cimtec08 vekas final a

Upload: ahumair

Post on 02-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 CIMTEC08 Vekas Final A

    1/34

    CIMTEC 2008

    Ferrofluids

    andMagnetorheological Fluids

    Ladislau Vks

    Laboratory of Magnetic Fluids

    Center for Fundamental and Advanced Technical ResearchRomanian Academy-Timisoara Branch, Timisoara, Romania

    and

    National Center for Engineering of Systems with Complex Fluids

    University Politehnica of Timisoara, Timisoara, Romania

  • 8/11/2019 CIMTEC08 Vekas Final A

    2/34

    CIMTEC 2008

    OUTLINE

    Short history of the field

    Magnetically controllable fluids

    Magnetic nanoparticles and ferrofluids, application orientated synthesis

    Colloidal stability and structural processes

    Magnetic and flow properties

    Magnetorheological fluids, main types and composition

    Structural processes and magnetorheological behavior

    New type of composite materials

  • 8/11/2019 CIMTEC08 Vekas Final A

    3/34

    CIMTEC 2008

    FLUIDITY + MAGNETIC PROPERTIES = ??

    New kind of materials, new phenomena

    The beginning

    Magnetorheological fluid National Bureau of Standards Technical News Bulletin 1948;32(4):54-60.

    J. Rabinow Proceedings of the AIEE Trans., 1948. 67. p. 1308-1315.

    Ferrofluid/Magnetic fluid T.L. OConnor, Belgian Patent 613,716 (1962)

    S. Papell (NASA), US Patent 3,215,572 (1965)

  • 8/11/2019 CIMTEC08 Vekas Final A

    4/34

    CIMTEC 2008

    Magnetically controllable fluids

    Ferrofluids, magnetic (nano)fluids

    Ultrastable colloidal suspensions of magnetic nanoparticles (MNPs) in acarrier liquid (CL)- no sedimentation Quasihomogeneous magnetizable liquids

    Approximatively Langevin type magnetic behavior and Newtonian flowproperties, small magnetoviscous effect

    Magnetorheological fluids Suspensions of micron-sized ferromagnetic particles in a carrier liquid-

    significant sedimentation rate

    Non-Newtonian behavior, strongly magnetic field dependent yield stress andeffective viscosity (about 100-1000 times increase)

    Magnetizable gels&elastomers Nano- or micro-meter range magnetic particles dispersed in a polymer matrix

    Field dependent size and mechanical properties, tunable elastic properties

  • 8/11/2019 CIMTEC08 Vekas Final A

    5/34

    CIMTEC 2008

    Synthesis procedures

    I. Synthesis of magnetic nanoparticles

    Chemical co-precipitation

    Thermal decomposition of organo-metallic compounds

    II. Stabilization/dispersion in non-polar or polar carrierliquids

    Electrostatic stabilization (water)

    Steric or electro-steric stabilization (organic carriers and water)

  • 8/11/2019 CIMTEC08 Vekas Final A

    6/34

    CIMTEC 2008

    Composition & mechanism of sterical stabilization

    Composition: MNP - magnetite, maghemite, cobalt-ferrite, iron, cobalt; CL- non-polar and polarorganic solvents, water; S - carboxylic or sulphonic acids, polymers

    Sterical stabilization: MNPs dispersed in a CL are coated with mono- or double-layer of organic

    surfactant (S) molecules in order to prevent their agglomeration due to magnetic dipole-dipole andvan der Waals interactions

    Entropic repulsion betweensurfacted MNPs

    - distance between particles

    Nuclear and magnetic particle structures in FFs2R1- surfacted particle size, incl. surfactant layer s2R particle size; 2 Rm- magnetic size

    Nuclear structure Sterical stabilization

    Solvent (CL)

    Surfactant layer

    Magnetic structure

  • 8/11/2019 CIMTEC08 Vekas Final A

    7/34

    CIMTEC 2008

    Colloidal stability

    S. Odenbach, Ferrofluids, 2006M. Klokkenburg et al., JoPhys CM, 2008

    Stabilization procedures prevent gravitational settling of MNPs,agglomerate formation by magnetic and van der Waals interactions

