click chemistry - jena bioscience · click chemistry on nucleic acids 1. definition and hallmarks...

30
Jena Bioscience GmbH Löbstedter Str. 71 07749 Jena, Germany Tel.: +49-3641-628-5000 Fax: +49-3641-628-5100 Web: www.jenabioscience.com Jena, October 24 th 2017 Click Chemistry – Expanding the Scope of Nucleic Acid Labeling Logo Client

Upload: others

Post on 20-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Jena Bioscience GmbHLöbstedter Str. 7107749 Jena, Germany

Tel.: +49-3641-628-5000Fax: +49-3641-628-5100Web: www.jenabioscience.com

Jena, October 24th 2017

Click Chemistry –Expanding the Scope of Nucleic Acid Labeling

Logo Client

Click Chemistry on Nucleic Acids

1. Definition and Hallmarks of a Click Reaction

2. Classification of Click Reactions

3. In vitro Synthesis of DNA and RNA Conjugates

4. Clickable Nucleosides in Metabolic Labeling

5. Trends and Perspectives

2

“Diverse Function from a Few Good Reactions“[1]

§ Selective: Formation of only the desired

product

§ Orthogonal: No side reaction with sample matrix

§ Simple: Easy to do for a non-chemist

§ Fast: Completion in biomolecular timescale

3

K. Barry SharplessNoble Price Chemistry 2001

A + B A BClick?

[1] Kolb et al. (2001) Angew. Chem. Int. Ed. Engl. 40(11): 2004

[1] Rostovtsev et al. (2002) Angew. Chem. Int. Ed. Engl. 41(14):2596[2] Tornøe et al. (2002) J. Org. Chem. 67(9):3057[3] Agard et al. (2004) JACS. 126(46):15046

Azide Clicks with Alkyne in the Presence of Cu(I) or throughRing Strain

A B+Cu(I)

(CuAAC)

Alkyne-containingmolecule A

Azide-containingmolecule B

Conjugate of A and B, cross-linked via a Triazole moiety

AB

NNN

NNN

N

O

N

ONN

N

AB

Azide-containingmolecule B

NNN

DBCO-containingmolecule A

A

B+ SPAAC

N

NNN

N NN

NNN

HOO

N

NNN

N NN

NNN

HOHO

OHTHPTA BTTAA

• CuSO4, reduced in situ• Ascorbate

Cu(I)-stabilizingLigands

4

Tetrazines Click with Alkenes

A

Tetrazine-functionalizedmolecule A

+Vinyl-

functionalizedmolecule B

B

NN N

N

R2

R1

B

A

NNH

R2

R1

Conjugate of A and B crosslinkedvia Dihydropyrazine

B+

Methylcyclopropene-functionalized

molecule B

B+

trans-Cyclooctene(TCO)-

functionalizedmolecule B

B

A

NNH

R2

R1

A

BNNH

R2

R1

Carboni and Lindsey (1959) JACS 81(16):4342.5

How Fast is Fast Enough?

6

A + B A Bk2

NHR

O

NN N

N

R1

R2

+N

NN

+

N

O

NNN

+

M-1s-1

Isolated Material Fixed Cells/Life Cell Surface Life Cells Cytosol

10-3 10-2 10 102 106

NH

O

ONO

OH

HON O

O

N O

O

+

NN N

N

R1

R2

+

NN N

N

R1

R2

[1] Oliveira et al. (2017) Chem. Soc. Rev. 46(16):4895[2] Kozma et al. (2017) ChemBioChem. 18(6):486

Slow Fast

Click Chemistry on Nucleic Acids

1. Definition and Hallmarks of a Click Reaction

2. Classification of Click Reactions

3. In vitro Synthesis of DNA and RNA Conjugates

4. Clickable Nucleosides in Metabolic Labeling

5. Trends and Perspectives

7

Dual DNA Labeling for FRET and TIRF in One Pot

§ CuAAC (and SPAAC) are orthogonal to iEDDA

§ Single step/ one pot procedure for DNA labeling

§ è Easy combination of diverse labels

§ è No de novo synthesis of DNA required

8

CuSO4,THPTA

Ascorbate

[1] Schoch et al. (2012) Bioconjug. Chem. 23(7):1382

Polymerases:Pwo,Vent (exo-)KOD XL

Internal Modification of Long DNA by Incorporation ofFunctionalized dNTPs

§ Tolerance of most DNA-polymerases towards modified dNTPs

§ C-5-modification of dU/dC particularly well suited (major groove)

