cigre vol2

Upload: drjonesg19585102

Post on 04-Apr-2018

315 views

Category:

Documents


3 download

TRANSCRIPT

  • 7/29/2019 CIGRE vol2

    1/64

    CIGRE Study Committee 23 (Substations)

    Working Group 23-03ESCC Task Force (Effects of short-circuit currents)

    The Mechanical Effects of Short-Circuit Currentsin Open Air Substations

    (Rigid and Flexible Bus-Bars)

    Volume 2:

    Data Base of Reference Tests

    September 2002

  • 7/29/2019 CIGRE vol2

    2/64

    2

    TABLE OF CONTENT

    PREFACE 3

    I . ARRANGEMENTS WITH SINGLE AND BUNDLED SLACK CONDUCTORS 4

    CASE 1 5

    Tests performed at FGH (Germany) in 1972cross section: Al 240 mm2 and ACSR 537/53 mm2 twin bundle (n = 2)short-circuit current: 20 kA (52 kA peak) and 30 kA (78 kA peak)span length: 15 m, 10 m and 7 m

    CONFIGURATION FOR CASES 2 AND 3 11

    Tests performed at FGH (Germany) in 1978short-circuit current: 10 kA (26 kA peak) to 40 kA (104 kA peak)span length: 15 m and 4 m

    CASE 2 12

    cross section: ACSR 120/20 mm2

    , ACSR 537/53 mm2

    and ACSR 1055/45 mm2

    , single conductor

    CASE 3 18

    cross section: ACSR 537/53 mm2 and ACSR 1055/45 mm2, two and four sub-conductors

    II . ARRANGEMENTS WITH STRAINED CONDUCTORS AND DROPPERS INMIDSPAN 27

    CONFIGURATION FOR CASES 4 AND 5 28

    Tests performed at FGH (Germany) in 1997cross section: 537/53 mmshort-circuit: 20 kA (50 kA peak) and 40 kA (100 kA peak)

    span length: 40 m

    CASE 4 31

    CASE 5 42

    III . CONDUCTOR PINCH EFFECTS 47

    CASE 6 49

    Tests performed at sterreichische Elektrizittswirtschafts-AG (Austria) in 1963cross section: ACSR 537/53 mm2 twin bundle (n = 2)short-circuit current: 4 kA eff to 21,5 kA effspan length: 12 m

    CASE 7 52

    Tests performed at Lehrstuhl fr Elektrische Energieversorgung (Germany) in 1985cross section: ACSR 340/30 mm2 and ACSR 605/70 mm2 twin bundle (n = 2)short-circuit current: 3,5 kA eff to 11 kA effspan length: 7,6 m

    CASE 8 56

    Tests performed at VEIKI Laboratories (Hungary) in 1997cross section: CONDOR 455, twin bundle (n = 2)short-circuit current: 35 kA eff and 48 kA effspan length: 60 m

  • 7/29/2019 CIGRE vol2

    3/64

    3

    PREFACE

    Because of the very high complexity of the mechanical effects in substations caused by short-circuit cur-rents, a great number of short-circuit tests have been conducted by many companies. The aim was to learn about the physical phenomena,

    to test installation hardware, to verify the calculation with Finite-Element or Finite-Differences Programs, to develop simplified methods for calculation of forces and stresses.

    Test results are the only basis for the evaluation and the use of advanced calculation approaches as wellas simplified methods. On the other hand, calculation methods unhide the effects and relations betweendifferent causes and define new test directions which need to be carried out. The importance of tests hasmore weight due to the nonlinear character of the phenomena. Any extrapolation or generalisation ofpreviously obtained results needs further checking.

    Evaluation of the structural response due to the short-circuit dynamic loading is one of the aims of stud-ies. Nowadays there is no particular problem in the case of advanced methods but for simplified methodsdue to the multifrequency character of the systems, the spectrum density techniques are the most suitablefor describing loadings, and transfer functions are the most compatible description for the response of thestructure. Tests results are the only option to obtain practical data to built up acceptable models of trans-fer functions for calculation approaches.

    In Volume 2 of [1] a data base with reference tests is published. It consists of 18 different cases of ar-rangements with rigid busbars as well as flexible conductors done in international test laboratories. In thisbrochure, the presentation of tests is continued. Results of tests with flexible conductors are described ineight cases. three cases concerning arrangements with single and bundled slack conductors, two cases concerning strain conductors with droppers in midspan

    and three cases where only conductor pinch effects are studied.

    Tests have been performed in Forschungsgemeinschaft fr Elektrische Anlagen und StromwirtschaftFGH, Mannheim (Germany), sterreichische Elektrizittswirtschafts AG, Wien (Austria), Lehrstuhl frElektrische Energieversorgung, Erlangen (Germany), VEIKI Laboratory, Budapest (Hungary).

    All reference cases are divided in three parts: bus-bar geometry basic data results

    Reference:

    [1] CIGRE SC 23-11/IEC TC 73: The mechanical effects of short-circuit currents in open air substations(Rigid and flexible bus-bars). Volume 2: Data base of reference tests. Paris: CIGRE, 1996.

  • 7/29/2019 CIGRE vol2

    4/64

    4

    PART I

    Arrangements with single and bundled slack conductors

  • 7/29/2019 CIGRE vol2

    5/64

    5

    1. CASE 1

    Tests performed at FGH (Germany) in 1972cross section: Al 240 mm2 and ACSR 537/53 mm2 twin bundle (n = 2)short-circuit current: 20 kA (52 kA peak) and 30 kA (78 kA peak)span length: 15 m, 10 m and 7 m

    Bus-Bar Geometry

    l

    ls6

    4

    3

    6

    5

    1

    2a s

    a

    2

    5

    4

    ik

    Figure 1.1: Test set-up

    1 bundle conductor under test2 post insulator3 strain gage for measuring the forces at the bottom of the insulator4 strain gage for measuring the forces on the top of the insulator5 spacers (in the figure three)6 flexible connection

    l span lengthls centre-line distance between spacersa centre-line distance between main-conductorsas centre-line distance between sub-conductorsk number of spacers

  • 7/29/2019 CIGRE vol2

    6/64

    6

    Aim of the tests is to define conditions foras/ds and ls/as where the sub-conductors clash effectively andthe pinch force Fpi becomes not higher than 1,1 Ft; Ft is the swing-out maximum of a single conductorwith the same cross-section and material properties as both sub-conductors.

    Basic data

    Conductors:

    cross-section diametermass per

    unit lengthYoung'smodulus

    temperaturecoefficient

    A d m' E

    mm2 mm kg/m N/mm2 10-6/K

    Al 240 242,5 0,670 20,3 55000 23,0

    ACSR 537/53 590 1,937 32 69000 19,8

    bundle configuration: twin bundle (n = 2)

    number of spacers: 0 ... 12

    centre-line distance between subconductors: 45 mm ... 100 mm

    centre-line distance between main-conductors: a = 4 m

    eigenfrequency of the supports: 58 Hz

    spring coefficient of both supports: l= 15 m: 730 N/mml= 10 m and 7 m: 630 N/mm

    initial static stress: 0,55 ... 3,3 kN/mm2

    short-circuit characteristics: = 1,85 ( = 55 ms)

    short-circuit duration: Tk= 0,6 s

  • 7/29/2019 CIGRE vol2

    7/64

    7

    Results

    Figure 1.2: Oscillogram of short-circuit test with twin-bundle l = 15 m, ACSR 537/53,

    as = 60 mm, k= 3

    1, 6 Time traces2, 7 Current:Ik= 30 kA; ip = 78,3 kA; tk= 0,6 s3, 5 Insulator stresses: in direction (3) of conductor 6,45 kN; at right angles (5) to con-

    ductor 1,45 kN; initial static tensile force 2,65 kN8 Conductor tensile force: 9,5 kN after 0,1 s4, 9 Zero line for curve 3 and for curve 8

    The recordings of the tests were stopped a few milliseconds after the end of the short-circuit current flow,therefore no fall of span is recorded.

