Fabricate panels with integrally embossed or raised pattern ribs

and interlocking side laps, to comply with “SDI Specifications and Commentary for Composite Steel Floor Deck” in SDI Publication No. 30 with minimum section properties indicated, and with the following:

1. Galvanized-Steel Sheet: ASTM A 653/A653M, Structural Steel, Grade 33 (230), G 60

(Z180) zinc coating. 2. Floor Deck to Receive Concrete: a. Type: Composite steel floor deck. b. Profile Depth: 2 inches (51 mm), unless otherwise indicated. c. Design Uncoated-Steel Thickness: Minimum 0.0474 inch (1.2 mm) (18 gage),

unless otherwise indicated. d. Finish: Galvanized steel.

1) Where underside of deck is indicated to be exposed and painted, provide shop-applied primer over galvanized steel. Galvanized steel shall be cleaned, pretreated and primed with manufacturer’s standard lead-free and chromate-free, baked-on, rust-inhibitive primer.

Page 82: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Children’s Hospital of Pittsburgh Clinical Services Building September 9, 2005

Astorino 2002102.00 STEEL DECK 05310 - 4

2.04 ACCESSORIES A. General: Provide accessory materials for steel deck that comply with requirements indicated

and recommendations of the steel deck manufacturer. B. Mechanical Fasteners: Manufacturer's standard, corrosion-resistant, low-velocity,

powder-actuated or pneumatically driven carbon steel fasteners; or self-drilling, self-threading screws.

C. Side Lap Fasteners: Manufacturer's standard, corrosion-resistant, hexagonal washer head;

self-drilling, carbon steel screws, No. 10 (4.8 mm) minimum diameter. D. Rib Closure Strips: Manufacturer's standard vulcanized, closed-cell, synthetic rubber. E. Pour Stops and Girder Fillers: Steel sheet, of same material as deck panels, and of thickness

and profile indicated. 1. Fabricate metal closure angles at floor perimeters and all openings, unless otherwise

indicated on drawings. a. Height shall be same as top of concrete slab. b. Minimum 0.0474 inch (1.52 mm) (18 gage) sheet steel. F. Column Closures, End Closures, Z-Closures, and Cover Plates: Steel sheet, of same material

and thickness as deck panels, unless otherwise indicated. G. Weld Washers: If required, manufacturer’s standard uncoated-steel sheet weld washers,

shaped to fit deck rib, 0.0598 inch (1.5 mm) thick with 3/8-inch (9.5-mm) minimum diameter prepunched hole.

H. Flat Sump Plates: Single-piece steel sheet 0.0747 inch (1.90 mm) (14 gage) thick, of same

material and finish as deck. For drains, cut holes in the field. I. Shear Connectors: Refer to Section 05120 –Structural Steel. J. Steel Sheet Accessories: Galvanized-steel sheet; ASTM A 653/A653M, Structural Steel,

Grade 33 (230), G 60 (Z180) zinc coating. K. Galvanizing Repair Paint: SSPC-Paint 20 or DOD-P-21035, with dry film containing a

minimum of 94 percent zinc dust by weight. PART 3 - EXECUTION 3.01 EXAMINATION

Page 83: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Children’s Hospital of Pittsburgh Clinical Services Building September 9, 2005

Astorino 2002102.00 STEEL DECK 05310 - 5

A. Examine supporting framing and field conditions for compliance with requirements for

installation tolerances and other conditions affecting performance of steel deck. 3.02 PREPARATION A. Do not place deck panels on concrete supporting structure until concrete has cured and is dry. B. Locate decking bundles to prevent overloading of supporting members. 3.03 INSTALLATION, GENERAL A. Install deck panels and accessories according to applicable specifications and commentary of

SDI Publication No. 28, manufacturer's recommendations, and requirements of this Section. B. Install temporary shoring before placing deck panels when required to meet deflection

limitations. C. Place deck panels on supporting framing and adjust to final position with ends accurately

aligned and bearing on supporting framing before being permanently fastened. Do not stretch or contract side lap interlocks.