    Non-dimensional dipolar

    interaction energy

    Tk

    dM

    b

    md

    =72

    32

    0int

    int > 1

    Unstable FF, agglomerate formation

    dTEM = 9.0 nm

    int = 0.5

    Cryo-TEM: FF/Decalin (OA)

    200 nm

    int < 1

    Stable FF, no agglomerates

    dTEM = 18.6 nmint = 4.4

    Cryo-TEM: FF/Decalin (OA)500 nm

  • 8/11/2019 CIMTEC08 Vekas Final A

    8/34

    CIMTEC 2008

    Synthesis procedures (1)Organic non-polar carrier liquids - monolayer surfactant coated MNPsAqueous

    solutionsCoprecipitation

    NH4OH

    (solution 25%)

    Fe3+, Fe2+

    Subdomain Fe3O4

    nanoparticles

    Surfactant (pure

    oleic acid 96%)Sterical stabilisation

    (chemisorption)

    353 K

    Phase separation

    Magnetic

    decantation

    Aqueous solution of

    residual salts

    Monolayer coveredmagnetic particles

    Distilled water

    t = 70 - 80oCRepeated washing

    Magnetic decantation Aqueous solutionresidual salts

    Surfactants: oleic acid (OA), stearic acid (SA), palmitic acid (PA), myristic acid (MA), lauric acid (LA)Carriers : hydrocarbons (H), deuterated hydrocarbons(D-H), halogenated compounds(Hal)

    80-82 C

    Lab. Magnetic Fluids Timisoara

    MF/H/OA: D. Bica, R.Minea, Patent RO 97556(1989); D. Bica, Rom. Rep. Phys. 47(1995)MF/H/LA; MA : L. Vekas et al. Rom. Rep. Phys. 58(2006); M.V. Avdeev, D. Bica et al. JMMM, 311 (2007)

    Monolayer covered magneticnanoparticles + free oleic acid

    Acetone Extraction

    Magnetic decantation Acetone, water,

    free oleic acid

    Stabilised magneticnanoparticles

    HydrocarbonDispersion

    Primary monolayer stabilisedmagnetic fluid on light

    hydrocarbon carrier

    Magnetic decantation /filtration

    Repeated flocculation /redispersion of surfacted

    nanoparticles

    Free oleic acid

    NONPOLAR PURIFIED MAGNETIC FLUID

  • 8/11/2019 CIMTEC08 Vekas Final A

    9/34

    CIMTEC 2008

    Synthesis procedures (2)Organic polar carrier liquids - double layer surfactant coated MNPs

    D. Bica et al. Patents RO 93107 (1987), 93162 (1987), 97224 (1989),97599(1989), 105048 (1992),

    115533 (2000); D. Bica, Rom. Rep. Phys. 47(1995)

    D. Bica, L. Vekas, M. Rasa, J.Magn.Magn.Mater. 252 (2002)

    DBS-dodecyl-benzen-sulphonic acid

    PIBSA-poly-izobutylen-succin-anhydrideLab. Magnetic Fluids Timisoara

    Acetone Flocculation

    Magnetic decantation Acetone +

    hydrocarbon

    Monolayer stabilisedmagnetic nanoparticles

    DBS or PIBSA

    (C8)

    - Secondary stabilisation

    (physical adsorbtion)

    - Dispersion

    Alcohols C3-C10/HVO/

    Diesters(DOA/DOS)

    MF/HIGH

    VACUUM OIL

    MF/ALCOHOLS

    (Polialcohols)

    MF/DIESTERS

    (DOA, DOS)

    VEGETAL

    OILS

    - Coprecipitation Fe2+, Fe3+, NH4OH sol. 25%- Sterical stabilisation, (chemisorbtion, oleic

    acid 96%)- Phase separation- Repeated washing- Dispersion

    Primary magnetic fluid onlight hydrocarbon carrier

    - Magnetic decantation- Filtration- Repeated flocculation /

    redispersion of surfactednanoparticles

    Free oleic acid

    Nonpolar purified magnetic

    fluid

    FF/organic polar carrierOA+DBS,OA + PIBSA,OA + PIBSIdouble layer

    sterical stabilization

    MNP

  • 8/11/2019 CIMTEC08 Vekas Final A

    10/34

    CIMTEC 2008

    Magnetic decantation

    Fe3O4 nanoparticles

    Repeated washing

    Fe3O4 nanoparticles

    Chemisorbtion

    Phase separation

    Coprecipitation, pH=11Fe3+, Fe2 solution NaOH6N solution

    or NH4OH80C

    Distilled water

    70-80C

    Lauric acid (LA)(or MA/PA/OA)