    At the bottom of the insulator, the strain is measured and an equivalent static load is calculated which actson the top of the insulator and leads to the same dynamic stresses. This equivalent static load is given inthe diagrams below as function of the number of spacers. Parameters are the centre-line distance of thesub-conductors, the short-circuit current and the initial static tensile force.

    The tests show, that the tensile force due to pinch effect is not higher than 1,1Ft if one of the conditions

    as/ds2,0 and ls/as 50

    or

    as/ds2,5 and ls/as 70

    is fulfilled. In this case, the conductors clash effectively and the pinch force Fpi can be ignored in contrasttoFt.Ft is the swing-out maximum of an equivalent single conductor. With this, the tensile force at thetop of the insulators is not greater than 1,5 Ft. If the conductors do not clash effectively the forces on thetop can be higher; but its impulse length is short.

  • 7/29/2019 CIGRE vol2

    8/64

    8

    0

    2

    4

    6

    8

    10

    0 2 4 6 8 10 12

    F

    45 mm; 20 kA; 0,9 ... 1,1 kN65 mm; 20 kA; 0,9 ... 1,0 kN

    100 mm; 20 kA; 1,2 ... 1,3 kN45 mm; 30 kA; 1,0 ... 1,2 kN

    a)

    kN

    4

    6

    8

    10

    0 2 4 6 8 10 12

    F

    60 mm; 30 kA; 2,3 ... 2,6 kN

    85 mm; 30 kA; 2,3 ... 2,4 kN

    100 mm; 30 kA; 2,5 ... 2,6 kN

    b)

    k

    4

    6

    8

    10

    12

    0 2 4 6 8 10 12

    k

    F

    50 mm; 20 kA; 3,6 ... 3,7 kN

    100 mm; 20 kA; 2,7 kN

    50 mm; 30 kA; 3,4 ... 3,8 kN

    c)

    kN

    Figure 1.3: Short-circuit tensile force Fas a function of number of spacers kwith 15-m-span

    a) Al 240b) ACSR 537/53, medium static tensile forcec) ACSR 537/53, high static tensile force

  • 7/29/2019 CIGRE vol2

    9/64

    9

    0

    2

    4

    6

    8

    10

    0 2 4 6 8

    F

    50 mm; 30 kA; 0,7 ... 0,8 kN

    50 mm; 30 kA; 0,9 kN

    85 mm; 30 kA; 0,8 ... 0,9 kN

    a)

    kN

    0

    2

    4

    6

    8

    10

    0 2 4 6 8

    F

    50 mm; 30 kA; 1,2 ... 1,3 kN

    50 mm; 30 kA; 1,3 ... 1,4 kN

    85 mm; 30 kA; 1,2 ... 1,3 kN

    b)

    kN

    0

    2

    4

    6

    8

    10

    0 2 4 6 8k

    F

    50 mm; 30 kA; 1,7 ... 1,9 kN

    50 mm; 30 kA; 1,9 ... 2,1 kN

    85 mm; 30 kA; 1,8 ... 2,0 kN

    c)

    kN

    Figure 1.4: Short-circuit tensile force F as a function of number of spacers kwith 10-m-span

    with ACSR 537/53

    a) Low static tensile force

    b) Medium static tensile forcec) High static tensile force

  • 7/29/2019 CIGRE vol2

    10/64

    10

    0

    2

    4

    6

    8

    10

    0 2 4 6 8

    k

    F

    50 mm; 30 kA; 0,7 ... 0,8 kN

    60 mm; 30 kA; 0,7 ... 0,8 kN

    85 mm; 30 kA; 0,7 kN

    kN

    Figure 1.5: Short-circuit tensile force F as a function of number of spacers k with 7-m-spanwith ACSR 537/53

    References:

    [1] Mathejczyk, M.; Stein, N.: Kurzschluseilzge enggebndelter Doppelseile in Schaltanlagen. etz-a97(1976), pp 323-328.

    [2] Hosemann, G.; Mathejczyk, M.; Stein, N.: Short-circuit forces in single and bundled conductors.Cigre 23-77 (WG 02) 2 IWD, April 1977.

  • 7/29/2019 CIGRE vol2

    11/64

    11

    2. CONFIGURATION FOR CASES 2 AND 3

    Tests performed at FGH (Germany) in 1978short-circuit current: 10 kA (26 kA peak) to 40 kA (104 kA peak)span length: 15 m and 4 m

    Bus-Bar Geometry

    940 940

    4000 4000l

    1

    ik

    2662 1

    997

    5

    2

    4 3

    6 6

    7

    Figure 2.1 Test set up

    1,2 post insulator3 conductor under test4 device for measuring the tensile forces on the top of the insulator5 strain gage for measuring the forces at the bottom of the insulator6 flexible connection7 short-circuit connection

    l span lengtha centre-line distance between main conductors

    Basic Data

    centre-line distance between main-conductors: a = 4 mcharacteristics of the supports:

    support 1 support 2

    eigenfrequency spring coefficient eigenfrequency spring coefficient

    Hz kN/mm Hz kN/mml= 15 m 30 2,5 30 2,0

    l= 4 m 30 2,5 28 1,7

    spring coefficients of both supports: l= 15 m: 1,11 kN/mml= 4 m: 1,01 kN/mm

    short-circuit characteristics: = 1,84 ( = 55 ms)short-circuit duration: Tk= 0,3 s

    Reference:

    [1] Stein, N.; Herrmann, B.: Kurzschluseilzge in Schaltanlagen. Elektrizittswirtschaft 78 (1979),

    179-186.

  • 7/29/2019 CIGRE vol2

    12/64

    12

    3. CASE 2

    cross section: ACSR 120/20 mm2, ACSR 537/53 mm2 and ACSR 1055/45 mm2, single conductor

    Basic data

    Conductors:

    cross-sectiondiameter

    mass perunit length

    Young'smodulus

    temperaturecoefficient

    A d m' E

    mm2 mm kg/m N/mm2 10-6/K

    ACSR 120/20 141,4 20,3 0,670 77000 18,9

    ACSR 537/53 590,0 32,0 1,937 69000 19,8

    ACSR 1055/45 1100,9 43,18 3,290 60000 18,1

    initial static stress in the conductor:l= 15 m ACSR 120/20: 1,4 ... 5,7 N/mm2ACSR 537/53: 1,7 ... 2,5 N/mm2ACSR 1055/45: 1,4 ... 4,4 N/mm2

    l= 4 m ACSR 1055/45: 0,1 ... 0,9 N/mm2

    short-circuit characteristics: = 1,84 ( = 55 ms)

    short-circuit duration: Tk= 0,3 s

    Results

    During the movement of the conductor, several maxima of the short-circuit force can be observed as

    shown in figure 2. The first maximum occurs during or at the end of the short-circuit current flow whenthe conductor swings out from its initial static position. The other maxima are some hundred millisecondsafter the end of the short circuit when the conductor rotates or at the end of the fall down.

    At the bottom of the insulator, the strain is measured and an equivalent static load is calculated for themaxima which acts on the top of the insulator. This equivalent static load is given in the Figure 3.2 toFigure 3.5 as function of the ratio :

    n

    2k0

    2gm

    a

    I

    G

    Fr

    =

    =

    Parameter is the initial static tensile force Fst. The first maximum belongs to the swing out, the second tothe rotation or fall down.

    In Figure 3.6, the short-circuit duration is varied. The equivalent static load as well as the short-circuittensile force acting on the top of the insulator are shown.

    The first maximum of the short-circuit tensile force on the top of the insulator is not greater than 150 %of the equivalent static load. The second maximum of the short-circuit tensile force is between 80 % and100 %. In the case of the 4-m-span with ACSR 1055/45, the short-circuit tensile force is much greaterthan the equivalent static force: up to 350 % for the first and up to 250 % for the second maximum.