1. Align cellular deck panels for entire length of run of cells and align cells at ends of

abutting panels. D. Place deck panels flat and square and fasten to supporting framing without warp or deflection. E. Cut and neatly fit deck panels and accessories around openings and other work projecting

through or adjacent to the decking. F. Provide additional reinforcement and closure pieces at openings as required for strength,

continuity of decking, and support of other work. G. Comply with AWS requirements and procedures for manual shielded metal arc welding,

appearance and quality of welds, and methods used in correcting welding work. H. Form deck units in lengths to span 3 or more supports with flush, telescoped or nested 2 inch

laps at ends and interlocking or nested side laps, unless otherwise indicated. 3.04 ROOF DECK INSTALLATION A. Fasten roof deck panels to steel supporting members by arc spot (puddle) welds of the surface

diameter indicated or arc seam welds with an equal perimeter, but not less than 1-1/2 inches (38 mm) long, and as follows:

Page 84: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Children’s Hospital of Pittsburgh Clinical Services Building September 9, 2005

Astorino 2002102.00 STEEL DECK 05310 - 6

1. Weld Diameter: 5/8 inch (16 mm), nominal. 2. Weld Spacing: Weld edge and interior ribs of deck units with a minimum of two welds

per deck unit at each support. Space welds an average of 12 inches (305 mm) apart in the field of roof and 6 inches (150 mm) apart in roof corners and perimeter, based on roof-area definitions in FMG Loss Prevention Data Sheet 1-28.

3. Weld Washers: Install weld washers at each weld location if minimum uncoated steel deck thickness is 0.295 inch (0.75 mm) (22 gage) or less.

B. Side Lap and Perimeter Edge Fastening: Fasten side laps and perimeter edges of panels

between supports, at intervals not exceeding 24 inches, using self-tapping No. 10 (4.8 mm) or larger carbon steel screws.

C. End Bearing: Install deck ends over supporting framing with a minimum end bearing of 1-1/2

inches (38 mm), with end joints as follows: 1. End Joints: Lapped 2 inches (51 mm) minimum. . D. Sump Plates: Install over openings provided in roof decking, and weld flanges to top of deck.

Space welds not more than 12 inches (305 mm) apart with at least one weld at each corner. E. Miscellaneous Roof Deck Accessories: Install ridge and valley plates, finish strips, cover

plates, end closures, and reinforcing channels according to deck manufacturer's recommendations. Weld to substrate to provide a complete deck installation.

F. Flexible Closure Strips: Install flexible closure strips over partitions, walls, and where

indicated. Install with adhesive according to manufacturer's instructions to ensure complete closure.

G. Uplift Loading: Install and anchor roof deck units to resist gross uplift loading of 20 lbs per square foot and 35 lbs. per square foot at canopies and eave overhangs.

3.05 FLOOR DECK INSTALLATION A. Fasten floor deck panels to steel supporting members by arc spot (puddle) welds of the surface

diameter indicated and as follows: 1. Weld Diameter: 3/4 inch (19 mm), nominal. 2. Weld Spacing: Weld edge ribs of panels at each support. Space additional welds an

average of 12 inches (305 mm) apart, but not more than 18 inches (457 mm) apart. 3. Weld Washers: Install weld washers at each weld location if minimum uncoated steel

deck thickness is 0.295 inch (0.75 mm) (22 gage) or less. B. Side Lap and Perimeter Edge Fastening: Fasten side laps and perimeter edges of panels

between supports, at intervals not exceeding 24inches, using self-tapping No. 10 (4.8 mm) or larger carbon steel screws.

C. End Bearing: Install deck ends over supporting framing with a minimum end bearing of 1-1/2

inches (38 mm), with end joints as follows:

Page 85: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Children’s Hospital of Pittsburgh Clinical Services Building September 9, 2005

Astorino 2002102.00 STEEL DECK 05310 - 7

1. End Joints: Lapped 2 inches (51 mm) minimum. D. Shear Connectors: Refer to Section 05120 – Structural Steel.

1. Shear connectors may replace spot welding to supporting members, described in paragraph A above, for composite decks requiring shear connectors.

E. Pour Stops and Girder Fillers: Weld steel sheet pour stops and girder fillers to supporting

structure according to SDI recommendations, unless otherwise indicated. F. Floor Deck Closures: Weld steel sheet column closures, cell closures, and Z-closures to deck

according to SDI recommendations to provide tight-fitting closures at open ends of ribs and sides of decking. Weld cover plates at changes in direction of floor deck panels, unless otherwise indicated.

3.06 TESTING A. Testing Agency: Refer to Section 01400 – Quality Requirements. B. Field welds will be subject to inspection.