    Residual salt solution

    Residual salt solutionMagnetic decantation

    80C

    Magnetic decantation

    Dispersion

    Primary magnetic fluid

    Magnetic decantation

    Magnetic organosol, pH= 8. 5 9.0

    Residual salt solution

    NaOH

    Water

    MF/Water (LA+LA /MA+MA/PA+PA/

    OA+OA)

    Uncoated magnetite

    nanoparticles, agglomerates

    Synthesis procedure (3)

    Biocompatible FFs

    FF/waterLA+LA, MA+MA,

    OA+OA, LA+DBS,MA+DBS, OA+DBS

    double layersterical stabilization

    D.Bica, Patent RO 90078 (1985); Rom. Rep. Phys.,47(1995)

    D. Bica. L. Vks, M. Rasa, J. Magn. Magn. Mater.,252(2002)

    D.Bica, L. Vekas, M.V.Avdeev, O. Marinica, V. Socoliuc,

    M. Balasoiu, V.M.Garamus, J.Magn. Magn. Mater. 311(2007)

    MNP

    Water (highly polar) carrier- double layersurfactant coated MNPs

  • 8/11/2019 CIMTEC08 Vekas Final A

    11/34

    CIMTEC 2008

    Generalized synthesis procedure of monodisperse Fe nanoparticlesSize-selective process: varying the molar ratio Fe- carbonyl /OA andthe steric bulkiness of surfactants used

    Thermal decomposition of iron pentacarbonyl in the presence of oleic acid at 100 C

    The iron oleate complex was prepared by reacting Fe(CO)5 and oleic acid at 100 C Iron nanoparticles were then generated by aging the iron complex at 300 C

    TEM images of iron nanoparticles:(a) three-dimensional array of 7nm

    Fe nanoparticles and

    (b) 11 nm Fe nanoparticles

    Liquid phase synthesis of iron NPs by thermaldecomposition

    T. Hyeon, Chem.Comm., 2003

    20 nm

  • 8/11/2019 CIMTEC08 Vekas Final A

    12/34

    CIMTEC 2008

    - Synthesis procedure for monodisperse -Fe2O3 nanoparticles -

    Maghemite nanoparticles with sizes of 7 and 11 nm synthesized by using reaction mixtures with

    [Fe-(CO)5]:[oleic acid] molar ratios of 1:2 and 1:3, respectively.

    Dominating size controlling factor: the molar ratio of iron pentacarbonyl /oleic acid.

    Liquid phase synthesis of iron oxide NPsby thermal decomposition

    Monodisperse iron nanoparticles monodisperse -Fe2O3 nanocrystals

    Controlled oxidation using trimethylamine N-oxide ((CH3)3NO)- mild oxidant

    T. Hyeon, Chem.Comm. 2003

  • 8/11/2019 CIMTEC08 Vekas Final A

    13/34

    CIMTEC 2008

    S. Behrens et al Z. Phys. Chem. 2006S. Behrens et al., J Phys: Condens. Matter, 2006

    a. TEM image displaying several Co nanoparticles

    b. HRTEM image of a single Co nanoparticleshowing the polycrystalline structure.

