chinyere ekine-dzivenu (phd candidate) department of agricultural, food and nutritional science,...

19
Genetic Influence of Host on Fatty Acid Composition in Beef Cattle Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

Upload: sergio-filbert

Post on 15-Jan-2016

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

1

Genetic Influence of Host on Fatty Acid Composition in Beef Cattle

Chinyere Ekine-Dzivenu (PhD Candidate)

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.

Page 2: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

2

Outline

• Background • Objectives• Materials and methods• Results and discussion• Conclusion• Acknowledgement

Page 3: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

3

Background

CONSUMERAWARENESS

Page 4: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

4

Background Cont’d

• SFA

Increased Plasma cholesterol

- Cardiovascular diseases - Cancer - Obesity

• MUFA & PUFA

Reduced plasma cholesterol

• CLA

Anti-carcinogenic, anti-atherosclerotic

Anti-diabetic

Anti-Obesity

Type of dietary fat (fatty acid profile) matters more than the amount of fat.

Page 5: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

5

Background Cont’dImproving beef fatty acid composition

• Nutrition approach– Added cost – Change not permanent– May affect flavor

• Traditional genetic improvement approach– Permanent and accumulative change

BUT difficult/expensive to measure and measured after slaughter

• Genomics – Marker assisted selection/genomic selection

Page 6: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

6

Objectives

Estimate heritability of fatty acids in beef brisket adipose tissue, subcutaneous adipose tissue and longissimus luborum muscle to assess the potential for genetic improvement

Discover SNP markers associated with FA profile in beef for marker assisted selection or marker based diet management

Estimate phenotypic and genetic correlation between FAs within each tissue in order to preventantagonism when genetic selection is made

1.

2.

3.

Page 7: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

7

Materials and methods

Page 8: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

8

Phenotype

Genotype

1536 SNPS

• Over 80 FA in the brisket adipose on 223 beef steers• Over 80 FA in the subcutaneous adipose and longissimus luborum muscle on

1366 animals• Heritability and correlations estimated using univariate and bivariate animal

model implemented in ASreml after accounting for fixed effects.• 961 polymorphic markers for Bayesian candidate gene association study on

adjusted data

Page 9: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

9

Results and discussion

Page 10: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

10

C1

4

C1

5

C1

6

C1

7

C1

8

9c

-14

:1

9c

-16

:1

9c

-17

:1

9c

-18

:1

10

t-1

8:1

11

c-1

8:1

11

t-1

8:1

13

c-1

8:1

18

:2_

n6

SF

A

BF

A

SF

A_

BF

A

MU

FA

PU

FA

Su

m_

tra

ns

18

:1

Su

m_

CL

A

He

alt

h_

Ind

ex

02

05

0

va

lue

C1

4

C1

5

C1

6

C1

7

C1

8

9c

_1

4:1

9c

_1

6:1

9c

_1

7:1

9c

_1

8:1

10

t_1

8:1

11

c_

18

:1

11

t_1

8:1

13

c_

18

:1

18

_2

n6

SF

A

BF

A

SF

A_

BF

A

MU

FA

PU

FA

Su

m_

tra

ns

18

:1

Su

m_

CL

A

He

alt

h_

Ind

ex

02

05

0

va

lue

C1

4

C1

5

C1

6

C1

7

C1

8

9c

_1

4:1

9c

_1

6:1

9c

_1

7:1

9c

_1

8:1

10

t_1

8:1

11

c_

18

:1

11

t_1

8:1

13

c_

18

:1

18

:2_

n6

SF

A

BF

A

SF

A_

BF

A

MU

FA

PU

FA

Su

m_

tra

ns

18

:1

Su

m_

CL

A

He

alt

h_

Ind

ex

02

05

0

va

lue

% F

AME

B.Ad

ipos

e%

FAM

E S.

