classical mechanics lecture 9springer/phys1500/lectures/phys...classical mechanics lecture 9 today's...

41
Classical Mechanics Lecture 9 Today's Concepts and Examples: a) Energy and Friction b) Potential energy & force Midterm 2 will be held on March 13. Covers units 4-9 Unit 9 Homework Due Thursday March 12 11:30 PM. No extension! Mechanics Lecture 9, Slide 1

Upload: others

Post on 01-Feb-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • Classical Mechanics Lecture 9

    Today's Concepts and Examples:a) Energy and Frictionb) Potential energy & force

    Midterm 2 will be held on March 13. Covers units 4-9

    Unit 9 Homework DueThursday March 12 11:30 PM.No extension!

    Mechanics Lecture 9, Slide 1

  • Homework 8. Awesome Job!

    Average = 92%

    Mechanics Lecture 8, Slide 2

  • Practice Exams

    Phys 1500 Exams https://utah.instructure.com/courses/320947/files- Spring 2013: http://www.physics.utah.edu/~springer/phys1500/exams/MidtermExam2.pdf- Solutions: http://www.physics.utah.edu/~springer/phys1500/exams/MidtermExam2Soln.pdf- Long Sample: https://utah.instructure.com/courses/320947/files/45779670/download?wrap=1

    Phys 2210 Exams- Practice : http://www.physics.utah.edu/~woolf/2210_Jui/rev2.pdf- Spring 2015: http://www.physics.utah.edu/~woolf/2210_Jui/ex2.pdf

    Mechanics Lecture 8, Slide 3

    http://www.physics.utah.edu/%7Espringer/phys1500/exams/MidtermExam2.pdfhttp://www.physics.utah.edu/%7Espringer/phys1500/exams/MidtermExam2Soln.pdfhttps://utah.instructure.com/courses/320947/files/45779670/download?wrap=1http://www.physics.utah.edu/%7Ewoolf/2210_Jui/rev2.pdfhttp://www.physics.utah.edu/%7Ewoolf/2210_Jui/ex2.pdf

  • Main Points

    Mechanics Lecture 8, Slide 4

  • Main Points

    Mechanics Lecture 8, Slide 5

  • Incline with Friction: Work-Kinetic Energy

    Using Work-Kinetic Energy Theorem

    Same result as using Newton’s Law

    Mechanics Lecture 8, Slide 6

  • H

    N1

    mg

    N2

    mg

    µmg

    must be negative

    m

    Work by Friction :Wfriction

  • Checkpoint

    What is the total macroscopic work done on the block by all forces during this process?

