chris mangold geog-596a : capstone project proposal – peer review fall 2013 advisor: dr. peter...

21
Mobile Device Visualization of Cloud Generated Terrain Viewsheds Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Upload: godfrey-walter-short

Post on 17-Dec-2015

221 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Mobile Device Visualization of Cloud Generated Terrain Viewsheds

Chris MangoldGEOG-596A : Capstone Project Proposal – Peer ReviewFall 2013

Advisor: Dr. Peter Guth

Page 2: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Outline

Background and motivations for project.

Application concept.

Methodology and approach.

Anticipated results.

Project timeline.

Page 3: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Driving Motivations for Project

GIS services moving to the Cloud.

Large scale hosting of DEM data in the Cloud.

Mobile platform trends: growth and increased capabilities.

Rapid adoption of augmented reality.

Page 4: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

GIS Cloud Based Terrain Analysis Services

2 KM RF Propagation

ASTER 30 M

3 KM Observer Viewshed SRTM 30 M

13 KM Cumulative Viewshed SRTM 90 M

High performance, scalable geo-processing web services Output available via REST APIs Near real-time response using GPU implemented algorithms.

Support for terrain spatial analysis operations Slope, aspect, hill shade, observer viewshed outputs derived from raster

elevation data.

Page 5: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Global DEM Dataset Coverage

Geographically global and localized DEM datasets.

Resolutions from 90 meter to 1 meter.

Formats that can be easy ingested into Cloud GIS systems.

LIDAR - bare earth and first return results.

Page 6: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Powerful Mobile Devices(Smart phones & Tablets)

Location via GPS, Cellular and IP networks, 3 meter accuracy standard.

Improved device orientation sensors (motion, position).

Dual-core CPUs common with Quad-Cores on high end devices.

Graphic Processing Units (GPUs) increasing being integrated into devices.

1 to 3 GB internal memory, 16 to 32 GB secondary storage.

Larger screens, higher pixel densities (Retina displays).

Page 7: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Augmented Reality (AR)

Location and object recognition both play a role in AR context.

Task in AR is geo-registering the real world with the synthetic information.

Using mobile sensors to determine pose (position and orientation) is key.

Adoption by Advertising, Tourism, Entertainment and Medical industries.

http://www.wired.com/business/2009/12/3d-maps-camera-phones-put-reality-in-augmented-reality/

http://www.mobiadnews.com/?p=4732

http://en.wikipedia.org/wiki/1st_&_Ten_%28graphics_system%29

http://qrcodetracking.net/harmony-includes-qr-codes-and-ar-into-t-shirts/

Page 8: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Augmented Reality and GIS

Mainstay appears to be point vector data (POIs) based mobile GIS AR apps.

POI database AR frameworks: Layar, Junaio, Wikitude.

AR visualization which drapes GIS vector and raster data on camera view will depend on scaling 3-D terrain modeling to mobile platforms.

Augmented view from Fai della Paganella (Trento, Italy) 1

http://ww

w.designcaffeine.com

/articles/m

obile-websites-tablet-apps-and-hybrids-7-m

obile-strategy-tips-for-2012/

http://www.androidguys.com/2011/03/30/wikitude-world-browser-6-android-live/

Page 9: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Least Observed Path Application Objective

A mobile AR visualization layer indicating a navigation path to avoid being detected from one or more known observer locations.

Derived based on Cloud generated observer viewsheds using hosted DEM data.

Rendered relative to users location and mobile devices orientation..

Page 10: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Least Observed Path System Diagram

Cloud GIS generates and returns requested observer viewshed results as PNG images with bounding box info.

Device geo-registers viewshed images with user’s location, merges viewshed images with evaluation AOI, calculates observed intersection points.

Device derives the augmented curtain layer and renders it over live camera feed.

Cloud hosted GIS

Page 11: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

LOP Application UI(Map View – Device Horizontal Orientation)

AOI base map generated using GeoPDF data source and Tile Mill (MapBox).

Map tiles served up using Open Street Maps (OSM) Android map platform.

User drops pins to identify observer points for evaluation.

Page 12: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

LOP Application UI(Augmented Curtain View – Device Vertical Orientation)

When device is vertical, camera dashboard view and AR curtain layer is displayed.

Augmented curtain and compass data is refreshed based on devices orientation.

Augmented curtain will be recalculated as users location changes.

Page 13: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Methodology - Data Collection

NED 3 MNED 10 M

LIDAR – 1.0 Meter

Test application with multiple DEM data sets (NED 10M,3M & LIDAR 10M,3M,1M)

Measure AR curtain accuracy and CPU rendering performance. Envision different use case scenarios were lower resolution data will suffice.

LIDAR data processed to GeoTIFF format. (LAStools and ArcGIS for Desktop)

Lidar 10 M Aggregate Generalization

Lidar 3M Aggregate Generalization

Page 14: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Methodology – Viewshed Processing

AOI: 1000 Pixels x 1000 PixelsScale: 1 Pixel = 1 Meter Base BitMap with Neutral Pixel Color

Scale received viewshed PNG images Geo-register and merge images

Read PNG header to get pixel height/width. Scale using view shed bounding box.

Maintain color for observed pixels during scaling.

Geo-registers using OSM utilities.

Merging image process clips out parts of view shed images not in AOI work area.

Page 15: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Methodology – Augmented Layer Base

Create AR curtain base (circle) where edge pixels represent visibility value.

Red pixel indicates user will be visible if they move in that direction.

Scan pixel values within user evaluation AOI.

If pixel RGB value is green calculate azimuth to center point.

Maintain counter for each azimuth compass point in an array.

Page 16: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Methodology – LOP AR Layar on Dashboard

Use Android orientation sensor API to read devices current pose.

