clic qd0 stabilization j. allibe 1, l. brunetti 1, j.-p. baud 1, g. balik 1, g. deleglise 1, a....

28
CLIC QD0 Stabilization J. Allibe 1 , L. Brunetti 1 , J.-P. Baud 1 , G. Balik 1 , G. Deleglise 1 , A. Jeremie 1 , S. Vilalte 1 B. Caron 2 ,C.Hernandez 2 1 : LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France & 2 : SYMME-POLYTECH Annecy-Chambéry, Université de Savoie, Annecy, France

Upload: barry-thornton

Post on 02-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

CLIC QD0 Stabilization

J. Allibe1, L. Brunetti1, J.-P. Baud1, G. Balik1 , G. Deleglise1, A. Jeremie1, S. Vilalte1

B. Caron2,C.Hernandez2

1: LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France&

2: SYMME-POLYTECH Annecy-Chambéry, Université de Savoie, Annecy, France

Page 2: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

Outline

2ECFA Hamburg 2013 - CLIC QD0 Stabilization

IntroductionIP feedbackActive stabilization

Description & performancesLimitationsWork in progress

ATF2

Page 3: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

3

CLIC : stabilization challenge?

CLIC Beam dimension

Beams Intersection Relative mean motion between :

Main linac quadrupoles

Final Focus Magnets

Vertical 1.5 nm [1Hz ∞]

0.2 nm [4Hz ∞]

Lateral 5 nm [1Hz ∞]

5 nm [4Hz ∞]

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Page 4: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

Stabilization strategy

4

RIGID GRIDER

Active Isolation KICKER

QD0 (FF magnet)

Final Focus (FF)

Position at I.P.

Beam (e-)

Beam (e+)

Detector

FFMmagnetic axis

Desired beam position

Indirect disturbances:Seismic motion, cultural noise …

(FF)

Direct disturbances:Acoustic noise, cooling …

Post collision BPM

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Page 5: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

Stabilization strategy

5

BEAM stabilization (IPFB) Measurement : BPMAction : KICKER

Mechanical stabilization (AI) :Measurement : seismic sensors on QD0 and ground Action : Active Isolation (+ passive isolation)

RIGID GRIDER

Active Isolation KICKER

QD0 (FF magnet)

Final Focus (FF)

Position at I.P.

Beam (e-)

Beam (e+)

Detector

FFMmagnetic axis

Desired beam position

Indirect disturbances:Seismic motion, cultural noise …

(FF)

Direct disturbances:Acoustic noise, cooling …

Post collision BPM

Action IPFB

Action AI

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Page 6: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

6ECFA Hamburg 2013 - CLIC QD0 Stabilization

Stabilization strategy: ground motion

PSD of GM at LAPPIRMS of GM at LAPP

Page 7: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

7ECFA Hamburg 2013 - CLIC QD0 Stabilization

Beam trajectory feedback only efficient at very low

frequency

Stabilization strategy: ground motion

Sample frequency = 50 Hz

PSD of GM at LAPPIRMS of GM at LAPP

At the IP (mechanical stabilization + beam feedback) we aim 0,2nm at 0,1Hz

Page 8: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

IP feedback (IPFB)

8ECFA Hamburg 2013 - CLIC QD0 Stabilization

PLACET simulations (collaboration with CERN)

Page 9: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

9

IP feedback (IPFB)

Reduction of luminosity losses down to 2% for different GM models

B. Caron et al, 2012, 236-247, Contr. Eng. Pract. , 20 (3). ; G. Balik et al, 2012, N.I.M. A., 163-170

GM B10 GM B

PLACET simulations (collaboration with CERN)

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Page 10: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

Active stabilization : active foot description

102013-02-21 QD0 Stabilization

Active foot description

Elastomeric strips for guidance

Lower electrode of the

capacitive sensor

Fine adjustments for capacitive sensor (tilt and

distance)

Piezoelectric actuators

PPA10M CEDRAT

Model & experimental characterization

Page 11: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

112013-04-17 Conseil scientifique

Geophone[2 90] Hz

Accelerometers[10 130] Hz

GM induced by cultural noise

Active stabilization : sensors description

Page 12: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

2013-02-21 QD0 Stabilization 12

Feedforward with 1 geophone and 1 accelerometer Feedback (loop shaping) with 1 geophone and 1 accelerometer Sensors are dedicated to the selected bandwidth.

Active stabilization : control strategy

Page 13: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

2013-02-21 QD0 Stabilization 13

Matlab and dSPACE ControlDesk For monitoring and analysis

dSPACE Real time hardware for

Rapid Control Prototyping

Amplifiers, filters input/output board for signal

conditioning

4 sensors :2 Geophones

GURALP CMG-6T2 Accelerometers :

WILCOXON 731A

All is taken into account in simulation (noise, ADC, DAC…)

Active stabilization : Experimental set-up

Page 14: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

2013-02-21 QD0 Stabilization 14

Attenuation up to 50dB between 1,5-100HzExperiment matches simulation : process well understood

10-1

100

101

102

103

-60

-50

-40

-30

-20

-10

0

10

20

30

40T

ran

smis

sio

n (

dB

) g

rou

nd

-> t

op

po

siti

on

(d

B)

Frequency [Hz] (Hz)

ExperimentalSimulationTheoretical

1,5Hz-100Hz

Simulation and experimental results (attenuation)

Active stabilization : results

Page 15: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

2013-02-21 QD0 Stabilization 15

Balik et al, “Active control of a subnanometer isolator“, JIMMSS. (accepted)