    High magnetization FFs with Co nanoparticles

    Liquid phase synthesis of Co NPs by thermal decomposition of Co2(CO)8

    Co2(CO)

    8+ Al-R

    3

    toluen (80-900C)

    heating (1100C;18 h) under stirring

    cooling to room temperature

    smooth oxidation (synthetic air)

    black precipitate Co(O) with oxidized protecting shell

    stabilization of Co NPs (Korantin SH or oleic acid+Oleyl

    amine) in hydrocarbon carrier

    high magnetization FF (1000-1700 G)

    2 nm

    Axial magnetohydrostatic bearing

    a) Stator b) Section enlargement of the stator withthe ferrofluid c) General view of the bearing

    10 nm

  • 8/11/2019 CIMTEC08 Vekas Final A

    14/34

    CIMTEC 2008

    Experimental setupfor the laser pyrolysis of

    iron/iron oxide nanoparticles+system for powder collection in

    the toluene bubbler

    Focused CW CO2 laser radiation (l = 10.6 mm,output power 35 W) orthogonal to the reactant gas stream

    Reactive mixture: Fe(CO)5 vapors + C2H4 gas carrier. Synthesis parameters: 3000 Pa for the reactor pressure and100 sccm for the ethylene flow (bubbling through the

    liquid carbonyl reservoir at temperature of 25 0C)

    E. Popovici et al., Appl.Surf.Sci. 2007

    Gas phase synthesis of iron/iron oxid NPs bylaser pyrolisis

    TEM/HRTEM:iron/iron oxide coreshell MNPsenhanced magnification TEM : encapsulated featureof the nano-Fe powder - higher inset; HRTEM: single

    nanoparticle - lower inset

  • 8/11/2019 CIMTEC08 Vekas Final A

    15/34

    CIMTEC 2008

    a) XRD diagram: well defined Fepeaks mixed with Fe2O3 and Fe3O4

    b) TEM image: hydrocarbon-based FFrevealing almost single particles orassemblies of a few nanoparticles

    E. Popovici et al., Appl. Surf. Sci. 2007

    Laser pyrolisis synthesized iron/iron oxide MNPsdispersed in hydrocarbon carrier

    a)

    b)

    Iron/iron oxide core-shell MNPs

    Sterical stabilization - oleic acid (OA) (heating up to 353 K;pH 8.5; continuous stirring; chemisorption of OA

    Monolayer coated MNPs

    Elimination of free OA - magnetic decantation

    Stabilized MNPs

    Addition of carrier - hydrocarbon, e.g. petroleum

    Heating up to 110120 8C - elimination of water + acetone

    Primary hydrocarbon-based ferrofluid

    Magnetic decantation; repeated flocculation/re-dispersion of MNPs(elimination of free oleic acid)

    Sterically stabilized, highly purified FF with surface protected MNPs

  • 8/11/2019 CIMTEC08 Vekas Final A

    16/34

    CIMTEC 2008

    Application orientated evaluation of ferrofluidsManifold characterization

    Size distribution of magnetic nanoparticles: TEM, HRTEM

    Composition and magnetic field dependent structural processes, sterical stabilization and

    long-term colloidal stability: SANS, SANSPOL (B = 0-2.5 T)

    Mechanism of stabilization and chemical size selection of dispersed magnetic particles

    Dilution stability and phase transition phenomena: magneto-optical investigations, DLS

    Magnetic properties vs. concentration: VSM measurements

    Flow properties under the influence of applied magnetic field: MR investigations

    Evaluation and selection of FFs for various applications

    FFs for rotating seals, bearings high magnetization

    organic carrier liquids

    excellent stability in intens and stronglynon-uniform magnetic fields

    FFs for biomedical applications

    biocompatibile components

    usually water carrier

    stability in physiological conditions

  • 8/11/2019 CIMTEC08 Vekas Final A

    17/34

    CIMTEC 2008

    Sterical stabilization: efficiency of differentchain length surfactants

    R. Tadmor, R. E. Rosensweig, J. Frey, J. Klein,

    Resolving the Puzzle of Ferrofluid Dispersants, Langmuir16 (2000)

    Unsaturated mono-carboxylic acid

    palmitic acid (PA)

    C16H32O2stearic acid (SA)

    C18H36O2

    oleic acid (OA)C18H34O2

    Excellent stabilizerdue to high solvation!