Adip

ose

% F

AME

Mus

cle

Fig1. Variation among individual animals for different fatty acids

Each dot represents an individual animal

Page 11: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

11

Longissimus Luborum Muscle (n=1366)

Subcutaneous Adipose (n=1366)

Brisket Adipose (n=223)

Fatty Acids Mean h2±SE Mean h2±SE Mean h2±SE14:0 2.8033 0.6 ± 0.13 3.2036 0.5 ± 0.16 3.5452 0.17 ± 0.1215:0 0.5024 0.22 ± 0.1 0.6423 0.25 ± 0.12 0.6209 0.31 ± 0.1216:0 24.6089 0.54 ± 0.1 25.0924 0.28 ± 0.09 25.5585 0.05 ± 0.1217:0 1.5484 0.31 ± 0.11 1.7088 0.43 ± 0.14 1.4033 0.17 ± 0.1118:0 12.4073 0.33 ± 0.09 10.5448 0.43 ± 0.1 8.9234 0.12 ± 0.11

9c-14:1 0.6401 0.54 ± 0.09 1.0459 0.41 ± 0.1 1.4845 0.51 ± 0.119c-16:1 3.4078 0.69 ± 0.1 4.2466 0.51 ± 0.12 5.595 0.13 ± 0.119c-17:1 1.1913 0.17 ± 0.07 1.3774 0.18 ± 0.09 1.4865 0.04 ± 0.19c-18:1 36.6758 0.48 ± 0.09 37.9173 0.17 ± 0.07 40.1263 0.13 ± 0.1210t-18:1 2.0279 0.27 ± 0.09 2.9079 0.3 ± 0.1 0.5399 0.11 ± 0.1111c-18:1 1.8358 0.24 ± 0.09 1.9604 0.03 ± 0.04 2.4717 0.04 ± 0.1111t-18:1 0.4406 0.24 ± 0.08 0.5455 0.16 ± 0.07 0.5399 0.11 ± 0.1113c-18:1 0.3958 0.51 ± 0.09 0.4869 0.37 ± 0.09 0.7455 0.43 ± 0.118:2n-6 4.3871 0.28 ± 0.09 1.8761 0.43 ± 0.1 1.2634 0.17 ± 0.13

Sumtrans18:1 3.2517 0.28 ± 0.09 4.4859 0.32 ± 0.09 2.2963 0.11 ± 0.11SumCLA 0.395 0.21 ± 0.07 0.7043 0.30 ± 0.08 0.59 0.06 ± 0.1

SFA 42.4241 0.48 ± 0.1 41.5983 0.39 ± 0.1 40.2913 0.07 ± 0.11MUFA 48.5617 0.48 ± 0.09 52.9408 0.35 ± 0.09 55.4148 0.06 ± 0.1PUFA 6.696 0.26 ± 0.09 2.2902 0.42 ± 0.09 2.8065 0.12 ± 0.12BFA 1.3562 0.17 ± 0.08 1.7139 0.24 ± 0.08 1.4874 0.03 ± 0.1

SFA+BFA 43.7803 0.48 ± 0.09 43.3122 0.38 ± 0.1 41.7787 0.06 ± 0.11n-6 5.9261 0.27 ± 0.09 2.0457 0.42 ± 0.09 1.4631 0.16 ± 0.13

n-6/n-3 8.6281 0.44 ± 0.11 9.2625 0 ± 0 7.9869 0.03 ± 0.1Health Index 1.5654 0.54 ± 0.1 1.4875 0.38±0.11 1.4888 0.16 ± 0.12

Health Index = ΣMUFA +ΣPUFA 4X14:0+16:0

High

Moderate

Low

Table 1. Heritability of selected fatty acids in 3 beef tissues

HI =

Page 12: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

12

Trait SFA MUFA PUFA SumCLA Health_IndexSFA -0.99±0 -0.31±0.06 -0.70±0.52 -0.91±0.01MUFA -0.99±0.03 0.17±0.06 0.70±0.55 0.9±0.01PUFA -0.41±0.64 0.20±0.82 0.37±0.61 0.23±0.06sumCLA -0.29±0.06 0.20±0.06 0.61±0.04 0.19±0.06Health Index -0.99±0.01 0.96±0.05 0.48±0.45 0.68±0.44

