class 13

87
Display Blocks Gordon Wetzstein Stanford University EE367/CS448I: Computational Imaging and Display stanford.edu/class/ee367 Lecture 13

Upload: billy-bong

Post on 06-Feb-2016

11 views

Category:

Documents


0 download

DESCRIPTION

Class 13

TRANSCRIPT

Page 1: Class 13

Display Blocks!

Gordon Wetzstein!Stanford University!

EE367/CS448I: Computational Imaging and Display!stanford.edu/class/ee367!

Lecture 13!

Page 2: Class 13

Tupa

c &

Snoo

p D

ogg

– Li

ve a

t Coa

chel

la 2

012!

Page 3: Class 13

Gor

illaz

& M

adon

na @

Gra

mm

y Aw

ards

200

6!

Page 4: Class 13

Pepper’s Ghost!Jo

hn H

enry

Pep

per,

1862

!

Page 5: Class 13

Pepper’s Ghost!Jo

hn H

enry

Pep

per,

1862

!

Page 6: Class 13

http://www.redbubble.com/people/melek0197/works/9472644-childs-reflection-in-train-window!

Page 7: Class 13

Pepper’s Ghost!w

ikip

edia!

hidden room!not directly visible!!

visible room!

beam!splitter!(green)!

viewing!window!

(red)!

Page 8: Class 13

Pepper’s Ghost - Lighting!

Same as all near-eye augmented reality displays!!

wik

iped

ia!

Page 9: Class 13

Google Glass!

Page 10: Class 13

Google Glass!

electroembedded.blogspot.com/2014/03/google-glass.html!

Page 11: Class 13

Google Glass!

Page 12: Class 13

Digital Displays - Overview!•! spatial light modulators!•! liquid crystal displays!

•! projection displays!

•! gamut mapping!

•! stereo displays!

•! light field displays!

•! of course: digital

pepper’s ghost & AR!!

disp

layb

lock

s.or

g!

Page 13: Class 13

Spatial Light Modulators (SLMs)!

Liquid Crystal Display (LCD) Liquid Crystal Display on Silicon (LCoS)

Digital Micromirror Device (DMD)

Light Emitting Diodes (LEDs) and OLEDs Light Emitting Diodes (LEDs) and OLEDs E Ink •! mirasol!•! pixtronix!

•! Ostendo!

•! quantum dots …!

•! some type of spatially-varying light modulation (amplitude or phase)!

Page 14: Class 13

Light Emitting Diodes (LED)!w

ikip

edia!

Page 15: Class 13

Light Emitting Diodes (LED)!w

ikip

edia!

Page 16: Class 13

LED Displays!

Page 17: Class 13

White LEDs!•! either multiple dies (i.e. R+G+B dies)!•! or blue die + phosphor!

blue LED! blue LED + phosphor (Ce:YAG)!

wik

iped

ia!

Page 18: Class 13

Organic Light Emitting Diodes (OLEDs)!Sa

msu

ng G

alax

y N

ote

Edge

!

LG!

•! electroluminescent material is organic!

•! can be printed, e.g. on flexible substrates!

Page 19: Class 13

how

stuf

fwor

ks.c

om!

Transparent OLEDs!

Page 20: Class 13

OLED – Active vs Passive Matrix!ho

wst

uffw

orks

.com

!

Page 21: Class 13

Active vs Passive Matrix Addressing Scheme!

•! more complex electronics (1 capacitor & 1 transistor per pixel)!

•! pixel can “store” information, e.g. while scanning over the rest of the screen !

•! similar to phosphor lifetime in CRT!

•! simpler electronics!•! “dead” time between pixel

updates – can lead to flicker (slow response)!

•! imprecise voltage control!

active matrix! passive matrix!

Page 22: Class 13

Active vs Passive Matrix Addressing Scheme!ht

tps:

//ww

w.y

outu

be.c

om/w

atch

?v=m

nh3l

t8rn

Uk!

Page 23: Class 13

Liquid Crystal Displays!•! most common displays for monitors and TVs!

Page 24: Class 13

LCDs - Twisted Nematic (TN)!