    Non-efficient

    stabilizers

    because of

    worse solvation?short chain?

    myristic acid (MA)

    C14H32O2

    lauric acid (LA)

    C12H32O2

    Non-efficient stabilizer

    because of worse solvation

    doublebond kink

    Saturated mono-carboxylic acids

  • 8/11/2019 CIMTEC08 Vekas Final A

    18/34

    CIMTEC 2008

    Schematic view of SANS experiment on system of magnetic

    nanoparticles. In case of unmagnetized system scattering

    pattern is isotropic over radial angle on detector plane

    Schematic view of SANSPOL experiment on system of

    magnetic nanoparticles. Anisotropy in the scattering pattern

    over radial angle is caused by magnetization of the system

    Small Angle Neutron Scattering investigationsStructural processes in ferrofluids

    FFs in zero field (B=0) conditions FFs under the influence of applied

    magnetic field (B>0)

    1-100 nm range

    GKSS Geesthacht BNC KFKI Budapest JINR Dubna

  • 8/11/2019 CIMTEC08 Vekas Final A

    19/34

    CIMTEC 2008

    Small Angle Neutron Scattering investigationsSANS Interparticle interaction

    magnetite/oleic acid/H-benzene

    Type of structure-factor: long-range attraction withshort-range (contact) repulsion

    JINR Dubna, BNC Budapestline: model of polydisperse

    core-shell particles

    )()(~ 2 qSqF NN

    0,1 1

    0,01

    0,1

    1

    10

    100

    m = 0.15m = 0.075m = 0.038m = 0.019m = 0.01

    I(q),cm-1

    q, nm-1

    Cluster fractal dimension D ~ 1,5 2.5Mean radius of cluster units R ~ 10 nm

    magnetite/water: OA+DBS, DBS+DBS, OA+OA

    Highly stable ferrofluids Weakly stable ferrofluids

    M.V. Avdeev, V.L Aksenov, M. Balasoiu et al. J. Coll. Interface Sci, 2006L. Vekas, M.V. Avdeev, D. Bica, Magnetic fluids: Synthesis and Structure (Springer V, to appear)

  • 8/11/2019 CIMTEC08 Vekas Final A

    20/34

    CIMTEC 2008

    Small Angle Polarized Neutron Scattering investigationsSANSPOL High magnetic field stability test

    Highly stable magnetic nanofluid, maximal m~10 %.

    Investigation at B= 2.5 T d-cyclohexane + Fe3O4 + MA , m= 2.8 %

    0.1 1

    0.1

    1

    10

    I(q),cm

    -1

    q, nm-1

    I

    I+

    0.1 1

    1E-3

    0.01

    0.1

    1

    10

    F2

    N

    F2

    M

    Rg=3.7 nm

    Rg=4 nm

    I(q),cm-1

    q, nm-1

    Averaged (over radial angle ) intensities of the scattering

    for two spin orientations of polarized neutrons

    Blue solid line fit of the core-shell model.Final parameters are

    R0=2.3 nm; S=0.28; =1.35 nm.

    Dashed lines are Guinier approximations.SANSPOL tests-GKSS Geesthacht-V. Garamus, M.V. Avdeev

  • 8/11/2019 CIMTEC08 Vekas Final A

    21/34

    CIMTEC 2008

    SANS and VSM analyses

    Samples stabilized with different chain length carboxylic acids

    Magnetization curves (points) for ferrofluids/ DHN, m = 1.5 %.Lines are the results of the polydisperse Langevin approximation.

    SANS curves (points) FFs in DHN normalized to m= 1.5 %.Lines are the results of approximation by the model of polydisperse

    independent spheres

    Inset : particle sizedistributions of magnetite

    (atomic size)

    Inset : particle sizedistributions of magnetite(magnetic size)

    SANS

    0.1 11E-4

    1E-3

    0.01

    0.1

    1

    10

    100

    SA, PA, MA, LA

    q, nm-1

    I(q),cm-1

    OA

    0 1 2 3 4 5 6 7 8

    DN

    (R)

    R, nm

    OA

    SA, PA, MA, LA

    VSM

    0 500 10000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    SA, PA, MA, LA

    OA

    LA, MA, PA,

    SA

    OA

    M/M

    s

    H, kA/m

    0 1 2 3 4 5 6 7 8

    DN

    (R)