    In a lot of tests, the movement of the conductors is recorded with a high-speed camera. The maximumhorizontal displacement is taken from the films and given in the Figure 3.7 to Figure 3.9.

  • 7/29/2019 CIGRE vol2

    13/64

    13

    Figure 3.1: Stress at the bottom of support and conductor movement in midspan

    Conductor ACSR 537/53; span length 15 m; initial static tensile force 1 kN; static sag 0,53 ma) Rotation of span:Ik= 29 kAb) Fall of span:Ik= 22 kA

  • 7/29/2019 CIGRE vol2

    14/64

    14

    0

    1

    2

    3

    4

    5

    6

    7

    0 1 2 3 4 5 6 7

    r

    F

    0,2 kN0,4 kN0,6 kN

    0,8 kN

    kN

    Figure 3.2: Equivalent static load: ACSR 120/20, l= 15 m

    1. Maximum 2. Maximum

    0

    4

    8

    12

    16

    20

    0 1 2 3 4 5

    r

    F

    1,0 kN

    1,5 kN

    kN

    Figure 3.3: Equivalent static load: ACSR 537/53, l= 15 m

    1. Maximum 2. Maximum

  • 7/29/2019 CIGRE vol2

    15/64

    15

    0

    4

    8

    12

    16

    20

    0,0 0,4 0,8 1,2 1,6 2,0 2,4 2,8

    r

    F

    1,5 kN2,0 kN3,0 kN4,8 kN

    kN

    Figure 3.4: Equivalent static load: ACSR 1055/45, l= 15 m

    1. Maximum 2. Maximum

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0,0 0,4 0,8 1,2 1,6 2,0 2,4 2,8

    r

    F

    0,13 kN0,45 kN0,70 kN

    1,00 kN

    kN

    Figure 3.5: Equivalent static load: ACSR 1055/45, l= 4 m

    1. Maximum 2. Maximum

  • 7/29/2019 CIGRE vol2

    16/64

    16

    0

    2

    4

    6

    8

    10

    12

    0,0 0,1 0,2 0,3 0,4 0,5

    Tk

    F

    kN

    s

    Figure 3.6: Influence of the short-circuit duration: ACSR 1055/45, l = 15 m, Fst = 2 kN,

    Ik= 25 kA

    1. Maximum: short-circuit tensile force equivalent static load2. Maximum: short-circuit tensile force equivalent static load

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0 1 2 3 4 5 6 7

    r

    b h

    0,2 kN

    0,4 kN

    0,6 kN

    m

    Figure 3.7: Maximum horizontal displacement: ACSR 120/20, l= 15 m

  • 7/29/2019 CIGRE vol2

    17/64

    17

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0 1 2 3 4 5

    r

    b h

    1,0 kN

    1,5 kN

    m

    Figure 3.8: Maximum horizontal displacement: ACSR 537/53, l= 15 m

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,0 0,4 0,8 1,2 1,6 2,0 2,4 2,8

    r

    b h

    1,5 kN

    2,0 kN

    3,0 kN

    4,8 kN

    2,0 kN; 0,1 s

    m

    Figure 3.9: Maximum horizontal displacement: ACSR 1055/45, l= 15 m

  • 7/29/2019 CIGRE vol2

    18/64

    18

    4. CASE 3

    cross section: ACSR 537/53 mm2 and ACSR 1055/45 mm2, two and four sub-conductors

    Basic data

    Conductors:

    cross-sectiondiameter

    mass perunit length

    Young'smodulus

    temperaturecoefficient

    A d m' E

    mm2 mm kg/m N/mm2 10-6/K

    ACSR 537/53 590,0 32,0 1,937 69000 19,8

    ACSR 1055/45 1100,9 43,18 3,290 60000 18,1

    bundle configuration: twin (n = 2) and quadruple (n = 4)

    number of spacers: 0 ... 3

    centre-line distance of subconductors: 60 mm and 80 mm

    initial static stress in the conductor:l= 15 m ACSR 537/53 n = 2: 1,1 ... 1,7 N/mm2

    n = 4: 1,7 ... 2,5 N/mm2ACSR 1055/45 n = 2: 1,4 ... 1,8 N/mm2

    n = 4: 1,3 ... 1,8 N/mm2

    l= 4 m ACSR 537/53 n = 2: 0,4 N/mm

    2

    Results

    During the movement of the conductor, several maxima of the short-circuit force can be observed asshown in Figure 4.1. The first maximum occurs a few milliseconds after the initiation of the short-circuit,the second one at the end of the short-circuit current flow when the conductor swings out from its initialstatic position. The third maximum is some hundred milliseconds after the end of the short circuit whenthe conductor rotates or at the end of the fall down.

  • 7/29/2019 CIGRE vol2

    19/64

    19

    a)

    scales: Z1x = 4,7 kN/div; Z1y = 4,7 kN/div; Z1 = 4,7 kN/div;Z2x = 5,7 kN/div; Z2y = 6,4 kN/div; Z2 = 5,7 kN/div;

    b)

    scales: Z1x = 11,6 kN/div; Z1y = 11,6 kN/div; Z1 = 12,3 kN/div;Z2x = 5,7 kN/div; Z2y = 6,4 kN/div; Z2 = 6,1 kN/div;

    Traces in the oscillograms:ik short-circuit current

    Z1x tensile force in the clamp perpendicular to the spanZ1y tensile force in the clamp in the direction of the spanZ1 tensile force in the clampZ2x force at the bottom of the support perpendicular to the spanZ2y force at the bottom of the support in the direction of the spanZ2 force at the bottom of the supportThe static part is suppressed in the oscillograms

    Figure 4.1: Oscillogram of the forces and conductor displacements at midspan

    ip = 104 kA,Ik= 40 kA; span length 15 ma) Conductor 4ACSR 537/53; k= 3;Fst = 4 kN

    b) Conductor 4ACSR 1055/45; k= 3;Fst = 8 kN

  • 7/29/2019 CIGRE vol2

    20/64

    20

    a) b)

    Figure 4.2: Oscillogram of the forces and conductor displacements at midspan (continued)

    ip = 104 kA,Ik= 40 kA; span length 15 ma) Conductor 4ACSR 537/53; k= 3;Fst = 4 kNb) Conductor 4ACSR 1055/45; k= 3;Fst = 8 kN

    The presentation of the results is done in two parts. In the first part, the forces during the movement of themain conductor are shown, i. e. the second and third maxima in the time history, and afterwards the forcesdue to pinch effect in the bundle, which are given by the first maxima.

    4.1. MAIN CONDUCTOR EFFECTS

    At the bottom of the insulator, the strain is measured and an equivalent static load is calculated for the

    maxima which acts on the top of the insulator. This equivalent static load is given in the Figure 4.3 to 4.7as function of the ratio

    n

    2k0

    2gmn

    a

    I

    G

    Fr

    =

    =

    Parameters are the bundle configuration, span length and the initial static tensile force Fst. The secondmaximum (continuous lines) belongs to the swing out, the third (dotted lines) to the rotation or fall down.The lines connect the test results for better reading.Because these maxima are nearly independent of the number of spacers, the results are given for the testswithout spacers (k= 0).

    The tests show that the equivalent static load Ff during rotation or fall of the span (third maximum) isalways higher than the loadFt during or at the end of the short-circuit current flow (second maximum), asshown in Figure 4.3 to 4.6, except for the 4-m-span, Figure 4.7.

    The second maximum of the short-circuit tensile force in the clamp at the top of the insulator is notgreater than

    1,3Ft in the case 2ACSR 537/53, l= 15 m; 1,1Ft in all other cases with l= 15 m; 1,7Ft in the case 2ACSR 537/53, l= 4 m.

    The third maximum of the short-circuit tensile force on the top of the insulator is in the range of 0,9Ffand 1,04Ff in the case ofl= 15 m; 0,95Ffand 1,2Ff in the case ofl= 4 m andIkup to 30 kA ; but 1,4Ff forIk= 40 kA.