Sensor pose values and graphics libraries used to render compass view.

Pose values, graphics libraries and curtain base array used to render AR curtain.

Android’s SurfaceView API provides live camera feed for dashboard background.

Page 17: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Methodology – Evaluate LOP App Results

Select evaluation sites:

1 – Urban site,

1 – Rural site with variable terrain.

Field Tests: Validate AR curtain layer results with 2D reference maps.

Verify that AR layer updates and renders accurately as user moves.

Record CPU usage when generating AR layer for different DEM data sets.

Record application response times to render AR layer with different DEM data sets.

Generate comparison report using collected metrics.

Page 18: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Anticipated Results

DEM data sets with better resolutions will result in more accurate LOP AR curtain results.

LIDAR 1st return data .vs. bare earth DEM data will provide more accurate LOP results.

CPU utilization will increase when rendering AR curtain when using higher resolution DEM data.

Anticipate that application response time will lag as users ground speed increases.

Will probably be optimizing algorithms to increase performance for calculating AR layer and managing onboard sensors in the short term.

Long term using pose prediction filters to manage sensor inputs9 and consider using onboard GPUs for AR curtain base calculations.

Page 19: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Project Timeline

12/20/13 - 1/10/14 1/11/14 - 1/15/14 1/22/14 - 2/17/14 3/23/14 - 3/28/14Complete LOP App Features

Execute LOP App Field Tests

Develop and Submit Paper

ASPRS Conference

1. Add tiled base map for test sites. 1. Collect field metrics.“Geospatial Power in Our

Pockets”2, Import DEM data sets to Cloud GIS.

2. Generate field results report.

3. Implement Cloud GIS REST calls from mobile application. 4. Modify AR layer to show weighted gradient. 5. Add thread to re-calculate curtain base, when devices location changes. 6. Add drop pin for observer point functionality.

7. Improve sensor pose filter.

Page 20: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Sources

1. M. Dalla Nura, M. Zanin, C. Andreatta and P. Chippendale, “Augmented Reality: Fusing The Real and Synthetic Worlds,” in IEEE International Geosciences and Remote Sensing Symposium , 2012. IGARSS 2012, July 2012, pp. 170-173.

2. S.Kim, S. DiVerdi, JS.Chang, T. Kang, R. Iltis and T. Hollerer, “Implicit 3D Modeling and Tracking for Anywhere Augmentation “, in Proceedings ACM Symposium on Virtual Reality Software and Technology, 2007. VRST 2007, Nov 2007, pp 19-27.

3. S. Dong, V.R. Kamat, “Robust Mobile Computing Framework for Visualization of Simulated Processes in Augmented Reality” Proceedings of the 2010 Winter Simulation Conference (WSC’10) (2010), pp. 3111–3122

4. L. Baboud, M. Cadik, E. Eisemann and HP. Seidel, “Automatic Photo-to-Terrain Alignment for the Annotation of Mountain Pictures” 2011 IEEE Conference on Computer Vision and Pattern Recognition  (CVPR) (2011), pp. 41-48

5. M. Dalla Nura and P. Chippendale, “Real-World DEM Harmonization Through Photo Re-Projection” in IEEE International Symposium on Geoscience and Remote Sensing, 2012. IGARSS 2012, July 2012, pp 428-430

6. P. Chippendale , M. Zanin and C. Andreatta, “Spatial and Temporal Attractiveness Analysis Through Georeferanced Photo Alignment”, in IEEE International Geosciences and Remote Sensing Symposium, 2008. IGARSS 2008, Vol 2. pp. 1116 – 1119

7. A. Beutel, T. Mølhave, PK. Agarwal, “Natural Neighbor Interpolation Based Grid DEM Construction Using a GPU”, Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2010. pp. 172-181.

8. JM. Noguera, R. Segura, C. Ogayar, R. Joan-Arinyo, “A scalable architecture for 3D map navigation on mobile devices”, Personal and Ubiquitous Computing, Vol 17 Issues 7 pp. 1487-1502 Oct 2013.

9. L. Porzi, E. Ricci, TA. Ciarfuglia, M. Zanin, “Visual-inertial tracking on Android for Augmented Reality applications”, in IEEE Workshop on Environmental Energy and Structural Monitoring Systems , 2012 (EESMS) 2012, Sept 2012, pp. 35-41.

10. "Bringing the Networked Society to Life." Ericsson Annual Report 2012., 11 March 2013. WEB. 07 Dec. 2013. http://www.ericsson.com/thecompany/investors/financial_reports/2012/annual12/our-business/market-trends

11. Vogel, Lars. "Android Camera API - Tutorial", vogel/a., 01 February 2013. WEB. 10 Oct. 2013. http://www.vogella.com/articles/AndroidCamera/article.html

12. Conder, Shane & Darcey, Lauren. "Augmented Reality: Getting Started on Android" mobile tuts+., 18 January 2011 WEB. 09 Nov. 2013 http://mobile.tutsplus.com/tutorials/android/android_augmented-reality/

13. Loudoun County Acquisition and Classification for FEMA Region 3 FY 12 VA LIDAR , United States Geological Survey & Federal Emergency Management Agency . Available via William and Mary Center for Geospatial Analysis http://www.wm.edu/as/cga/VALIDAR/index.php

Page 21: Chris Mangold GEOG-596A : Capstone Project Proposal – Peer Review Fall 2013 Advisor: Dr. Peter Guth

Conclusion

“Geospatial Power in Our Pockets” - ASPRS aptly named conference theme .

The future for visualizing more complex GIS data sets on the mobile platform is bright.

Power will come from harnessing the Cloud, mobile device’s improving computing power and Augmented Reality technologies.

Rothera Point, Adelaide Island, Antarctica. Aster (v2) Global DEM overlay. 5