Page 25: Class 13

LCDs - Twisted Nematic (TN)!pl

c.cw

ru.e

du/tu

toria

l/enh

ance

d/fil

es/lc

d/tn

/tn.h

tm relaxed (twisted), crystalline state !

Page 26: Class 13

LCDs - Twisted Nematic (TN)!pl

c.cw

ru.e

du/tu

toria

l/enh

ance

d/fil

es/lc

d/tn

/tn.h

tm voltage applied: un-twisting – liquid state!

Page 27: Class 13

LCDs – In-plane Switching (IPS)!w

ikip

edia!

•! electrodes on same side!•! in-plane LC alignment!

•! pro: more consistent across viewing angles, don’t change color when touched!

•! con: more power, slower, more expensive than TN!

Page 28: Class 13

wik

iped

ia!

Page 29: Class 13

LCD Subpixels!w

ikip

edia!

TN subpixels!IP

S!S-

IPS

IPS!

Page 30: Class 13

LCD Subpixels - Pentile Pixels!•! exotic subpixel layouts with different advantages and disadvantages!

Page 31: Class 13

LCD Backlight!ex

trem

etec

h.co

m!

wik

iped

ia!

Page 32: Class 13

LCD Backlight – CCFL vs LED!

•  used to be: cold-cathode fluorescent lamps!•  now mostly LEDs: last longer, brighter, thinner, lower power, but a bit

more expensive!

Page 33: Class 13

LCD Backlight!

… at the end, you have a “light box”!

backlight enhancing films!

Cor

nelis

sen,

SPI

E 20

08!

extremetech.com!

Page 34: Class 13

Directional Backlight - Leia!Fa

ttal e

t al.

2013

!

Page 35: Class 13

Quantum Dots (QD)!

•  semiconductor nanocrystal!•  extremely narrow, tunable emission spectrum (visible+IR)!

•  band gap (which determines emitted wavelength) is inversely

proportional to dot size!

•  quantum dot displays used in LCD backlight (we’ll get back to that a but later) by QD Vision!

Page 36: Class 13

Quantum Dots!w

ikip

edia!

Page 37: Class 13

Quantum Dot Backlight – QD Vision!ht

tp://

ww

w.ra

vepu

bs.c

om/!

quan

tum

-dot

s-th

e-en

d-of

-whi

te-le

ds-in

-bac

klig

hts/!

Page 38: Class 13

Liquid Crystal on Silicon (LCoS)!

•! basically a reflective LCD!

•! standard component in projectors and

head mounted displays!

•! used e.g. in google glass!

•! without 2nd polarizer: phase mod lation!!• without 2nd polarizer: phase mod lation!

Page 39: Class 13

Electronic Ink (E Ink)!

•! reflective display – no active lighting!!•! high contrast, low power!

•! bistable!

•! invented by Joe Jacobsen!

Page 40: Class 13

Mirasol (Qualcomm)!

•! interferometric modulator display (IMOD)!•! color from gap size (changed via MEMS)!

•! intensity from subpixels – low res?!!

Page 41: Class 13

Digital Micromirror Device (DMD)!

•! developed by Texas Instruments !•! MEMS device!

•! binary states (e.g. +/- 10 degrees)!

•! gray-level through pulse width

modulation (PWM)!

Texas Instruments!

Page 42: Class 13

Digital Micromirror Device (DMD)!

•! when used in projector, usually called digital light processing

device (DLP)!

Page 43: Class 13

•! color multiplexed in time (field sequential color)!•! for example using color wheel in DPL projectors!

Digital Light Processing (DLP) Projectors!

Page 44: Class 13

Modulator

Projection Lens Diffuse Screen

Viewer

Anatomy of a Projector (without the light)!

Page 45: Class 13

LCD Projectors!op

ticsb

alze

rs.c

om/e

n/23

7/LC

D-p

roje

ctor

.htm

!

•! 3 separate optical paths (1 per color channel)!

•! splitting via dichroic mirrors!

•! separate modulation via

transmissive LCDs!

•! combination via x-cube prism!

•! projection lens!