  • 7/29/2019 CIGRE vol2

    21/64

    21

    In some tests, the movement of the conductors is recorded with a high-speed camera. The maximum hori-zontal displacement is taken from the films and given in Figure 4.8.

    0

    4

    8

    12

    16

    20

    0,0 0,4 0,8 1,2 1,6 2,0 2,4

    r

    F

    1,3 kN

    1,5 kN2,0 kN

    kN

    Figure 4.3: Equivalent static load: 2ACSR 537/53, l= 15 m

    2. Maximum 3. Maximum

    0

    4

    8

    12

    16

    20

    0,0 0,2 0,4 0,6 0,8 1,0 1,2r

    F

    4,0 kN

    5,8 kN

    kN

    Figure 4.4: Equivalent static load: 4ACSR 537/53, l= 15 m

    2. Maximum 3. Maximum

  • 7/29/2019 CIGRE vol2

    22/64

    22

    0

    4

    8

    12

    16

    20

    24

    0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4

    r

    F

    3,0 kN

    4,0 kN

    kN

    Figure 4.5: Equivalent static load: 2ACSR 1055/45, l= 15 m

    2. Maximum 3. Maximum

    0

    4

    8

    12

    16

    20

    24

    0,0 0,2 0,4 0,6 0,8

    r

    F

    5,8 kN

    7,9 kN

    kN

    Figure 4.6: Equivalent static load: 4ACSR 1055/45, l= 15 m

    2. Maximum 3. Maximum

  • 7/29/2019 CIGRE vol2

    23/64

    23

    0

    2

    4

    6

    8

    0,0 0,4 0,8 1,2 1,6 2,0 2,4

    r

    F

    0,5 kN

    kN

    Figure 4.7: Equivalent static load: 2ACSR 1055/45, l= 4 m

    2. Maximum 3. Maximum

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,0 0,4 0,8 1,2 1,6 2,0 2,4

    r

    b h

    2 x 537/53; 2,0 kN

    4 x 537/53; 4,0 kN

    2 x 1055/45; 3,0 kN

    4 x 1055/45; 7,8 kN

    m

    Figure 4.8: Maximum horizontal displacement, l= 15 m

    4.2. FORCES CAUSED BY PINCH EFFECT IN BUNDLES

    The equivalent static loadsFpi caused by pinch effects represented by the first maximum in the time scalehistory are shown in Figure 4.9 to 4.12 as functions of the number of spacers kfor the 15-m-span. Pa-rameters are the bundle configuration, the short-circuit current and the static tensile force. The test resultsare connected by continuous lines for better reading.

  • 7/29/2019 CIGRE vol2

    24/64

    24

    Because the equivalent static load Ft during swing out is lower than the load due to rotation or fall ofspan, the latter one is also given in the figures, connected by dotted lines.

    The figures point out: The first maximumFpi can exceed the third maximumFf ifr

  • 7/29/2019 CIGRE vol2

    25/64

    25

    a)

    0

    4

    8

    12

    16

    20

    24

    0 1 2 3

    k

    F

    kN

    b)

    0

    4

    8

    12

    16

    20

    24

    0 1 2 3

    k

    F

    kN

    Figure 4.10: Equivalent static load: 4ACSR 537/53, l= 15 m, as = 60 mm

    a) Fst = 4 kN b) Fst = 6 kN 1. Maximum 3. Maximum! 20 kA 30 kA " 40 kA

    a)

    0

    4

    8

    12

    16

    20

    0 1 2 3

    k

    F

    kN

    b)

    0

    4

    8

    12

    16

    20

    0 1 2 3k

    F

    kN

    Figure 4.11: Equivalent static load: 2ACSR 1055/45, l= 15 m, as = 80 mm

    a) Fst = 3 kN b) Fst = 4 kN 1. Maximum 3. Maximum! 20 kA 30 kA " 40 kA

  • 7/29/2019 CIGRE vol2

    26/64

    26

    a)

    0

    4

    8

    12

    16

    20

    0 1 2 3

    k

    F

    kN

    b)

    0

    4

    8

    12

    16

    20

    0 1 2 3

    k

    kN

    Figure 4.12: Equivalent static load: 4ACSR 1055/45, l= 15 m, as = 80 mm

    a) Fst = 6 kN b) Fst = 8 kN 1. Maximum 3. Maximum! 20 kA 30 kA " 40 kA

  • 7/29/2019 CIGRE vol2

    27/64

    27

    PART II

    Arrangements with strained conductors and droppers in midspan

  • 7/29/2019 CIGRE vol2

    28/64

    28

    5. CONFIGURATION FOR CASES 4 AND 5

    Tests performed at FGH (Germany) in 1997a)

    b)

    Figure 5.1 Test arrangement

    a) Span b) Portal N: geometric data and measuring points

  • 7/29/2019 CIGRE vol2

    29/64

    29

    Basic data

    cross section: 537/53 mm2

    short-circuit current: 20 kA (50 kA peak) and 40 kA (100 kA peak)span length: 40 m

    The test arrangement is shown in Figure 5.1, the essential data, force and strain measuring points of thenorthern portal are shown in Figure 5.1 b). Its structural/geometrical parameters as well as the short-circuit parameters are in Table 6.1 for case 4 and Table 7.1 for case 5. Three current paths (in the follow-ing called cases) are tested:case A: span without droppers, reference casecase B: span with droppers; the short-circuit current flows through the whole span, the droppers are

    without currentcase C: span with droppers; the short-circuit current flows through half the span and through the drop-

    pers to the lower level buses

    The support structures, beside their design drawings and construction data, are defined by their essentialstructural properties stiffness and eigenfrequency measured in separate mechanical tests and listed in thefollowing. The mechanical tests show linear elastic characteristics for the supports given in terms of stiff-ness values. The first eigenfrequencies are excited at mid crossarm, i.e. next to the suspension.

    For each combination of test parameters as collected in Table 6.1 for case 4 and Table 7.1 for case 5 atleast two identical tests were performed to show the variance of behaviour and effects. For symmetryreasons this gives at least 4 values for forces from 2 tests. The variance is, as can be seen, astonishinglysmall.

    Conductor:

    cross-section diameter mass perunit length

    Young'smodulus

    temperaturecoefficient

    A d m' E

    mm2 mm kg/m N/mm2 10-6/K

    ACSR 537/53 590 32 1,937 69000 19,8

    static sag: 0,6 m

    short-circuit characteristics: 1,77 ( 55 ms)characteristics of the bus supports:

    voltage case height of spring coefficient eigenfrequency

    level conductor anchoring support crossarm complete support

    M N M N M N

    m kN/mm kN/mm Hz Hz Hz Hz

    100 kV 4 8,22 1,551 1,229 9,0 8,3 4,6 3,5

    400 kV 5 11,22 1,223 1,086 9,5 9,0 4,3 3,0

  • 7/29/2019 CIGRE vol2

    30/64

    30

    Characteristics of the supporting structure at the lower end of the droppers:

    spring coefficient eigenfrequency

    direction x y x y

    kN/mm kN/mm Hz Hz

    steel pillar left 1,58 1,59 26,1 26,0

    right 1,51 1,50 25,8 26,3

    support *) left 0,38 0,37 13,0 13,0

    right 0,38 0,37 12,8 13,2

    *) complete including measuring device and clamp, total mass of both: 26,7 kg

    References:

    [1] Stein, N.; Meyer, W.; Miri, A.M.: High Voltage Substation Stranded Conductor Buses with andwithout Droppers Tests and Calculation of Short-Circuit Constraints and Behaviour. 8th Interna-

    tional Symposium on Short-Circuit Currents in Power Systems, Brussels, Belgium, 8.-10. October1998, Proceedings pp 115-121