C. Shear Connector Stud Weld Testing: Refer to Section 05120 – Structural Steel. D. Testing agency will report test results promptly and in writing to Contractor and Architect. E. Remove and replace work that does not comply with specified requirements. F. Additional testing will be performed to determine compliance of corrected work with specified

requirements. 3.07 REPAIRS AND PROTECTION A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on both surfaces with

galvanized repair paint according to ASTM A 780 and the manufacturer's instructions. B. Touchup Painting: Wire brush, clean, and paint scarred areas, welds, and rust spots on both

surfaces of installed deck panels. 1. Touch up painted surfaces with same type of shop paint used on adjacent surfaces. 2. Where shop-painted surfaces are exposed in-service, apply touchup paint to blend into

adjacent surfaces. C. Provide final protection and maintain conditions to ensure steel decking is without damage or

deterioration at time of Substantial Completion.

Page 86: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Children’s Hospital of Pittsburgh Clinical Services Building September 9, 2005

Astorino 2002102.00 STEEL DECK 05310 - 8

END OF SECTION

Page 87: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

 

Project Name: ______________________________________________________________________ 

Date: ____________ Subcontractor:_____________________________________________________ 

Material/Product: ___________________________________________________________________    

Material Cost (exclude labor and equipment): _________________________________ 

Contact Information & Address of Manufacturer: __________________________________________ 

  __________________________________________ 

  ______________________________ (MR 5.1 & 5.2) 

Contact Information & Address of Extraction Site: __________________________________________ 

  __________________________________________ 

  ______________________________ (MR 5.1 & 5.2) 

Is material/product salvaged, refurbished, reused? __________ (MR 3.1)      documentation provided 

Is material/product rapidly renewable? ___________________ (MR 6.1)         documentation provided 

(Made from plants that are harvested within 10 yrs.) 

Is material/product new wood? _________________________ (MR 7.1)         documentation provided 

Is material/product FSC certified wood? __________________ (MR 7.1)        documentation provided 

  (Certified in accordance with Forest Stewardship Council’s Principles and Criteria)  

FSC Chain of Custody certificate number: _________________ (MR 7.1)           documentation provided 

Post‐Consumer Recycled Content: _______________________ (MR 4.1 & 4.2)        documentation provided 

   (Completed life‐cycle as a consumer product, otherwise would be disposed as solid waste) 

Post‐Industrial Recycled Content: ________________________ (MR 4.1 & 4.2)          documentation provided 

(By‐product of manufacturing other products, not used in consumer market) 

 

Provide proper backup documentation for all claims validity and attach to this form. 

Subcontractor Signature: _______________________________________ Date:___________________ 

Insert Company Logo 

Page 88: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Gloria S. Brashear                                                                                                                                         Construction Management Option                                                 Department of Architectural Engineering                                                             The Pennsylvania State University 

Children’s Hospital of Pittsburgh – Clinical Services Building   

88

   

Appendix C 

Page 89: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

ITEM NO. _______________

GAYLORD INDUSTRIES10900 SW AVERY ST. • TUALATIN, OREGON 97062 U.S.A.

PHONE: 800-547-9696 • FAX: 503-692-6048 • email: [email protected]

APPLICATIONFor use over all types of equipment; ovens, broilers, griddles, fryers,ranges, steam equipment, etc.

FEATURES

• Three Position, Inlet Slot, Damper

• 95% Grease Extraction Efficiency

• UL, ULC and NSF Listed

• Complies With The IMC, UMC, BOCA andSBCCI Mechanical Codes

• Complies with all Requirements of NFPA-96

• Fail Safe Damper Control Switch

DESCRIPTIONThe Gaylord Model “CG3” Series Ventilator has been tested to ULStandard 710 and is UL Listed under the category “Exhaust Hood withExhaust Damper”. The ventilator extracts up to 95% of the mechani-cally extractable grease by centrifugal force when operated andmaintained in accordance with design specifications. The extractedgrease remains out of the airstream until washed away by the hotwater, detergent injected wash cycle, which is manually activated bypushing the “Start Wash” button on the control cabinet or automaticallyactivated by the control cabinet if equipped with optional time clock. The24 hour fire protection is accomplished by the action of the thermostat(s)located at the duct collar. Whenever temperatures reach the set point,the fire cycle is activated which closes the damper at the air inlet of theventilator, releases fire extinguishing water spray into the interior ofthe ventilator, and shuts off the exhaust and supply fan.