Table 2. Phenotypic (above diagonal) and genetic (below diagonal) correlation between selected fatty acid groups in beef tissues

Trait SFA MUFA PUFA SumCLA Health IndexSFA -0.59±0.09 -0.38±0.11 -0.32±0.09 -0.86±0.02MUFA -0.77±0.06 -0.5±0.06 -0.01±0.08 0.45±0.08PUFA -0.18±0.18 -0.47±0.13 0.1±0.24 0.43±0.1sumCLA -0.02±0.19 -0.08±0.17 0.31±0.14 0.23±0.11Health Index -0.89±0.03 0.75±0.06 0.09±0.19 -0.02±0.19

Bris

ket

adip

ose

Subc

utan

eous

ad

ipos

eLo

ngis

sim

us

Lubo

rum

Trait SFA MUFA PUFA SumCLA Health IndexSFA -0.98±0 0.05±0.09 -0.08±0.09 -0.85±0.03MUFA -0.98±0.01 -0.23±0.09 -0.03±0.1 0.85±0.03PUFA -0.15±0.17 -0.06±0.17 0.39±0.14 -0.09±0.11sumCLA -0.56±0.13 0.47±0.15 0.25±0.08 0.06±0.1Health Index -0.84±0.06 0.87±0.05 -0.05±0.18 0.36±0.17

Page 13: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

13

AC

AD

LA

NK

RD

1A

P2

B1

AT

ICA

TP

2B

1B

DH

1B

RC

A1

CA

MK

2D

CP

T2

CR

HR

1E

IF3

HF

5G

AP

43

IRF

2L

PL

NR

1H

3P

NP

LA

2R

AR

AR

UN

X1

T1

SC

DS

LC

27

A2

TF

PI2

TH

RS

PT

RH

R

C14C15C16C17C18C1419cC1619cC1719cC1819cC18110tC18111cC18111tC18113cC182n6C171aisumtrans181sumCLASFAMUFAPUFABFASFABFAn6n6n3Health_index

Fig.2. Schematic overview of associations of fatty acids with SNPs in candidate genes.

Allele substitution effect indicated by color key

Page 14: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

14

Rec

epto

rs

•SCD•PNPLA2•LPL•F5•CPT2•ACADL•BDH1•ATIC

Tran

spor

ter •SLC27A2

•ATP2B1•AP2B1

Tran

scrip

tion

Regu

lato

r

•NR1H3•RUNX1T1•IRF2•BRCA1•ANKRD1

•CRHR1•RARA•TRHR

•EIF3H

Enzy

me

Tran

slati

on R

egul

ator

Fig 3. Variation in FA among individuals as a result of variation in different cellular processes

Page 15: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

15

Conclusions

Page 16: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

16

• Variation exists in the amount of each fatty acid in beef tissues.

• Individual animals vary in the amount of each FA deposited in tissues.

• Each fatty acid in beef is a complex trait (influenced by several genes).

• Identified markers throw light on processes that can cause variation in FA between animals.

• Results show possibility of selecting beef with superior genetics to improve not only beneficial FA content but also eating quality of beef.

• Results show possibility of simultaneously improving beneficial FA in the adipose. Attention should be paid to the moderate negative correlation between muscle MUFA and PUFA.

Page 17: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

17

Future directionsUse a higher density SNP panel (bovine 50K SNP chip) to capture more markers

explaining a significant amount of variation for beneficial fatty acids among individual animals.

Work in progressPhenotypic and genetic correlation of fatty acids in the subcutaneous adipose tissue

and longissimus luborum muscle with carcass and meat quality traits

Page 18: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

18

Acknowledgement• Supervisor: Dr. Changxi Li

• Group members, co-investigators and committee

Liuhong Chen Michael Dugan

Michael Vinsky Jennifer Aalhus

John Basarab Noelia Aldai

Paul Stothard Tim McAllister

Fiona Buchanan Carolyn Fitzsimmons

Erasmus Okine Zhiquan Wang

• Funding:

Page 19: Chinyere Ekine-Dzivenu (PhD Candidate) Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. 1

19

Thank you