    [2] Stein, N.; Miri, A.M.; Meyer, W.: 400 kV Substation Stranded Conductor Buses Tests and Cal-culations of ShortCircuit Constraints and Behaviour, 7th International Conference on Optimiza-tion of Electrical and Electronic Equipment OPTIM 2000, Brasov (Romania), 11.12. May 2000;Proceedings pp 251-257

    [3] Stein, N.; Meyer, W.; Miri, A.M.: Tests and Calculation of Short-Circuit Forces and Displacementsin High Voltage Substations with Strained Conductors and Droppers. ETEP 10 (2000) No. 3 , pp131138

    [4] Stein, N.; Meyer, W.; Miri, A.M.: High Voltage Substations with Stranded Conductors and Drop-

    pers - Tests and Calculations of Short-Circuit Constraints and Behaviour. 9th International Sympo-sium on Short-Circuit Currents in Power Systems, Cracow (Poland), 11.-13. October 2000, Pro-ceedings pp 221-228

  • 7/29/2019 CIGRE vol2

    31/64

    31

    6. CASE 4

    Table 6.1: Test parameters

    test arrangement 1 2 3 4

    span 40 m 1 x ACSR 537/53 a = 2 m

    droppers1 x ACSR 537/53

    without

    3,2

    4

    3,2

    4

    3,2

    4

    3,2

    4

    1,6

    4

    3,2

    4

    dropper length / m 6,045 6,045 5,045 / 6,045current path A B C B

    20 0,1 / 0,3 / 0,5 0,1 / 0,3 0,1 / 0,3 0,1 / 0,3 / 0,528,3 0,1/ 0,2/ 0,3/ 0,5/ 1,0 0,1 / 0,3 / 0,5 0,1 / 0,3 0,1 / 0,3

    kA

    kI

    40 s

    kt

    0,1/ 0,2/ 0,3/ 0,5/ 1,0 0,1 / 0,3 / 0,5 0,1 / 0,3 / 0,5 0,1 / 0,3

    test arrangement 5 6 7

    span 40 m 1 x ACSR 537/53 a = 2 m

    droppers1 x ACSR 537/53

    1,6

    4

    3,2

    4

    1,6

    4 4

    1,6

    1,6

    4 4

    1,6

    dropper length / m 5,045 5,045 5,045current path C B C

    20 0.1 / 0.3 0,1 / 0,3 / 0,5 0,1 / 0,3 / 0,528,3 0,1 / 0,3 0,1 / 0,3 / 0,5 0,1 / 0,3 / 0,5

    kAkI

    40skt

    0,3 / 0,5 / 1,0 0,1 / 0,3 0,1 / 0,3 / 0,5

    current path:

    A

    C

    B

    Figure 6.1 & Figure 6.2show oscillograms of the forces for variants 6 (current path B) and 5 (currentpath C). For current path variants A, B and C, Figure 6.3 to 6.11 give the measured forces, minimum airclearances and maximum horizontal displacements over the respective values of short-circuit duration.The mean values are connected by straight lines only for better readability.

  • 7/29/2019 CIGRE vol2

    32/64

    32

    Results

    1

    2

    3

    4

    5

    6

    Figure 6.1: Oscillogram of short-circuit test: case B (variant 6);Ik= 40 kA, tk= 0,305 s

    Traces:1 short-circuit current2 force at the anchoring point of the main conductor3 force at the bottom of the supporting insulator4 force at the bottom of the steel support structure5 force in the clamp at the upper end of the dropper

    6 time scale

  • 7/29/2019 CIGRE vol2

    33/64

    33

    1

    2

    3

    4

    5

    Figure 6.2: Oscillogram of short-circuit test: case C (variant 5);Ik= 40 kA, tk= 0,305 s

    Traces:

    1 short-circuit current2 force at the anchoring point of the main conductor3 force at the bottom of the tower (MAFU2)4 force in the clamp at the upper end of the dropper5 time scale

  • 7/29/2019 CIGRE vol2

    34/64

    34

    Figure 6.3: Short-circuit tensile force Ft and drop force Ff

    a) Case A b) Case B c) Case C

  • 7/29/2019 CIGRE vol2

    35/64

    35

    Figure 6.4: Minimum air clearance dmin

    a) Cases A and B b) Case C

    Figure 6.5: Maximum horizontal displacement bh

    a) Cases A and B b) Case C

  • 7/29/2019 CIGRE vol2

    36/64

    36

    0

    100

    200

    300

    400

    500

    0 0,1 0,2 0,3 0,4 0,5

    FT

    40 kA

    28,3 kA

    20 kA

    s

    kN

    a)

    swing outcaused by:

    drop

    0

    100

    200

    300

    400

    500

    0 0,1 0,2 0,3 0,4 0,5

    T

    40 kA

    28,3 kA

    20 kA

    s

    kN

    b)

    0

    100

    200

    300

    0 0,1 0,2 0,3 0,4 0,5

    tk

    FT

    40 kA

    28,3 kA20 kA

    s

    kN

    c)

    Figure 6.6: Forces FT at the bottom of the support struture N (MAFU1 and MAFU2)

    a) Case A b) Case B c) Case C

  • 7/29/2019 CIGRE vol2

    37/64

    37

    0

    2

    4

    6

    8

    0 0,1 0,2 0,3 0,4 0,5

    Fds 40 kA

    28,3 kA

    s

    kN

    Fxy

    Fz

    a)

    20 kAFz

    Fxy

    Fxy

    0

    2

    4

    6

    0,0 0,1 0,2 0,3 0,4 0,5tk

    Fds

    s

    kN

    Fz

    Fxy

    b)

    20 kA

    40 kA

    28,3 kAFxy

    FxyFz

    Figure 6.7: Forces Fds at the top of the supporting structure : Fxy horizontal, Fz vertical

    a) Case B b) Case C

  • 7/29/2019 CIGRE vol2

    38/64

    38

    0

    2

    4

    6

    0 0,1 0,2 0,3 0,4 0,5

    FBs

    40 kA

    28,3 kA

    s

    kN

    FI

    FS

    a)

    20 kAFS

    FI

    FS

    FI

    0

    2

    4

    6

    0 0,1 0,2 0,3 0,4 0,5

    Bs

    40 kA

    28,3 kA

    s

    kNFI

    FS

    b)

    20 kAFS

    FS FI

    FI

    Figure 6.8: Forces FBs at the bottom of the supporting structure : FI insulator, Fz steel sup-

    port structurea) Case B b) Case C

  • 7/29/2019 CIGRE vol2

    39/64

    39

    0

    10

    20

    30

    0 0,1 0,2 0,3 0,4 0,5

    dt40 kA

    28,3 kA

    s

    kN

    20 kA

    a)

    0

    10

    20

    0,0 0,1 0,2 0,3 0,4 0,5tk

    Fdt40 kA

    28,3 kA

    s

    kN

    20 kA

    b)

    Figure 6.9: Forces Fdt in the clamp at the upper end of the dropper

    a) Case B b) Case C

  • 7/29/2019 CIGRE vol2

    40/64

    40

    0,0

    0,5

    1,0

    1,5

    0,0 0,1 0,2 0,3 0,4 0,5

    ddmin

    40 kA

    28,3 kA

    20 kA

    s

    m

    a)

    0,0

    0,5

    1,0

    1,5

    0,0 0,1 0,2 0,3 0,4 0,5tk

    ddmin

    40 kA

    28,3 kA

    20 kA

    s

    m

    b)

    Figure 6.10: Minimum air clearance ddmin of the dropper

    a) Case B b) Case C

  • 7/29/2019 CIGRE vol2

    41/64

    41

    0,0

    0,5

    1,0

    1,5

    2,0

    0,0 0,1 0,2 0,3 0,4 0,5

    bdh

    40 kA

    28,3 kA

    20 kA

    s

    m

    a)

    0,0

    0,5

    1,0

    1,5

    2,0

    0,0 0,1 0,2 0,3 0,4 0,5tk

    bdh

    40 kA

    28,3 kA

    20 kA

    s

    m

    b)