OPTIONAL EQUIPMENT

1. Decorative Facings and Trim

2. Exhaust Fans, Supply Fans, & Roof Top Units3. Fire Extinguishing Systems4. Custom Air (low air volume ventilators)

5. Continuous Cold Water Mist6. Utility Distribution Systems

7. Pollution Control Systems

MODEL “CG3-BDL”WATER-WASH VENTILATOR

Patent Pending

GENERAL SPECIFICATIONSFurnish Gaylord Ventilator Model “CG3-BDL-____” as shown on plans and inaccordance with the following specifications:

GENERAL: Each ventilator shall be a high velocity type grease extractor withan air inlet opening above and parallel to the cooking surface. Each ventilatorshall utilize three full-length horizontal self draining baffles for centrifugal greaseextraction providing a grease extraction rate of up to 95% of the mechanicallyextractable particulate when operated at design specifications. The use of filters,cartridges or constant running water to extract grease is not acceptable. Thebaffle at the air inlet shall be a three position damper controlled by an electricallydriven actuator. In position number one, the fan on mode, the damper shall bea grease extracting baffle, position two the damper shall be in the wash modeand position number three in the fire mode. The main grease gutter shall havea 1” slope to the drain opening and the drain shall be equipped with a pre-flushline to purge the drain during the wash cycle. The ventilator shall include a builtin 3" air space at the rear for compliance to NFPA-96 when mounting againsta limited combustible wall. Continuous front and rear brackets shall be providedto facilitate mounting to the wall and hanging from the overhead structure.o (Optional) The ventilator shall include “Custom Air” baffles to reduce theexhaust air volume over specific cooking equipment as indicated on the plans(add suffix “CA” to model number). The ventilator shall operate at air quantitiesas shown on plans.

AUTOMATIC WASHDOWN SYSTEM: The ventilator shall include a full lengthwash manifold equipped with two rows of brass spray nozzles. When the washcycle is initiated the exhaust fan is shut off, the damper shall close forward to sealoff the air inlet slot exposing the entire grease gutter to the wash sprays. At theconclusion of the wash cycle the damper shall remain closed, in the “System Off”position, preventing conditioned air from escaping the occupied space via thermaldrafts, and then re-open when the exhaust fan is started. All controls andcomponents for operation of the wash system shall be housed in the VentilatorControl Cabinet.

INTERNAL FIRE PROTECTION: The ventilator shall be equipped with aninternal fire protection system activated by thermostat(s) located at the ductcollar. When the temperature of the exhaust air reaches the set point, the firedamper shall automatically close in the direction of the exhaust air flow, sealingagainst the back wall of the ventilator, and act as a barrier to prevent flame fromentering the extraction chamber and duct system. The exhaust and make upair fans shall shut off, and the internal wash system shall be initiated, acting asa deterrent to fire in the extractor and exhaust ductwork. In addition, the internalwater sprays shall continuously bathe the fire damper to eliminate warping of thedamper during a severe fire condition. The water sprays shall remain on until thethermostat temperature drops below its set point, then stay on for a two minutecool down cycle. During the cool down cycle the damper shall open and uponcompletion the water sprays shall shut off and the exhaust fan re-start.o (Optional) A remote fire switch shall be provided and shall be located at anexit. Pulling the fire switch shall turn on the water sprays, open the fire damperto the fan on position and turn on the exhaust fan.

o (Optional Fuse Link Fire Dampers) Provide fuse link activated fire damperlocated at the duct collar. Specifier note: This arrangement eliminates the threeposition inlet damper and is replaced by a fixed baffle. This option is identifiedby the model number prefix CG3-FDD.

o (Optional No Fire Damper) This option is identified by the model number prefixCG3-ND.

ACCESSIBILITY AND INSPECTION: The ventilator shall be equipped with full-length non-gasketed hinged inspection doors so that service can be performed onfire suppression system nozzles, fusible links, wash system manifolds andnozzles, drains and other interior components without removing any panels,dampers or baffles. No tools shall be required to access the interior of theextraction chamber or plenum.

CONSTRUCTION: The ventilator shall be of all stainless steel construction, notless than 18 gauge, type 300 series. All exposed surfaces shall be a number4 finish. The use of aluminized steel, galvanized steel, or 430 stainless steelis not acceptable.

ELECTRICAL: The ventilator shall be factory pre-wired to a single connectionpoint. Ventilators built in multiple sections shall be furnished with coiled flex conduitfor interconnecting sections by applicable trades.

LIGHT FIXTURES: The ventilator shall be equipped with o 100 watt surfacemounted incandescent, o 150 watt recessed incandescent, o recessedfluorescent, light fixtures. Light fixtures shall be factory interwired. Ventilatorsbuilt in multiple sections shall be furnished with coiled flex conduit for intercon-necting sections.