Spec : 0,2 nm RMS @ 4 Hz

Result : 0,6 nm RMS @ 4 Hz

Active stabilization : results

Page 16: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

2013-02-21 QD0 Stabilization 16

Main limitations : Sensor noiseSensor transfer function

Simulation + Experimental Test Help define seismic sensor performances

needs :noise level frequency range

So…Tests with a low noise sensor :

geophone 3ESPDevelopment of a new and dedicated

sensor

Active stabilization limited by Sensors …

Page 17: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

2013-02-21 QD0 Stabilization 17

Large bandwidthNoise in low frequencies

Narrow bandwidthEfficient in low frequencies

Active stabilization with Geophone 3ESP

6T

3ESP

Ground Measurement with geophones 6T

Ground Measurement with geophones 3ESP

Page 18: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

Result : 0,6 nm RMS @ 4 Hz

Active stabilization with Geophone 3ESP

18ECFA Hamburg 2013 - CLIC QD0 Stabilization

Result : 0,7 nm RMS @ 4 Hz

6T

3ESP Example of control with 3ESP instead of 6T

Page 19: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

19

Experimental transfer function of « foot + sensor »

Guralp 6TGuralp 3ESP

3ESP transfer function more complex up to 90Hz

Difficulties in managing the sensor model

limits control performance and robustness

Active stabilization with geophone 3ESP

need of a new and dedicated sensor

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Page 20: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

20

Dedicated sensor : Industrial solution

Managed by CERN : specifications (dedicated to main LINAC stabilization)

Specification also match the QD0 stabilization

Parametrical study of those specifications : resonance frequencydamping

0,07 nm RMS @ 2 Hz

Sensor transfer functionIRMS (m)

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Page 21: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

21

Patent is in progress, G. Deleglise, J. Allibe, G. Balik & J.P. Baud

1st prototype : developed for process demonstration

Dimensions 250 x 250 x 110 mmPromising GM measurement performancestunable bandwidth ( <1Hz to >100Hz)

2nd version : miniaturized and optimized for control

Dimensions 100 x 100 x 100 mm Performances equivalent Adapted transfer function First tests in control encouraging

Next Step : Evaluation of the suitability for CLIC stabilizations in collaboration with CERN

Further development and optimization Robustness, reproducibility Cost …

Dedicated sensor in development at LAPP

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Page 22: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

Demonstration of the 0.2 nm @ 4Hz with an active table (sensor, control…)

Application on a real scale QD0 prototype

Two main objectives for 2016

22ECFA Hamburg 2013 - CLIC QD0 Stabilization

Page 23: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

23

Demonstration table, not made for QD0 at this state

Mechanics : Max load of 320 kgs per table vs 1500 Kgs of QD0

Control : problems of Eigenfrequencies, coherence of the ground…

Stabilization application on QD0 prototype

There is a need for a QD0 prototype

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Page 24: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

24

Stabilization application on QD0 prototype

Initial status : Simulation studies of QD0 made by the team of M. Modena at CERN:

magnetics

mechanics aspects

LAVISTA objective is to stabilized real scale QD0 prototype Development of a state-space model

Definition of the control strategy with simulation tool integrating this space-state model

Stabilization test on real scale « dummy QD0 magnet »

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Page 25: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

Modal analysis using finite elements Adapted to control study needs (inputs/outputs)Select the significant modes to construct the accurate frequency response over the interest frequency range

State space ModelFE to space-state conversionIntegration in a control loop using simulink for the whole simulation

25

QD0 state-space model

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Page 26: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

Simulation objective : several aspects have to be defined before feet realization :

Active feet : type, number, positioning degrees of freedomType of control (SISO, MIMO)Conditioning, real time processing…

Dummy QD0 magnet prototype realization :

The most elementary for machining, assembling, cost and delay with most realistic :

Dynamic behavior (Eigen-frequencies, damping…)Dimensions Mass

26

QD0 stabilisation test bench

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Page 27: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

14 Ground Motion sensors on ATF2 for GM Feed-forward study

A.Jeremie (LAPP)Y.Renier, K.Artoos, C.Charrondière, R.Tomas-Garcia, D.Schulte

(CERN)

27

Goal : Detect Ground Motion (GM) effect on beam trajectory. Vibration sensors can help with characterization of jitter sourcesMotivation : It would demonstrate possibility to make a feed-forward on beam with GM sensors trajectory correction based on GM measurements

in CLIC avoid quadrupole stabilization on CLIC ?

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Stabilization study on ATF2

Since May 2013 Sensors installed : positioned at critical locations with maximum effectdata acquisition on : Synchronized BPMs and GM sensors

Page 28: CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,

Summary

ECFA Hamburg 2013 - CLIC QD0 Stabilization

IP feedback Reduction of luminosity losses down to 2% for different GM modelsB. Caron et al, 2012, 236-247, Contr. Eng. Pract. , 20 (3). ; G. Balik et al, 2012,

N.I.M. A., 163-170

PLACET simulations (collaboration with CERN)

QD0 dummy prototype space-state model on going prototype production before 2016 Real scale active stabilization strategy

(system dimensions, multiple feet etc..)

RMS (m)Active stabilization (QD0)2012 Result : 0,6 nm RMS @ 4 Hz

2 feedback + 2 feedforward4 sensors : 2 geophones (Guralp6T)

2 accelerometers ( Wilcoxon731)

Spec : 0,2 nm RMS @ 4 Hz

Main limitations from sensors : Signal/noise ratioand transfer function complexity

New sensor dedicated to control : - Sensor specifications have been detailed by CERN - A sensor prototype is currently studied and developed at LAPP, encouraging preliminary results. Future collaboration and tests with CERN are planed on this prototype.

Balik et al, “Active control of a subnanometer isolator“, JIMMSS. (accepted)

ATF2Detect GM correlation with BPM signals.

15 Guralp6T sensors installed data acquisition started last week