    Figure 6.11: Maximum horizontal displacement bdh of the dropper

    a) Case B b) Case C

  • 7/29/2019 CIGRE vol2

    42/64

    42

    7. CASE 5

    Table 7.1: Test parameters

    test arrangement 8 9 10

    span 40 m 2 x ACSR 537/53 a = 3 m as = 60 mm

    droppers1 x ACSR 537/53

    without

    3.2

    7

    3.2

    7

    3.2

    7

    3.2

    7

    dropper length / m 9,145 9,145current path A B C

    20 0,5 1,0 0,3 / 1,028,3 0,1/ 0,3/ 0,5 0,3 / 0,5 / 1,0 0,3 / 0,5 / 1,0kA

    kI

    40skt

    0,1/ 0,3/ 0,5 0,3 / 0,5 / 1,0 0,1 / 0,3 / 0,5

    test arrangement 11 12

    span 40 m 2 x ACSR 537/53 a = 3 m as = 60 mm

    droppers

    1 x ACSR 537/53

    5.6

    7

    5.6

    7

    5.6

    7

    5.6

    7

    dropper length / m 10,545 10,545current path B C

    20 0,1 / 0,2 / 0,3 / 0,5 / 1,0 0,1 / 0,2 / 0,3 / 0,5 / 1,028,3 0,1 / 0,2 / 0,3 / 0,5 / 1,0 0,1 / 0,2 / 0,3 / 0,5

    kAkI

    40skt

    0,1 / 0,2 / 0,3 / 0,5 0,1 / 0,2 / 0,3 / 0,5

    current path:

    A

    C

    B

    Figure 7.1 & Figure 7.2 show oscillograms of the forces for 9 variants (current path B) and 10 (currentpath C). For current path variants A, B and C, Figure 7.3 to 7.5 give the measured forces, minimum airclearances and maximum horizontal displacements over the respective values of short-circuit duration.The mean values are connected by straight lines only for better readability.

  • 7/29/2019 CIGRE vol2

    43/64

    43

    Results

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Figure 7.1: Oscillogram of short-circuit test: case B (9 variant);Ik= 40 kA, tk= 0,305 s

    1 short-circuit current2 force at the anchoring point of the main conductor3 force at the bottom of the steel support (MAFU2)4 force in the clamp at the upper end of the dropper

    5 horizontal force at the top of the supporting insula-tor

    6 vertical force at the top of the supporting insulator7 force at the bottom of the supporting insulator8 force at the bottom of the steel support structure9 time scale

  • 7/29/2019 CIGRE vol2

    44/64

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

  • 7/29/2019 CIGRE vol2

    45/64

    45

    11

    12

    13

    14

    15

    16

    Figure 7.2: Oscillogram of short-circuit test: case C (10 variant);Ik= 40 kA, tk= 0,305 s

    Traces:1,5 short-circuit current2 force at the anchoring point of the main conductor3 force at the bottom of the steel support (MAFU3)4 time scale for traces 1 to 36 force in the clamp at the upper end of the dropper7 force in x-axis at the top of the supporting insulator8 force in y-axis at the top of the supporting insulator9 horizontal force at the top of the supporting insulator10,16 time scale for traces 6 to 1511 force in z-axis at the top of the supporting insulator12 force in x-axis at the bottom of the supporting insulator13 force in y-axis at the bottom of the supporting insulator

    14 horizontal force at the bottom of the supporting insulator15 horizontal force at the bottom of the steel support structure

  • 7/29/2019 CIGRE vol2

    46/64

    46

    0

    10

    20

    30

    40

    50

    F

    40 kA

    28,3 kA 20 kA

    Ft

    Ff

    kN

    FtFt

    FfFf

    a)

    0

    10

    20

    30

    40

    50

    F

    kN

    Ff

    40 kA

    28,3 kA

    20 kA

    Ft

    Ff

    FtFf

    Ft

    b)

    0

    10

    20

    30

    40

    0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0tk

    F

    40 kA

    28,3 kA

    20 kA

    Ft

    Ff

    s

    kN

    Ft

    Ff

    c)

    Figure 7.3: Short-circuit tensile force Ft and drop force Ff

    a) Case A b) Case B c) Case C

  • 7/29/2019 CIGRE vol2

    47/64

    47

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    dmin

    40 kA

    28,3 kAm

    A

    AB

    a)

    20 kA

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0tk

    dmin

    40 kA28,3 kA

    20 kA

    s

    mb)

    Figure 7.4: Minimum air clearance dmin

    a) Cases A and B b) Case C

    0,00

    0,25

    0,50

    0,75

    1,00

    b h

    40 kA

    28,3 kA

    20 kA

    m A

    A

    A

    B

    B

    B

    a)

    0,00

    0,25

    0,50

    0,75

    0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0tk

    b h

    40 kA

    28,3 kA

    20 kA

    s

    m

    b)

    Figure 7.5: Maximum horizontal displacement bh

    a) Case A and B b) Case C

  • 7/29/2019 CIGRE vol2

    48/64

    48

    PART III

    Conductor pinch effects

  • 7/29/2019 CIGRE vol2

    49/64

    49

    8. CASE 6

    Tests performed at sterreichische Elektrizittswirtschafts-AG (Austria) in 1963cross section: ACSR 537/53 mm2 twin bundle (n = 2)short-circuit current: 4 kA eff to 21,5 kA effspan length: 12 m

    Bus-Bar Geometry

    P1

    P2

    as1

    i/2

    i/2

    as

    l

    ls

    D=

    2200mm

    (D=

    3600mm

    ifas=800mm)

    as

    a

    s

    i i

    5

    2 2

    4

    3 3

    Figure 8.1: Test set-up

    1 bundle conductor under test

    2 wall3 insulator4 strain gage for measuring the forces5 spacers

    l span lengthls centre-line distance between spacers

    D centre-line distance between return conductorsas centre-line distance between subconductorsk number of spacers

  • 7/29/2019 CIGRE vol2

    50/64

    50

    Basic data

    Conductors:

    cross-sectiondiameter

    mass perunit length

    Young'smodulus

    temperaturecoefficient

    A d m' E mm2 mm kg/m N/mm2 10-6/K

    ACSR 537/53 590 1,937 32 69000 19,8

    bundle configuration: twin bundle (n = 2)

    number of spacers: 0 ... 11

    centre-line distance between subconductors: 35 mm ... 800 mm

    centre-line distance between conductors: see Fig. 1

    initial static tensile force: 1,2 ... 1,35 kN

    initial static stress: 1,0 ... 1,2 N/mm2

    short-circuit characteristics: < 1,5

    short-circuit duration: Tk= 0,2 s

    Reference:

    [1] Wagner, E.: Dauer- und Kurzschlubeanspruchung von Bndelleitern in Hochspannungsschaltan-lagen. sterreichische Zeitschrift der Elektrotechnik 18(1965), 18-25.