ACCEPTANCE & APPROVALS: The ventilator shall be UL Listed under thecategory “Exhaust Hood with Exhaust Damper” and listed by NSF. The ventilatorshall comply with all requirements of NFPA-96, IMC, UMC, BOCA and SBCCImodel codes.

Page 90: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

Form No. CG3-BDL 806-30708 © Copyright 2006, Gaylord Industries Litho USA

Ventilator LengthsMaximum unit length 16'-0" . For greater lengths, join two or more sectionstogether. Check to ensure that there is adequate access into building andkitchen area. 

Note: Ventilators manufactured outside North America; maximum unit length10'-0".

Hanging Weight Ventilator Width 48" 54" 60"

Wt. / lineal ft. Lbs. 90 95 100

Mechanical Requirements

The amount of exhaust volume required is dependent upon the type of cookingequipment and the type and volume of cooking. Refer to the Master Engineer-ing Data Sheet in the Engineering Data section of the Gaylord catalog for thecharts on determining exhaust volume, duct sizes, static pressure, waterconsumption, hot water requirements, and drain sizes.

Electricalo Provide 120 volt 20 amp, o 220/240 volt, 50-60 Hz., 24 hour service toGaylord Ventilator Control Cabinet (refer to Control Cabinet specificationsheet). To be fused separately. Lights to be on separate circuit, 120 voltstandard, 220/240 volt optional.

ENGINEERING DATA

*

ITEM NO. ______________________ EST. WT. _________________________

LENGTH ____________ WIDTH ______________ HEIGHT ______________

EXHAUST - CFM ________________ DUCT SIZE ____________ S.P. ______

H.W. SIZE _____________________ DRAIN SIZE ______________________

___________ GPM @ 40 PSI WATER TEMP 140° F - 180° F

TYPICAL SECTION VIEWNote:All Gaylord Ventilators are pro-vided with a Gaylord VentilatorControl Cabinet. Refer to ControlCabinet specification sheet.

MODEL “CG3-____-BDL-___-____”

Leave blank = Standard 3 position inlet damper

FDD = Fuse link damper at the duct collar

ND = No damper

For exact model designation add depth following theletters “CG3-BDL-”.Example: “CG3-BDL-48”

LOW PROFILE (LP) MINIMUM HEIGHT AT FRONT:

Light & Medium Duty Equipment (400°F) 12" Min.Heavy Duty Equipment (600°F) 18" Min.Extra Heavy Duty Equipment (700°F) "LP" Not Available

If low profile add suffix “LP” after BDL.

D E P T HO F

V E N T I L A T O R

** L O WP R O F I L E

(LP)

**

DAMPEROPTION

The manufacturer reserves the right to modify the materials and specifications resultingfrom a continuing program of product improvement or the availability of new materials.

Page 91: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

1

Designers and builders have long recognizedand lauded steel for its strength, durability, andfunctionality. Increasingly, however, architects arerecognizing steel’s important environmental attrib-utes—especially its high recycled content and highreclamation rate.

For many years, there has been a strong eco-nomic motive to incorporate recycling into theprocess for making steel, but today's environmen-tal concerns make recycling even more important.Recycling saves money while conserving energyand resources, as well as reducing solid, liquid,and gaseous wastes. Recycling also helps tospread the energy impact of the original extractionand manufacturing of the material over infinite gen-erations of new steel.

The efficiency with which a material is recycledcan be measured by either its percentage of recy-cled content or its reclamation rate. Recycled con-tent is a measure of how much recycled material iscontained in a finished product. The reclamationrate is a measure of how often a product is actual-ly recycled at the end of its useful life. Steel is anexceptional performer by both measurements. Inthe construction industry, recent interest in recy-cling has been driven largely by the US GreenBuilding Council's Leadership in Energy andEnvironmental Design (LEEDTM) rating system. TheLEED rating system only promotes the use ofmaterials with high levels of recycled content. Theequally important reclamation rate of the materialsis not currently considered.

Scrap consumption in the United States is maxi-mized between the two types of modern steel mills,each of which generates products with varying lev-els of recycled content. One type of mill producesmuch of the steel for light flat-rolled steel productswith about 30% recycled content. The other type ofmill makes steel for a wide range of products,including flat-rolled, but is the only method useddomestically for the production of structuralshapes and has about 95% recycled content.(These processes are covered in detail on the fol-lowing pages.)