    A) mgH B) –mgH C) µk mgD D) 0

    Mechanics Lecture 9, Slide 8

    D

    m

    H

    0000

    =⇒=∆

    ===∆

    tot

    f

    i

    tot

    WKKK

    WK

    Mechanics Lecture 8, Slide 8

  • Mechanics Lecture 8, Slide 9

  • Force from Potential Energy:1D

    Mechanics Lecture 8, Slide 10

  • Force from Potential Energy in 3-d

    Gradient operator

    Mechanics Lecture 8, Slide 11

  • Potential Energy vs. Force

    dxxdUxF )()( −=

    Mechanics Lecture 9, Slide 12

  • Potential Energy vs. Force

    2

    21)( kxxU −=

    dxxdUxF )()( −= kx−=

    Mechanics Lecture 9, Slide 13

  • Potential Energy vs. Force

    Mechanics Lecture 9, Slide 14

  • Potential Energy vs. Force

    Mechanics Lecture 9, Slide 15

  • Demo

    Potential Energy vs. Force

    dxxdUxF )()( −=

    Mechanics Lecture 9, Slide 16

  • Equilibrium

    Mechanics Lecture 8, Slide 17

  • Equilibrium points

    Mechanics Lecture 8, Slide 18

  • Equilibrium points

    Mechanics Lecture 8, Slide 19

  • Equilibrium points

    Mechanics Lecture 8, Slide 20

  • Block on Incline

    1cos xTxdTWtension ∆=⋅= ∫ θ

    mxTv

    xTWvvmK

    xTWWWWW

    f

    netif

    tensiontensionnormalfrictionnet

    1

    122

    1

    cos2

    cos)(21

    cos

    ∆=

    ∆==−=∆

    ∆==++=

    θ

    θ

    θ

    Mechanics Lecture 8, Slide 21

  • Block on Incline

    θµ cosxmgxdfW kkfriction ∆−=⋅= ∫

    θsinxmgxdWWgravity ∆−=⋅= ∫

    Mechanics Lecture 8, Slide 22

  • Block on Incline

    θµθθ

    θµθθθ

    θ

    cossincos

    cossincoscos

    cos2;0

    12

    2221

    1

    1

    2

    mgmgTxTx

    xmgxmgxTxTxTK

    mxTvv

    KWWWW

    xTxdTW

    k

    k

    if

    frictiongravitytensionnet

    tension

    −−∆−

    =∆

    ∆−∆−∆=∆−∆−=∆

    ∆==

    ∆=++=

    ∆=⋅= ∫

    Mechanics Lecture 8, Slide 23

  • Block on Incline

    ?0 =⇒

  • Energy Conservation Problems in general

    )()( tUtKUKUKE ffiimechanical +=+=+=

    For systems with only conservative forces acting

    0=∆ mechanicalE

    Emechanical is a constant

    Mechanics Lecture 8, Slide 25

  • Gravitational Potential Energy

    rEr

    Err

    Mr

    Mrr

    Mechanics Lecture 8, Slide 26

  • Gravitational Potential Problems

    gravitymechanical hUhmvUKE )()(21 2 +=+=

    conservation of mechanical energy can be used to “easily” solve problems.

    Define coordinates: where is U=0?

    M

    M

    E

    Etotal

    M

    MMMoon

    E

    EEEarth

    rrmGM

    rrmGMrU

    rmGMrU

    rmGMrU

    −−

    −−=

    −=

    −=

    )(

    )(

    )(

    0)( →−=r

    mGMrU E as ∞→r

    rEr

    Err

    Mr

    Mrr

    Add potential energy from each source.

    Mechanics Lecture 8, Slide 27

  • Trip to the moon

    )2

    1(21

    21

    21

    222

    2

    iE

    E

    E

    E

    Ei

    E

    E

    Ei

    Ef

    f

    E

    E

    Ei

    ffii

    vGMRR

    RGMv

    GM

    RmGMmv

    mGMR

    RmGM

    RmGMmv

    UKUK

    −=

    −=

    −=

    −=−

    +=+

    f

    Ef

    f

    E

    Ei

    ii

    RmGMU

    KR

    mGMU

    mvK

    −=

    =

    −=

    =

    0

    21 2

    Mechanics Lecture 8, Slide 28

  • Trip to the moon

    %02.0000204.0

    )01659.0)(01232.0()()(

    )()()(

    )(

    )(

    ==

    =⇒

    −=

    −=

    −−=

    −=

    EE

    EM

    EF

    FMEE

    EM

    E

    E

    FME

    M

    EE

    EM

    FME

    MFM

    F

    EFE

    RURU

    RR

    RdMRM

    RM

    RdM

    RURU

    RdmGMRU

    RmGMRU Can ignore effect

    of moon for this problem at level of precision for SmartPhysics

    Mechanics Lecture 8, Slide 29

  • Trip to the moon

    ( )

    ME

    M

    E

    ME

    m

    E

    Ei

    fME

    m

    f

    E

    ME

    m

    E

    Ei

    ddmGMcmGMb

    dmGM

    RmGMmva

    bdxcbadaxcxbxbdaxadxcxxdbxdax

    xdxcxxdb

    xx

    xdc

    xb

    xdxd

    xdc

    xba

    RdmGM

    RmGM

    dmGM

    RmGMmv

    =−=−=

    −−=

    =−−++−

    =−+−−

    +−=−

    −+−

    =

    +−−

    =−

    +=

    −−−=−−

    2

    2

    2

    2

    21

    0)(0

    )()()(

    )()()(

    21

    …or you can practice solving the quadratic equation with many terms!!!

    Mechanics Lecture 8, Slide 30

  • Trip to the moon

    M

    m

    ME

    Ef

    ff

    EM

    m

    E

    Ei

    ii

    RmGM

    dmGMU

    mvK

    dmGM

    RmGMU

    mvK

    −−=

    =

    −−=

    =

    2

    2

    21

    21 Can NOT ignore

    effect of moon for this problem since the rocket is AT the moon in the end !!!!