  • 7/29/2019 CIGRE vol2

    51/64

    51

    Results

    0

    1

    2

    3

    4

    0 2 4 6 8 10 12

    ls

    8 kA11,5 kA15 kA21,5 kA

    m

    kN a s = 35 mm

    0

    1

    2

    3

    4

    0 2 4 6 8 10 12

    ls

    F11,5 kA15 kA21,5 kA

    m

    kN a s = 45 mm

    0

    1

    2

    3

    4

    5

    6

    0 2 4 6 8 10 12ls

    F

    4 kA8 kA11,5 kA15 kA21,5 kA

    kN

    m

    a s = 60 mm

    0

    1

    2

    3

    4

    5

    6

    0 2 4 6 8 10 12ls

    F

    4 kA8 kA11,5 kA15 kA21,5 kA

    m

    kN a s = 85 mm

    0

    1

    2

    3

    4

    5

    6

    0 2 4 6 8 10 12ls

    F

    8 kA11,5 kA15 kA21,5 kA

    m

    kN a s = 200 mm

    0

    1

    2

    3

    4

    5

    6

    0 2 4 6 8 10 12ls

    F

    15 kA21,5 kA

    m

    kN a s = 800 mm

    Figure 8.2: Short-circuit tensile force Fin the bundle as a function of distance between spacers

    ls for different sub-conductor distances as

  • 7/29/2019 CIGRE vol2

    52/64

    52

    9. CASE 7

    Tests performed at Lehrstuhl fr Elektrische Energieversorgung (Germany) in 1985cross section: ACSR 340/30 mm2 and ACSR 605/70 mm2 twin bundle (n = 2)short-circuit current: 3,5 kA eff to 11 kA effspan length: 7,6 m

    Test arrangement

    a) b)

    Figure 9.1: Test set-up

    a) Total view1 tower with bundle; steel frame for fixing the bundle, service frame, height: 10 m2 house with transformer and a reactor as compensator3 control center

    b) Close twin bundleACSR 605/70 mm2;Fst = 2 kN;Ik= 10,6 kA; one spacer

    The arrangement was built up for measuring only the pinch effect. The tested bundles are in vertical posi-tion to eliminate the influence of changes in sag. The short-circuit current flows through the bundle andback through four conductors situated in the corners of a quadrate. With this the return current does notinduce electromagnetic field inside the quadrate and does not influence the movement of the bundle con-ductors.

    The upper clamp is fixed on a steel frame. The tensile forces are measured at the lower clamp. The statictensile force is adjusted using a turnbuckle.

  • 7/29/2019 CIGRE vol2

    53/64

    53

    Basic data

    Conductors:

    cross-sectiondiameter

    mass perunit length

    Young'smodulus

    temperaturecoefficient

    A d m' E mm2 mm kg/m N/mm2 10-6/K

    ACSR 340/30 369 25 1,174 62000 20,5

    ACSR 605/70 680 33 2,22 68000 19,4

    bundle configuration: twin bundle (n = 2)

    number of spacers: 0 ... 3

    centre-line distance between subconductors: 80 mm; 115 mm; 150 mm

    initial static tensile force: 0,5 ... 20 kN

    initial static stress: 0,4 ... 29 N/mm2

    conductor fixation: stiffness: 6 kN/mmfrequency: 87 Hz

    short-circuit characteristics: = 1,2 ( = 5,5 ms)

    short-circuit duration: Tk= 0,245 s

    Results

    Figure 9.2 gives the oscillograms of the current and the tensile forces. The time scale of the tensile forceshows from its beginning a 100-Hz-component due to the bend between the rotationally symmetric lead-in wires at the lower clamp. This also explains the reduction of the force after initiation of the short-circuit; this had been observed in other tests, too.

    Figure 9.2: Oscillograms. ACSR 605/70 mm2; sub-conductor distance as = 115 mm; Fst =1,15kN;

    Ik=10,2kA; three spacers

    a) current b) tensile force

  • 7/29/2019 CIGRE vol2

    54/64

    54

    The measured maximum forcesFare represented in the figures 3 and 4 related on the static tensile forcesF/Fst for the two types of conductors and different short-circuit currents and static tensile forces.

    a)

    0

    1

    2

    3

    4

    5

    6

    0 1 2 3k

    F

    Fst

    b)

    0

    1

    2

    3

    4

    5

    6

    0 1 2 3k

    F

    st

    c)

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    0 1 2 3k

    F

    Fst

    Figure 9.3: Maximum short-circuit tensile force due to pinch effect.

    2ACSR 340/80;a) as = 80 mm b) as = 115 mm c) as = 150 mmcurrents: 3,3 kA # 6,6 kA " 7,4 kA ! 9,6 kAstatic tensile forces:

    0,6 kN 1,0 kN 2,1 kN 5,2 kN 9,8 kN

  • 7/29/2019 CIGRE vol2

    55/64

    55

    a)

    0

    1

    2

    3

    4

    5

    6

    0 1 2 3k

    F

    Fst

    b)

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 1 2 3k

    F

    Fst

    c)

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 1 2 3k

    F

    Fst

    Figure 9.4: Maximum short-circuit tensile force due to pinch effect.

    2ACSR 605/70;a) as = 80 mm b) as = 115 mm c) as = 150 mmcurrents: 3,6 kA a,b): # 6,6 kA c): " 7,2 kA ! 10,4 kAstatic tensile forces:

    0,5 kN 1,0 kN 2,2 kN 5,1 kN 10,1 kN - - - - - - - - 19,1 kN

    References:

    [1] Kieling, G.: Kurzschlukrfte bei Zweierbndeln Messungen und analytische Lsung mit demParabelmodell. etzArchiv 10 (1988), 53-60.

    [2] Kieling. G.: Die dynamische Kurzschlubeanspruchung von Seilanlagen Analytische und nume-rische Berechnungsverfahren. Dissertation Universitt Erlangen-Nrnberg, 1988.

  • 7/29/2019 CIGRE vol2

    56/64

    56

    10. CASE 8Tests performed at VEIKI Laboratories (Hungary) in 1997cross section: CONDOR 455, twin bundle (n = 2)short-circuit current: 35 kA eff and 48 kA effspan length: 60 m

    10.1. INTRODUCTIONThis case provides a set of experimental resultscollected at the VEIKI Laboratories in April 97.This is not a exhaustive set but we include inthis report the most representative results allow-ing scientists and researchers to well-understandthe evolution of tension in sub-conductors, com-pressive force in rigid spacers depending onsubspan length, sagging tension, short-circuitduration or intensity, etc

    10.2. CONFIGURATION CHARAC-TERISTICS (TWIN HORIZON-

    TAL BUNDLE)

    Span length 60 m (subspan lengthdetailed case by case)$ Sub conductor type ACSR CONDOR (455mm, = 27.7 mm,1.52 kg/m, UTS 125 kN)$ Spacing 0.457 m$ Current 35 kA (90 kA peak) ,Time constant 33 ms48 kA (122 kA peak)$ Duration 0.17 to 0.2 s, one case

    1s.$ Sagging tension 15, 25 or 35 kN$ Tension is given for one subconductor$ All cases one phase fault, return path on the

    ground

    Figure 10.1 VEIKI test arrangement 60 m

    span length spacer at mid-span.

    The return path is on the ground.

    $ Supporting structure

    Stiffness: about 8.5 106

    N/mFirst eigen frequency : about 14 Hz

    IMPORTANT REMARK

    To obtain range of precision, most of the caseshave been tested with two spacers at mid-span(separated by 0.5m), each spacer equipped withtwo full bridges of strain gages. The error onmeasurements expected is about 10-15 %. Itmeans also that the measured value is only halfof the full compression obtained in practicewhen only one spacer is installed. Only the casesV.1 and VI.1 were tested with a single spacer atmid-span, giving directly the full compression

    load.

    Figure 10.2 Veiki Test arrangement End

    span fixations.

    Two sub conductors were separately fixed to the

    tower

    Each set of results includes:

    1. Short-circuit wave shape (uncalibrated),

    2. Spacer compression on about 1s duration,

    3. Sub conductor tension on maximum ob-

    servation time,

    4. Zoom of spacer compression in the first

    200 ms,

    5. Zoom of sub conductor tension on the

    first 200 ms.