The amount of recycled content in steel productsvaries over time, both as a function of the cost ofsteel scrap and its availability. As the world-widedemand for steel increases, the available scrap willbe stretched between more and more steel prod-ucts, meaning that more raw steel will have toenter the production stream to meet the demand.Fortunately, steel is the country's most widely recy-

cled material, and as more steel is used for con-struction and other products, more scrap is avail-able for future recycling. About 88% of all steelproducts and nearly 100% of steel that is used inbeams and plates in construction, are recycled intonew steel products at the end of their useful life—an amazing reclamation rate!

In addition to recycled content, steel can con-tribute toward several other LEED credits, eitherdirectly or indirectly. Steel is dimensionally stableand, when properly designed, can provide anexceptionally tight building envelope, for less airloss and better HVAC performance over time.Steel is made to exact specifications, so on-sitewaste is minimized. Material from demolition orconstruction can be easily recycled, with the mag-netic properties of steel greatly facilitating its sep-aration from other materials. Thus, in addition tosteel's outstanding recycled content and an envi-able reclamation rate, steel's other functional prop-erties contribute to the material's solid environ-mental performance.

As with any building process or material, thereare areas for improvement. A great benefit ofLEED is that it can help the steel industry recovereven more scrap as contractors improve their recy-cling collection methods at the job site, so less inci-dental iron and steel scrap escapes to landfills.Similarly, commercial buildings and residentialhousing can have better disciplined recycling sys-tems for increased recovery.

As steel products reach the end of their usefullife, we want to see even more recycled into newsteel products for future service to society.

steel beamsand columns

steel studs

steel roofing

steel decking

steel doors

ductwork

steel siding

corrugatedsteel pipe

other steelcomponents

Steel Takes LEEDTM with Recycled Content

On-Line Steel Recycling Resourceswww.recycle-steel.orgIncludes detailed information on recycling rates,recycling databases, and the environmental bene-fits of steel for homes building, steel roofing, andbridges.

www.aisc.org/sustainabilityIncludes detailed information on how steel factorsinto the LEEDTM rating system, steel mill recycledcontent documentation, and articles about the useof steel in sustainable projects.

January 2005

Page 92: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

2

Steel is the world’s—as well as NorthAmerica’s—most recycled material. In the UnitedStates alone, almost 69 million tons of steel wererecycled or exported for recycling in 2003. Modernsteel production relies on two technologies, both ofwhich utlize old steel to make new steel: the basicoxygen furnace (BOF) and the electric arc furnace(EAF).

➮➮ The basic oxygen furnace (BOF) processuses 25 to 35 percent old steel to makenew. It produces products—such as auto-motive fenders, encasements of refrigera-tors, and packaging like soup cans, five-gal-lon pails, and 55-gallon drums—whosemajor required characteristic is drawability.

➮➮ The electric arc furnace (EAF) processuses 95-100 percent old steel to make new.It is primarily used to manufacture prod-ucts—such as structural beams, steelplates, and reinforcement bars—whosemajor required characteristic is strength.

Steel recycling has both an economic and envi-ronmental benefit: It is less expensive to recyclesteel than to mine virgin ore and move it throughthe process of making new steel. And today twoout of every three pounds of new steel are pro-duced from old steel. However, because steel issuch a durable material (that is, cars, appliances,bridges and other steel products last a long time),it is necessary to continue to mine virgin ore tosupplement the production of new steel. Economicexpansion, domestically and internationally, cre-ates additional demand that cannot be fully met byavailable scrap supplies.

Unlike other competing industries, recycling issecond nature for the steel industry. The NorthAmerican steel industry has been recycling steelscrap for over 150 years through the 1,800 scrapprocessors and some 12,000 auto dismantlers.Many of them have been in the business for morethan 100 years.

The pre-consumer, post-industrial, post-con-sumer, and total recycled content of steel productsin the United States can be determined for the cal-endar year 2003 using information from theAmerican Iron and Steel Institute (AISI), theInstitute of Scrap Recycling Industries (ISRI), andthe U.S. Geological Survey. Additionally, a studyprepared for the AISI by William T. Hogan, S.A.,and Frank T. Koelble of Fordham University is usedto establish pre- and post-consumer fractions of

purchased scrap. (Detailed information on thesestudies can be obtained from the Steel RecyclingInstitute (call 412.922.2772 or visit www.recycle-steel.org.)

Individual company statistics are usually notapplicable or instructive since available scrap typi-cally goes to the closes melting furnace. This openloop recycling allows, for example, an old car to bemelted down to produce a new soup can, andthen, as the new soup can is recycled, it is melteddown to produce a new car, appliance, or structur-al beam.