Page 46: Class 13

LCD Projectors!ht

tp://

wor

dpre

ss.m

rreid

.org

/!

projection lens!

(dichroic) mi

LCDs!

x-cube prism!

light source !light source

(dichroic)mi

LCDs

x-cube prism

projection lens

Page 47: Class 13

Scanned Laser Pico Projectors!

1 mm!

•! biaxial MEMS scanner!•! 43.2° by 24.3° at 60 Hz!

Microvision, Freeman et al. 2009!

Page 48: Class 13

Scanned Laser Pico Projectors!

Microvision, Freeman et al. 2009!

Page 49: Class 13

Holographic Laser Projectors!

•! developed by light blue optics!•! coherent light – phase modulation in Fourier plane !

Page 50: Class 13
Page 51: Class 13

Laser/LCD Projector!an

noun

ced

by S

ony!

•! phosphor+blue laser = white (same as white LED)!

Page 52: Class 13

Scanning Fiber Projector!

•! Schowengerdt et al., University of Washington!•! now at Magic Leap!

Page 53: Class 13

Questions?!

Page 54: Class 13

Stereoscopic and 3D / Light Field Displays!many slides from Douglas Lanman (thanks)!

Page 55: Class 13

binocular disparity! motion parallax! accommodation/blur!convergence!

current glasses-based (stereoscopic) displays!

near-term: compressive light field displays !

longer-term: holographic displays!

Some Depth Cues of the HVS!

Page 56: Class 13

Taxonomy of Direct 3D Displays:"Glasses-bound vs. Unencumbered Designs"

Glasses-bound Stereoscopic

Immersive (blocks direct-viewing of real world)

See-through (superimposes synthetic images onto real world)

Head-mounted (eyepiece-objective and microdisplay)

Multiplexed (stereo pair with same display surface)

Spatially-multiplexed (field-concurrent) (color filters, polarizers, autostereograms, etc.)

Temporally-multiplexed (field-sequential) (LCD shutter glasses) Temporally-multiplexed (field-sequential)

Unencumbered Automultiscopic

Parallax-based (2D display with light-directing elements)

Volumetric (directly illuminate points within a volume)

Holographic (reconstructs wavefront using 2D element)

Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays) Integral Imaging (lenticular sheets or fly’s eye lenslet arrays)

Multi-planar (time-sequential projection onto swept surfaces) Transparent Substrates (intersecting laser beams, fog layers, etc.)

Static (holographic films) Dynamic (holovideo)

Transparent SubstratesAutomultiscopic

Taxonomy adapted from Hong Hua

Page 57: Class 13

Taxonomy of 3D Displays:"Immersive Head-mounted Displays (HMDs)"

Glasses-bound Stereoscopic

Immersive (blocks direct-viewing of real world) Head-mounted

(eyepiece-objective and microdisplay)

Multiplexed (stereo pair with same display surface)

Page 58: Class 13

Taxonomy of 3D Displays:"See-through Head-mounted Displays (HMDs)"

Glasses-bound Stereoscopic

Immersive (blocks direct-viewing of real world)

See-through (superimposes synthetic images onto real world)

Head-mounted (eyepiece-objective and microdisplay)

Multiplexed (stereo pair with same display surface)

Page 59: Class 13

Taxonomy of 3D Displays:"Spatial Multiplexing (e.g., Anaglyphs)"

Glasses-bound Stereoscopic

Immersive (blocks direct-viewing of real world)

See-through (superimposes synthetic images onto real world)

Head-mounted (eyepiece-objective and microdisplay)

Multiplexed (stereo pair with same display surface)

Spatially-multiplexed (field-concurrent) (color filters, polarizers, etc.)

Page 60: Class 13

Taxonomy of 3D Displays:"Temporal Multiplexing (e.g., Shutter Glasses)"

Glasses-bound Stereoscopic

Immersive (blocks direct-viewing of real world)

See-through (superimposes synthetic images onto real world)

Head-mounted (eyepiece-objective and microdisplay)

Multiplexed (stereo pair with same display surface)

Spatially-multiplexed (field-concurrent) (color filters, polarizers, autostereograms, etc.)