    R, nm

    Lab. Magnetic Fluids Timisoara GKSS Geesthacht BNC Budapest

    M.V. Avdeev, D. Bica, L. Vekas,V.L. Aksenov, A.V. Feoktystov,

    L. Rosta, V.M. Garamus,

    R. Willumeit JMMM 2008

  • 8/11/2019 CIMTEC08 Vekas Final A

    22/34

    CIMTEC 2008

    SANS curves and resulting size distributions

    Mixed surfactants monolayer (MA + OA) with 1:0, 1:1 and 0:1 mixing ratios

    FFs with chemically tailored magnetic nanoparticlesSize selective synthesis-stabilization of magnetic nanoparticles

    with mono-layer of mixed surfactants

    Non-polar carrier (D-benzen), =1.1 %

    Increased MA content, more reduced diameter and standard deviation M.V. Avdeev, D. Bica et al. (MISM, 2008)

    Resulting log-normal size-distribution functions

    0 1 2 3 4 5 6 7 8

    OA/MA 1/1

    DN(R)

    R, nm

    MA (Dm=5.15 nm; = 1.26)

    (Dm=6.24 nm; = 1.79)

    OA (Dm=7.34 nm; = 2.98)

    Nuclear scattering contribution. Solid lines are fits of

    the core-shell model

    0.1 1

    I(q),cm

    -1

    q, nm-1

    OAOA/MA 1/1

    MA

  • 8/11/2019 CIMTEC08 Vekas Final A

    23/34

    CIMTEC 2008

    Flow properties under the infuence of appliedmagnetic fieldNon-polar carrier, mono-layer sterical stabilization with MA (C14) and OA (C18)

    Concentrated (Ms= 61 kA/m)

    OA stabilized MF/Utr sampleMR effect ~20-30%

    Concentrated (Ms= 62 kA/m)

    MA stabilized FF/Utr sampleMR effect 10%

    Coil

    Magnetic Field

    Highly Permeable Material

    Parallel Plate

    non-magnetic

    Magnetic Fluid

    MR cell MCR 300

    Well stabilized FFs have veryreduced MR effect

    L.Vekas, D. Bica et al. Rom. Rep. Phys. 2006

  • 8/11/2019 CIMTEC08 Vekas Final A

    24/34

    CIMTEC 2008

    Colloidal stability of water based ferrofluidsDynamical Light Scattering investigations-NanoZSDouble layer sterical stabilization using different chain length surfactants

    Biocompatible ferrofluids

    -4.5

    -3

    -1.5

    0

    1.5

    3

    4.5

    2 3 4 5 6 7 8 9 10pH

    Electrophoreticmobility(

    cmV

    -1s-1)

    Cationic particles

    Anionic particles

    OA+OA

    LA+LA

    MA+MA

    Magnetite

    Double la yer coated magne tite0

    10 0

    20 0

    30 0

    40 0

    50 0

    60 0

    70 0

    80 0

    2 3 4 5 6 7 8 9 10pH

    Magnetite 0.001 MLA +LA 0.001 MLA +LA 0.01 MMA+MA 0.01 MMA+MA 0.1 MOA+OA 0.001 MOA+OA 0.01 M

    Aggregation

    Dilute ma gnetic fluids

    Averagehydrodyn

    amicsize(nm)

    Aggregation of magnetite particles in 0.001,

    0.01 and 0.1 M NaCl solutions at 25+0.10C.

    E. Tombcz, D. Bica et al, JoPhys CM 2008

    Effect of anionic surfactant double layer coating

    on the pH-dependent charge state

    OA+OA and MA+MA stabilized FF/water samples keep theircolloidal stability in the physiological range of pH (6-8)

  • 8/11/2019 CIMTEC08 Vekas Final A

    25/34

    CIMTEC 2008

    Restoring force Frinduced by

    magnetic field H

    in shearing flow

    No field: H=0Fe particles diffusing

    randomly; blades

    moving freely

    Increasing field: H > 0Fe particles start forming

    chains; resistance between

    blades increases

    Saturating field: H HsatStrong field forms continuous

    chains-quasi-solid state;blades movement restricted

    Composition & intense structuring mechanismMagnetic particles: magnetically soft multi-domain Fe, Fe alloys of 1-10 mCarrier liquids: petroleum based oils, silicon oils, mineral oils, synthetic oils, waterSuspension agents: thixotropic and surface active agents (e.g., carboxylic acids,

    stearats, polymers, organoclays)