Basic Oxygen FurnaceBOF facilities consumed a total of 15,772,900

tons of ferrous scrap in the production of50,941,700 tons of liquid steel during 2003. Basedon U.S. Geological Survey statistics, 1,738,800 ofthese ferrous scrap tons had been generated asunsalable steel product within the confines ofthese steelmaking sites. In the steel industry, thesetons are classified as "home scrap," but are a mixof pre-consumer scrap and post-industrial scrap.Estimates by the Steel Recycling Institute identifyabout 80% of this home scrap as post-industrialscrap, equating to 1,391,000 tons (1,738,800 x80%). Additionally, these operations reported thatthey consumed 148,800 tons of obsolete scrap(buildings and warehouses dismantled on-site atthe mill) during this time frame.This volume is clas-sified as post-consumer scrap.

As a result of the above, based on the total scrapconsumed, outside purchases of scrap equate to13,885,300 tons [15,772,900 - (1,738,800 +148,800)]. According to the Fordham Universitystudy, the post-consumer fraction of the purchasedferrous scrap would be 83.4 percent, while 16.6percent of these purchases would be pre-con-sumer. This equates to 2,305,000 tons of pre-con-sumer scrap (13,885,300 x 16.6%). This "promptscrap" is mainly scrap generated by manufacturingprocesses for products made with steel. It is alsoconsidered post-industrial scrap.

Therefore, the total recycled content to pro-duce the 50,941,700 tons of liquid steel in the BOFis:

15,772,900 / 50,941,700 = 31.0%(Total Tons Ferrous Scrap / Total Tons Liquid Steel)

Also, the post-consumer recycled content is(13,885,300 - 2,305,000) + 148,800 = 11,729,100

Modern Steel Production TechnologiesTypical BOF

Products

hollowstructuralsections

steel studs

plate

purlins

wall studs

steel deck

Page 93: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

3

and:11,729,100 / 50,941,700 = 23.0%

(Post-Consumer Scrap / Total Tons Liquid Steel)

Finally, the post-industrial recycled content is(1,391,000 + 2,305,000) / 50,941,700 and:

3,696,000/ 50,941,700 = 7.3%(Post-Industrial Scrap / Total Tons Liquid Steel)

Electric Arc FurnaceEAF facilities consumed a total of 44,661,700

tons of ferrous scrap in the production of46,310,300 tons of liquid steel during 2003. Basedon U.S. Geological Survey adjusted statistics,12,124,000 of these ferrous scrap tons had beengenerated as unsalable steel product within theconfines of these steelmaking sites. Again, in thesteel industry, these tons are classified as "homescrap," but are a mix of pre-consumer scrap andpost-industrial scrap. Estimates by the SteelRecycling Institute identify about 80% of this homescrap as post-industrial scrap, equating to9,699,200 tons (12,124,000 x 80%). Additionally,these operations reported that they consumed28,700 tons of obsolete scrap (buildings and ware-houses dismantled on-site at the mill) during thistime frame. This volume is classified as post-con-sumer scrap.

As a result , based on the total scrap consumed,outside purchases of scrap equate to 32,509,000tons [44,661,700 - (12,124,000 + 28,700)].According to the Fordham University study, thepost-consumer fraction of the purchased ferrousscrap would be 83.4 percent, while 16.6 percent ofthese purchases would be pre-consumer.

This equates to 5,396,500 tons of pre-consumerscrap (32,509,000 x 16.6%). This "prompt scrap" ismainly scrap generated by manufacturing process-es for products made with steel. It is also consid-ered post-industrial scrap.

Therefore, the total recycled content to pro-duce the 46,310,300 tons of liquid steel in the EAFis:

44,661,700 / 46,310,300= 96.4%(Total Tons Ferrous Scrap / Total Tons Liquid Steel)

Also, the post-consumer recycled content is(32,509,000 - 5,396,500) + 28,700 = 27,141,200and:

27,141,200 / 46,310,300 = 58.6%(Post-Consumer Scrap / Total Tons Liquid Steel)

Finally, the post-industrial recycled content is(9,699,200 + 5,396,500) / 46,310,300 and:

15,095,700 / 46,310,300 = 32.6%(Post-Industrial Scrap / Total Tons Liquid Steel)

The above discussion and calculations demon-strate conclusively the inherent recycled content oftoday's steel in North America. To buy steel is to"Buy Recycled."