Temporally-multiplexed (field-sequential) (LCD shutter glasses) Temporally-multiplexed (field-sequential)

Page 61: Class 13

Visual Discomfort

Comfort zone

Screen

Object in left eye

Object in right eye

Object perceived in 3D Object perceived in 3D Object perceived in 3D Object in left eye Object in left eye

Pixel disparity Vergence

Depth

Comfort zone

View

ing

disc

omfo

rt

Accommodation (focal plane)

A perceptual model for disparity, SIGGRAPH 2011 [Didyk et al.]

Perceptual Issues of Stereo Displays!

Page 62: Class 13

Visual Discomfort

Comfort zone

Viewing discomfort Viewing comfort Scene manipulation

A perceptual model for disparity, SIGGRAPH 2011 [Didyk et al.]

Perceptual Issues of Stereo Displays!

Page 63: Class 13

Disparity Remapping

A perceptual model for disparity, SIGGRAPH 2011 [Didyk et al.]

Perceptual Issues of Stereo Displays!

Page 64: Class 13

Disparity Remapping

“Nonlinear Disparity Mapping for Stereoscopic 3D” by Lang et al. 2010

Nonlinear disparity retargeting Introduce more distortions where they will be less perceived

Perceptual Issues of Stereo Displays!

Page 65: Class 13

Disparity Remapping

“Nonlinear Disparity Mapping for Stereoscopic 3D” by Lang et al. 2010

Visual Importance based on saliency

Perceptual Issues of Stereo Displays!

Page 66: Class 13

Interested in Vergence-Accommodation!and other perceptual Issues in 3D Displays?!

SCIEN talk this Wed 4:15pm, Packard 101!Prof. Marty Banks, UC Berkeley!!

Page 67: Class 13

Taxonomy of Direct 3D Displays:"Parallax Barriers"

Unencumbered Automultiscopic

Parallax-based (2D display with light-directing elements)

Volumetric (directly illuminate points within a volume)

Holographic (reconstructs wavefront using 2D element)

Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays)

Automultiscopic

NewSight MV-42AD3 42'' (1920x1080, 1x8 views)

Page 68: Class 13

2D display!

barrier!

Parallax Barriers – Ives 1903!

•! low resolution & very dim!

Page 69: Class 13

Taxonomy of Direct 3D Displays:"Integral Imaging"

Unencumbered Automultiscopic

Parallax-based (2D display with light-directing elements)

Volumetric (directly illuminate points within a volume)

Holographic (reconstructs wavefront using 2D element)

Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays) Integral Imaging (lenticular sheets or fly’s eye lenslet arrays)

Automultiscopic

Alioscopy 3DHD 42'' (1920x1200, 1x8 views)

Page 70: Class 13

Integral Imaging – Lippmann 1908!

•! low-res, but brighter than parallax barriers !

2D display!

lens

lets!

Page 71: Class 13

Integral Imaging – Light Field!!

Page 72: Class 13

Integral Imaging – Interlaced Light Field!!Integral Imaging – Interlaced Light Field

# Display Pixels X!!

# D

ispl

ay P

ixel

s Y!

!

Page 73: Class 13

Integral Imaging – Observed Central View!!Integral Imaging – Observed Central View

# Display Pixels X / # Views X!!

# D

ispl

ay P

ixel

s Y

/ # V

iew

s Y!

!

Page 74: Class 13

Directional Backlighting"

§  Currently promoted by 3M §  Requires a high-speed (120 Hz) LCD panel, an additional double-sided prism film, and a pair of LEDs §  Allows multi-view display, but requires higher-speed LCD and additional light sources for each view

Nelson  and  Bro,,  2010  US  Patent  7,847,869  

Page 75: Class 13

Taxonomy of Direct 3D Displays:"Multi-planar Volumetric Displays"

Unencumbered Automultiscopic

Parallax-based (2D display with light-directing elements)

Volumetric (directly illuminate points within a volume)

Holographic (reconstructs wavefront using 2D element)

Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays) Integral Imaging (lenticular sheets or fly’s eye lenslet arrays)