    Field dependent magnetic moment of particles m= 40fa3H

    0; =(p -f)/(p+2f)

    Field dependent magnetic coupling parameterint

    MR = 0fa3H

    02/(2kT)

    int

    MR = 1 for H0=127 A/m; 2a=1m

    intMR ~ 108 1 for usual H values

    Strongly non - Newtonian behaviorYield stress: 50-100 kPaLarge MR effect: 102 103 timesincrease of effective viscosity

  • 8/11/2019 CIMTEC08 Vekas Final A

    26/34

    CIMTEC 2008

    Main characteristics MR effect ~ 102 - 103

    Yield stress 50-100 kPa

    Max. applied field 150-250 kA/m

    Density 3-4 g/cm3

    Response time < 1 ms

    Off-state viscosity 0.10 - 1.0 Pa.s (at 25 0C)

    Operational temp - 400C to + 1500C

    Magnetic particles Fe (~ 3m), magnetically soft

    No hysterezis

    Main problems to be solved Gravitational settling

    Difficult redispersing of sediment

    Further increasing the yield stress / MR effect

    Possible solutions Non-magnetic nanofillers

    Non-spherical shaped magnetic particles

    Extremely bidisperse MR suspensions

    Magnetorheological fluids

    G. Bossis, O. Volkova, S. Lacis, A. Meunier, in:S. Odenbach (Ed) Ferrofluids.Magnetically controllable fluids and their applications(Springer-Verlag 2002)

    J. D. Carlson, M. R. Jolly, Mechatronics(2000)

    F. D. Goncalves, J.-H. Koo, M. Ahmadian,The Shock and Vibration Digest(2006)

  • 8/11/2019 CIMTEC08 Vekas Final A

    27/34

    CIMTEC 2008

    MRFs with magnetic fibers Lopez-Lopez, Vertelov, Bossis, Kuzhir, Duran, J. Mater. Chem., 2007

    Dynamic yield stress, as a function ofthe external magnetic field strength

    Cobalt suspensions in silicone oil (solid

    concentration 5 vol%). Cobalt spheres, 1.3 m

    Cobalt wires

    Co wires

    Co spheres

    Extremely bidisperse MRFs Viota, Gonzalez-Caballero, Duran, Delgado, J. Coll.Int. Sci., 2007

    Three-times increase of yield stress

    Role of magnetic particle shape & size

    Photographs of bidisperse MR suspensions after 24 h sedimentation. the arrows indicate the sediment height.

    in all cases, micron size particle concentration m= 10%;

    nanoparticle concentrations nare, from left to right (in %),0, 1, 2, 3, 5, 7.

    Nano-micro MRFComposition

    Spherical particles

    Decrease ofsedimentation rate

    Halo structure formation

    Cloud of magnetic nanoparticlesaround micron sizedparticles, large size aggregates

    Micro-Magnetite 1450 nm Nano-Magnetite 8 nm Carrier: water

    SEM image of Co wiresLength 30-60m; Width 4-5 m

    10m

  • 8/11/2019 CIMTEC08 Vekas Final A

    28/34

    CIMTEC 2008

    1

    00 1

    *

    1 tanh tanh

    1

    n

    m

    = + +

    +

    & & & &

    & & &&

    &

    Shear stress vs. shear rate curves forB = 0,..., 502 mT MRF-140CG; micro 0.40

    Commercial sample Lord Co(~mFe)

    Shear stress vs. shear rate curves forB = 0,..., 502 mT D1; total 0.40

    micro 0.2; nano 0.2

    Nano-micro MRF lab sample

    1

    0 0 11 tanh tanh

    n

    = + +

    & & &&

    & & &

    Fit: Herschel-Bulkley (H-B) type behavior for B>0 Fit: Cross+ H-B formula for B>0