Understanding the recycled content of BOF andEAF steels, one should not attempt to select onesteel producer over another on the basis of a sim-plistic comparison of relative scrap usage or recy-cled content. Rather than providing an enhancedenvironmental benefit, such a selection couldprove more costly in terms of total life cycleassessment energy consumption, transportationimpact, or other variables.

Steel does not rely on “recycled content” pur-chasing to incorporate or drive scrap use. Italready happens because of the economics.Recycled content for steel is a function of the steel-making process itself. After its useful product life,regardless of its BOF or EAF origin, steel is recy-cled back into another steel product. Thus steelwith almost 100 percent recycled content cannotbe described as environmentally superior to steelwith 30 percent recycled content. This is not con-tradictory because they are both complementaryparts of the total interlocking infrastructure of steel-making, product manufacture, scrap generationand recycling. The recycled content of EAF relieson the embodied energy savings of the steel creat-ed in the BOF.

Steel is truly the most recycled material.

Typical EAFProducts

plate

steel deck

piling

beams andcolumns

channels

angles

Contact UsSteel Recycling Institute680 Andersen Dr. • Pittsburgh, PA 15220-2700412.922.2772 • [email protected]

American Institute of SteelConstruction, Inc.One East Wacker Dr. • Chicago, IL 60601866.ASK.AISC • [email protected]

Page 94: Children’s Hospital of Pittsburgh’s Clinical Services Building · Children’s Hospital of Pittsburgh – Clinical Services Building 8 Project Overview The Clinical Services Building

4

To: Architects, Engineers, Designers, and SpecifiersRe: LEEDTM Version 2.1 Recycled Content Value of

Steel Building ProductsThe U.S. Green Building Council Leadership in Energy & Environmental Design(LEED™) Green Building Rating System aims to improve occupant well-being, environ-mental performance and economic returns of buildings using established and innova-tive practices, standards and technologies.

Materials & Resources Credit 4: Recycled Content intends to increase demand for building productsthat incorporate recycled content materials, therefore reducing impacts resulting from extraction and pro-cessing of new virgin materials. As discussed and demonstrated below, steel building products con-tribute positively toward earning points under Credit 4.1 and Credit 4.2. The following is required byLEED Version 2.1:

Credit 4.1 (1 point) "Use materials with recycled content such that the sum of post-consumerrecycled content plus one-half of the post-industrial content constitutes at least 5% of the totalvalue of the materials in the project."

Credit 4.2 (1 point) "Use materials with recycled content such that the sum of post-consumerrecycled content plus one-half of the post-industrial content constitutes at least 10% of thetotal value of the materials in the project."

"The value of the recycled content portion of a material or furnishing shall be determined by dividing theweight of recycled content in the item by the total weight of all material in the item, then multiplying theresulting percentage by the total value of the item." Since steel (the material) and steel (the buildingproduct) are the same, the value of the steel building product is directly multiplied by steel's recycled con-tent, or:

Steel Recycled Content Value = (Value of Steel Product) (Post-Consumer % + ½ Post-Industrial %)

The information contained within this brochure provides post-consumer and post-industrial recycled con-tent percentages for North American steel building products. These percentages and values of steelbuilding products are easily entered into LEED Letter Template spreadsheet for calculation. To illustratethe application of these steel recycled content values to LEED, manual calculations are shown below fortypical Basic Oxygen Furnace (BOF) and Electric Arc Furnace (EAF) steel building products with nomi-nal $10,000 purchases, using 2003 data. Steel building products include steel stud framing, structuralsteel framing (wide flange beams, channels, angles, etc.), rebar, roofing, siding, decking, doors and sash-es, windows, ductwork, pipe, fixtures, hardware (hinges, handles, braces, screws, nails), culverts, stormdrains, and manhole covers.

BOF Steel Recycled Content Value for Typical Product:Steel Stud Framing

Value = ($10,000) (23.0 % + ½ 7.3 %) = ($10,000) (26.65 %) = $2,665(Exceeds 5% and 10% goals)

EAF Steel Recycled Content Value for Typical Product:Wide Flange Structural Steel Framing

Value = ($10,000) (58.6 % + ½ 32.6 %) = ($10,000) (74.90 %) = $7,490(Exceeds 5% and 10% goals)

Steel RecyclingInstitute

680 Andersen Dr.Pittsburgh, PA15220-2700

412.922.2772sri@recycle-

steel.org

American Institute of SteelConstruction, Inc.1 East Wacker Dr.,

Suite 3100Chicago, IL 60601-2000

[email protected]

American Iron and Steel

Institute1140 ConnecticutAve., Suite 705Washington, DC

20036 202.452.7100