Multi-planar (time-sequential projection onto swept surfaces)

Automultiscopic

Page 76: Class 13

Taxonomy of Direct 3D Displays:"Transparent-substrate Volumetric Displays"

Unencumbered Automultiscopic

Parallax-based (2D display with light-directing elements)

Volumetric (directly illuminate points within a volume)

Holographic (reconstructs wavefront using 2D element)

Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays) Integral Imaging (lenticular sheets or fly’s eye lenslet arrays)

Multi-planar (time-sequential projection onto swept surfaces) Transparent Substrates (intersecting laser beams, fog layers, etc.) Transparent SubstratesAutomultiscopic

Page 77: Class 13

Taxonomy of Direct 3D Displays:"Static Holograms"

Unencumbered Automultiscopic

Parallax-based (2D display with light-directing elements)

Volumetric (directly illuminate points within a volume)

Holographic (reconstructs wavefront using 2D element)

Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays) Integral Imaging (lenticular sheets or fly’s eye lenslet arrays)

Multi-planar (time-sequential projection onto swept surfaces) Transparent Substrates (intersecting laser beams, fog layers, etc.)

Static (holographic films)

Transparent SubstratesAutomultiscopic

capture reconstruction

Page 78: Class 13

Taxonomy of Direct 3D Displays:"Dynamic Holograms (Holovideo)"

Unencumbered Automultiscopic

Parallax-based (2D display with light-directing elements)

Volumetric (directly illuminate points within a volume)

Holographic (reconstructs wavefront using 2D element)

Parallax Barriers (uniform array of 1D slits or 2D pinhole arrays) Integral Imaging (lenticular sheets or fly’s eye lenslet arrays)

Multi-planar (time-sequential projection onto swept surfaces) Transparent Substrates (intersecting laser beams, fog layers, etc.)

Static (holographic films) Dynamic (holovideo)

Transparent SubstratesAutomultiscopic

Tay et al. [Nature, 2008]

MIT Media Lab Spatial Imaging Group [Holovideo, 1989 – present]

Page 79: Class 13

Cyclostereoscope, France, 1940-50s

Seymon Palovich Ivanov, Russia, 1935

Inventors & Filmmakers, 1950s

Glasses-free 3D Theaters!

Page 80: Class 13

USC ICT – SIGGRAPH 2013 ETech Holografika

Multi-projector Glasses-free 3D!

Page 81: Class 13

Modulator

Projection Lens Diffuse Screen

Viewer

Anatomy of a Projector!

Page 82: Class 13

Lenticular Lenticular

Building a 3D Projector!

Page 83: Class 13

Side View

Vertical-Only Diffuser

Side View

Vertical-Only Diffuser

Building a 3D Projector!

Page 84: Class 13

Pepper’s Ghost!Jo

hn H

enry

Pep

per,

1862

!

Page 85: Class 13

Gor

illaz

& M

adon

na @

Gra

mm

y Aw

ards

200

6!

Page 86: Class 13

Next: Computational Displays!

•! HDR displays!•! projection displays!

•! volumetric and other 3D displays!

•! vision-correcting displays "!

!

Hua

ng e

t al.

2014

!

Jone

s et

al.

2009

!

Fava

lora

et a

l.!

Page 87: Class 13

References and Further Reading!•  many more details on LCDs: http://www.personal.kent.edu/~mgu/LCD/index.htm!•  good article for LCDs: http://en.wikipedia.org/wiki/LCD_television (better than the wikipedia LCD article)!•  Freeman, Champion, Madhaven “Scanned Laser Pico-projectors”, Microvision, 2009!

•  Fattal, Peng, Tran, Vo, Fiorentino, Brug, Beausoleil, “A Multi-directional backlight for a wide-angle, glasses-free three-dimensional display”, Nature 2013!

•  Jones, McDowall, Yamada, Bolas, Debevec “Rendering for an Interactive 360° Light Field Display”, SIGGRPH 2007!•  Favalora, Napoli, Hall, Dorval, Dorval, Giovinco, Richmond, Chun “100-million-voxel volumetric display”, SPIE 4712, 2002!