    McentersME

    EcentersEM

    RddRdd

    −=−=

    Mechanics Lecture 8, Slide 31

  • Trip to the moon

    −−+−=

    ++−−=

    ++−−=

    −−=−−

    +=+

    →→

    →→

    →→

    →→

    )1(21

    22221

    212

    21

    21

    2

    2222

    2

    22

    ME

    Em

    ME

    E

    EME

    Em

    Ei

    Eif

    Mi

    m

    MEi

    E

    EMi

    m

    Ei

    Eif

    M

    m

    ME

    E

    EM

    m

    E

    Eif

    M

    m

    ME

    Ef

    EM

    m

    E

    Ei

    ffii

    RMRM

    dR

    dMRM

    RvGMvv

    RvGM

    dvGM

    dvGM

    RvGMvv

    RGM

    dGM

    dGM

    RGMvv

    RmGM

    dmGMmv

    dmGM

    RmGMmv

    UKUK

    Mechanics Lecture 8, Slide 32

  • Trip to the moon

    020608.12

    0453.0

    0167.0

    000207.0

    )1(21

    2

    2

    =

    =

    =

    =

    −−+−=

    →→

    Ei

    E

    ME

    Em

    ME

    E

    EME

    Em

    ME

    Em

    ME

    E

    EME

    Em

    Ei

    Eif

    RvGM

    RMRM

    dR

    dMRM

    RMRM

    dR

    dMRM

    RvGMvv

    Mechanics Lecture 8, Slide 33

  • Trip to the moon

    xx

    Mechanics Lecture 8, Slide 34

  • Block on Incline 2

    1cos xTxdTWtension ∆=⋅= ∫ θ

    11 xmgxdfW kkfriction ∆−=⋅= ∫ µ

    Mechanics Lecture 8, Slide 35

  • Block on Incline 2

    mxmgxTv

    xmgxTWvvmK

    xmgxTWWWWWW

    kf

    knetif

    ktensionfrictiontensionnormalfrictionnet

    )cos(2

    cos)(21

    cos

    111

    11122

    111

    ∆−∆=

    ∆−∆==−=∆

    ∆−∆=+=++=

    µθ

    µθ

    µθ

    Mechanics Lecture 8, Slide 36

  • Block on Incline 2

    θµθθ

    θµθθθ

    θ

    cossincos

    cossincoscos

    cos2;0

    12

    2221

    1

    1

    2

    mgmgTxTx

    xmgxmgxTxTxTK

    mxTvv

    KWWWW

    xTxdTW

    k

    k

    if

    frictiongravitytensionnet

    tension

    −−∆−

    =∆

    ∆−∆−∆=∆−∆−=∆

    ∆==

    ∆=++=

    ∆=⋅= ∫

    Mechanics Lecture 8, Slide 37

  • Block on Incline 2

    2sin xmgxdWWgravity ∆=⋅= ∫ θ

    Mechanics Lecture 8, Slide 38

  • Clicker Question A.B.C.

    D.

    0% 0%0%0%

    Suppose the potential energy of some object U as a function of xlooks like the plot shown below.

    Where is the force on the object zero?A) (a) B) (b) C) (c) D) (d)

    U(x)

    x

    (a) (b) (c) (d) dxxdUxF )()( −=

    Mechanics Lecture 8, Slide 39

  • Clicker Question A.B.C.

    D.

    0% 0%0%0%

    Suppose the potential energy of some object U as a function of xlooks like the plot shown below.

    Where is the force on the object in the +x direction?A) To the left of (b) B) To the right of (b) C) Nowhere

    U(x)

    x

    (a) (b) (c) (d) dxxdUxF )()( −=

    Mechanics Lecture 8, Slide 40

  • Clicker Question A.B.C.

    D.

    0% 0%0%0%

    Suppose the potential energy of some object U as a function of xlooks like the plot shown below.

    Where is the force on the object biggest in the –x direction?A) (a) B) (b) C) (c) D) (d)

    U(x)

    x

    (a) (b) (c) (d) dxxdUxF )()( −=

    Mechanics Lecture 8, Slide 41

    Classical Mechanics �Lecture 9Homework 8. Awesome Job!Practice ExamsMain PointsMain PointsIncline with Friction: Work-Kinetic EnergyWork by Friction :Wfriction