  • 7/29/2019 CIGRE vol2

    57/64

    57

    10.3. CASE II.1 1 X 60 M 15 KN

    35/90 KA

    $ Configuration One subspan 60 m$ Exact tension/subconductor: 13 kN$ Short-circuit level: (rms/peak) 35/90 kA$ Duration: 0.18 s

    Saggingtension15kN- 35/90kA

    -1500

    -1000

    -500

    0

    500

    1000

    0 0,05 0,1 0,15 0,2

    time(s)

    Current wave shape (ordinates not valid)

    Configuration :

    measurement

    60m

    Saggingtension 15kN - 35/90 kA

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    0 0,2 0,4 0,6 0,8 1

    time(s)

    compressiveload(N)

    subspanlength 60m

    Sagging tension 15 kN - 35/90 kA

    0

    5

    10

    15

    20

    25

    30

    0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

    time (s)

    Tension(kN)

    Zoom on spacer compression and tension timeevolution

    Sagging tension 15 kN - 35/90 kA

    5

    7

    9

    11

    13

    15

    17

    19

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time (s)

    Tension(kN)

    Sagging tension 15 kN - 35/90 kA

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time (s)

    compressiveload(N)

    subspan length 60 m

  • 7/29/2019 CIGRE vol2

    58/64

    58

    10.4. CASE II.5 2 X 30 M 15 KN

    35/90 KA

    $ Configuration One subspan 30 m$ Exact tension/subconductor: 13 kN$ Short-circuit level: 35/90 kA$ Duration: 0.17s

    Saggingtension15 kN- 35/90kA

    -1500

    -1000

    -500

    0

    500

    1000

    0 0,05 0,1 0,15 0,2

    time(s)

    Cu

    rrent(uncalibrated)

    Configuration :

    measurement

    30 m

    Saggingtension 15kN - 35/90 kA

    -3000

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    0 0,2 0,4 0,6 0,8 1 1,2 1,4

    time(s)

    Compressiveloads(N)

    subspanlength 30m

    Sagging tension 15 kN- 35/90 kA

    0

    5

    10

    15

    20

    25

    30

    0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

    time(s)

    Tension(kN)

    Zoom on spacer compression and tension timeevolu-

    tionSagging tension 15 kN - 35/90

    0

    5

    10

    15

    20

    25

    0

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time (s)

    Tension(kN)

    Sagging tension 15 kN - 35/90 kA

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time (s)

    compressiveload(N)

    subspan length 60 m

  • 7/29/2019 CIGRE vol2

    59/64

    59

    10.5. CASE III.1 1 X 60 M 25 KN

    35/90 KA

    $ Configuration One subspan 60 m$ Exact tension/subconductor: 25 kN$ Short-circuit level: 35/90 kA$ Duration: 0.16 s

    Saggingtension25kN - 35/90 kA

    -2000

    -1500

    -1000

    -500

    0

    500

    1000

    0 0,05 0,1 0,15 0,2

    time(s)

    Cu

    rrent(uncalibrated)

    Configuration :

    measurement

    60m

    Saggingtension25 kN- 35/90kA

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    0 0,2 0,4 0,6 0,8 1 1,2 1,4

    time(s)

    Compressiveloads(N)

    subspanlength60m

    Saggingtension25 kN- 35/90 kA

    15

    17

    19

    21

    23

    25

    27

    29

    31

    33

    0 0,2 0,4 0,6 0,8 1 1,2 1,4

    time(s)

    Tension(kN)

    Zoom on spacer compression and tension time

    evolutionSaggingtension25 kN- 35/90kA

    15

    17

    19

    21

    23

    25

    27

    29

    31

    33

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time(s)

    Tension(kN)

    Saggingtension25kN - 35/90kA

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time(s)

    Compressiveloads(N)

    subspanlength60 m

  • 7/29/2019 CIGRE vol2

    60/64

    60

    10.6. CASE III.5 2 X 30 M 25 KN

    35/90 KA

    $ Configuration One subspan 30 m$ Exact tension/subconductor: 25 kN$ Short-circuit level: 35/90 kA$ Duration: 0.16 s

    Saggingtension25 kN- 35/90 kA

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time(s)

    Current

    (uncalibrated)

    Configuration :

    measurement

    30 m

    Saggingtension25 kN- 35/90kA

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6

    time(s)

    Compressiveload(N)

    subspanlength 30m

    Saggingtension25kN- 35/90kA

    20

    22

    24

    26

    28

    30

    32

    34

    36

    38

    0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6

    time(s)

    Tension(kN)

    Zoom on spacer compression and tension timeevolu-tion :

    Saggingtension25kN- 35/90kA

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time(s)

    Comp

    ressiveload(N)

    subspanlength30m

  • 7/29/2019 CIGRE vol2

    61/64

    61

    10.7. CASE IV.1 1 X 60 M 35 KN

    35/90 KA

    $ Configuration One subspan 60 m$ Exact tension/subconductor: 35 kN$ Short-circuit level: 35/90 kA$ Duration: 0.2 s

    Saggingtension35 kN- 30/90kA

    -1500

    -1000

    -500

    0

    500

    1000

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time(s)

    Current(uncalibrated)

    Configuration :

    measurement

    60m

    Saggingtension35 kN- 30/90 kA

    -3000

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    0 0,2 0,4 0,6 0,8 1 1,2 1,4

    time(s)

    C

    ompressiveloads(N)

    subspanlength60 m

    Saggingtension35 kN- 30/90 kA

    30

    32

    34

    36

    38

    40

    42

    0 0,2 0,4 0,6 0,8 1 1,2 1,4

    time(s)

    Tension(kN)

    Zoom on spacer compression and tension timeevolution

    Saggingtension35 kN- 30/90kA

    -3000

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time(s)

    Compressiveloads(N

    subspanlength60m

    Saggingtension35 kN- 30/90 kA

    30

    32

    34

    36

    38

    40

    42

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time(s)

    Tension(kN)

  • 7/29/2019 CIGRE vol2

    62/64

    62

    10.8. CASE IV.5 2 X 30 M 35 KN

    35/90 KA

    $ Configuration One subspan 30 m$ Exact tension/subconductor: 33 kN$ Short-circuit level: 35/90 kA$ Duration: 0.19 s

    Sagging tension 35 kN - 30/90 kA

    -1500

    -1000

    -500

    0

    500

    1000

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time (s)

    C

    urrent(uncalibrated)

    Configuration :

    measurement

    30 m

    Sagging tension35 kN- 30/90kA

    -3000

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    0 0,2 0,4 0,6 0,8 1 1,2 1,4

    time(s)

    Compressiveloads(N)

    subspanl ength 30m

    Zoom on spacer compression and tension timeevolu-

    tion :

    Saggingtension35 kN- 30/90kA

    20

    25

    30

    35

    40

    45

    0 0,2 0,4 0,6 0,8 1 1,2 1,4time(s)

    Tension(kN)

    Saggingtension35kN- 30/90kA

    -3000

    -2000

    -1000

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time(s)

    Compressiveloads(N)

    subspanlength 30m

    Saggingtension 35kN - 30/90kA

    20

    25

    30

    35

    40

    45

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time(s)

    Tension(kN)

  • 7/29/2019 CIGRE vol2

    63/64

    63

    10.9. CASE V.1 6 X 10M 25 KN

    35/90 KA

    $ Configuration One subspan 10 m$ Exact tension/subconductor: 24 kN$ Short-circuit level: 35/90 kA$ Duration: 0.17 s

    Saggingtension25 kN- 35/90kA - 6x10m

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    tiem(s)

    Current(uncalibrated)

    Series1

    Configuration :

    measurement

    10 m

    Saggingtension 25 kN - 35/90 kA- 6x10 m

    -10000

    -5000

    0

    5000

    10000

    15000

    0 0,2 0,4 0,6 0,8 1 1,2

    time (s)

    Compressiveload(N)

    subspan length 10 m Saggingtension25 kN- 35/90 kA- 6x10m

    0

    10

    20

    30

    40

    50

    60

    -0,2 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

    time(s)

    Tension(kN)

    Zoom on spacer compression and tension timeevolution :

    Saggingtension25kN - 35/90kA- 6x10 m

    0

    10

    20

    30

    40

    50

    60

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time(s)

    Tension(kN)

    Sagging tension 25 kN - 35/90 kA - 6x10 m

    -10000

    -5000

    0

    5000

    10000

    15000

    0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

    time(s)

    Compressiveload(N)

    subspan length 10 m

  • 7/29/2019 CIGRE vol2

    64/64