    Fit: Carreau-YasudaFormula for B=0

    MR effect

    Nano-micro MRF

  • 8/11/2019 CIMTEC08 Vekas Final A

    29/34

    CIMTEC 2008

    )()0(/)]0()([ BfB =

    Effect of nanosized magnetic particles on MR effectmicro 0.2; nano 0.2

    D. Resiga, D. Bica, L. Vks, ERMR 2008, Dresden

    MRF-140CG comercial sample

    D1 lab sample

    MR effect

    Nano-micro MRF

  • 8/11/2019 CIMTEC08 Vekas Final A

    30/34

    CIMTEC 2008

    Composite with field induced uniaxial ordered structure

    New generation of magnetic elastomers - new type of magnetic compositesNano- and/or micron-sized magnetic particles dispersed in a high elastic polymeric matrix-Poly(dimethyl siloxane (PDMS)

    Schematic picture ofthe bending of themagnetic PVA gels

    under compression.

    Anisotropic mechanical (a)and swelling [(b) and (c)]behaviour as seen by the naked eye.

    The arrow indicates the direction of themagnetic field during the preparation.

    Preparation of uniaxially ordered composite deformation ratio

    Smart composites with controlled anisotropy, POLYMER, 2006, Zs. Varga, G. Filipcsei, M. Zrnyi*HAS-BUTE Laboratory of Soft Matters, Dept Physical Chemistry, Budapest

  • 8/11/2019 CIMTEC08 Vekas Final A

    31/34

    CIMTEC 2008

    Intelligent polymeric nanocomposite membrane

    Schematic representation of channels made of MPS-PNIPA latex built in the PVA gel matrix:

    (a) off state below the collapse transition temperature;

    (b) on state above the collapse transition temperature.

    Response to external stimuli-regulation of drug permeation and release- biomedical applications

    Ordered nanochannels can act as on-offswitches or permeability valves

    Poly(Nisopropyacrylamide)gel ---- PNIPA gel Magnetic polystyrenelatex --- MPS

    Macromolecules 2006, 39, 1939-1942 I.Csetneki, G.Filipcsei, M. Zrnyi* HAS-BUTE Laboratory of Soft Matters, Budapest

    Arrows indicate the

    diffusive mass transferin the channels of PVAmembrane

  • 8/11/2019 CIMTEC08 Vekas Final A

    32/34

    CIMTEC 2008

    CONCLUSIONS

    Properties of magnetically controllable fluids are tailored

    mainly by varying the size range of magnetic particles 100104 nm

    Saturation magnetization is determined by the volume fraction

    and magnetic properties of the solid component 10 7x103 G

    Non-dimensional particle interaction energy int covers a wide range 0.5 ... 108

    Magnetorheological effect / 10-1 103

    OUTLOOK

    Increasing trend of applicationsof

    magnetically controllable fluidsin

    biology and medicine

  • 8/11/2019 CIMTEC08 Vekas Final A

    33/34

    CIMTEC 2008

    Acknowledgements

    Dr. Doina BICA Laboratory of Magnetic Fluids-CFATR TimisoaraRomanian Academy-Timisoara Division

    Dr. Mikhail AVDEEV- JINR-Dubna, Russia

    Prof. Mikls ZRINYI - Dept.Physical Chemistry, Budapest Technical University, Hungary

    Dr. Ion MORJAN - INFLPR Bucuresti, Romania

    Prof. Etelka TOMBCZ - Dept. Colloid Chemistry-Univ. Szeged, Hungary

    Ass.Prof. Dr. Daniela Susan-Resiga- West University Timisoara, Romania

    Dr. Rodica TURCU - INCDTIM Cluj-Napoca, Romania

    Dr. Adelina HAN - CNISFC- Univ. Politehnica Timisoara, Romania

    National Authority for Scientific Research (Romania):CEEX Research projects FeMANANOF, NanoMagneFluidSeal

  • 8/11/2019 CIMTEC08 Vekas Final A

    34/34

    CIMTEC 2008

    Thank you for attention!

    Lab. Vant Hoff of Colloids - 100 years anniversary

    Exhibition at Univ. Utrecht 2004 - A.P. Philipse (Utrecht), Doina Bica (Timisoara)

    Dynamicalsurface

    instabilities