§ Variable degree of substitution by adjusting dNTP/dNTP*

§ Modified amplicons of several kb accessible

9

[1] Burley et al. (2006) JACS 128 (5):1398[2] Gierlich et al. (2007) Chem. - Eur. J. 13 (34):9486

NH 3

2NH1

6

5 4

O

7O

8

Efficient Synthesis and KOD XL- Incorporation of 5-N3-dCTP

10[1] Krause et al. (2014) Chem. - Eur. J. 20(50): 16613

Preparing RNAs beyond the Scope of Solid Phase Synthesis

§ C5-modified UTP derivatives are substrates of the T7-RNA polymerase

§ Generally, fewer polymerases available than for DNA/PCR

§ Synthesis of several kb transcripts possible in vitro

§ Constraints apply due to conserved promoter sequences

11

[1] Rao et al. (2012) Chem. Commun. (Camb). 48(4):498[2] Sawant et al. (2016) Nucleic Acids Res. 44(2):e16

Sawant et al. (2016) Nucleic Acids Res. 44(2):e16

NH

O

ONO

OHOH

OPOOH

OPOPHOOO

OHOH

N3

Chemo-Enzymatic 3′- and Internal RNA Modification UsingPolyA-polymerases and Ligases

§ Limited accessibility of long internally modified RNA by chemical means

§ Chemo-enzymatic approaches to overcome synthetic limitation

§ Azides are small

12[1] Winz et al. (2012) Nucleic Acids Res. 40(10):e78

Chemo-Enzymatic 3′- and Internal RNA Modification UsingPolyA-polymerases and Ligases

13[1] Winz et al. (2012) Nucleic Acids Res. 40(10):e78

Partially Complementary DNA Scaffolds Increase Click Yields

§ Increasing the efficiency of CuAAC on internal azide

§ Forcing the ligation site into a bulge

14

75-85% without scaffold92% with scaffold

[1] Winz et al. (2012) Nucleic Acids Res. 40(10):e78

TdT permits 3′- and Internal Modification of DNA byTailing and Extension

15

§ Transfer of various base-modified (d)NTPs by

terminal deoxynucleotidyl transferase TdT

§ Fill-up by polymerase or enzymatic ligation

[1] Winz et al. (2015) Nucleic Acids Res. 43(17): e110

T7 RNAP

SP6 RNAP

T3 RNAP

5-(d)UpG Dinucleotides Are Excellent Transcriptional Initiators

§ (d)UpGs are universally applicable

16[1] Samanta et al. (2014) Chem Commun. 50(11):1313

dUpG-Priming Allows to Decorate RNA with Metal Complexes, Affinity Tags, Sugars, Surfactants, Dyes, …

17

A

B

C

[1] Samanta et al. (2014) Chem Commun. 50(11):1313

The 5′-OdUpG Label is a Ligation Donor for Internalization

§ Requirements of ligation approach:

§ Acceptance by polynucleotide kinase

§ Acceptance by ligases

§ 5-UpG modification tolerated bythree different enzyme classes

§ Two-step procedure

18[1] Samanta et al. (2014) Chem Commun. 50(11):1313

Chemo-Enzymatic Procedures Are Applicable to Any Positionin Any Nucleic Acid

InternalRandom Site-Specific

3′ 5′

DNA

RNA

19

Click Chemistry on Nucleic Acids

1. Definition and Hallmarks of a Click Reaction

2. Classification of Click Reactions

3. In vitro Synthesis of DNA and RNA Conjugates

4. Clickable Nucleosides in Metabolic Labeling

5. Trends and Perspectives

20

Cytoplasm

Nucleus

Base Base Phosphorylation ofnucleoside analog by

cellular kinases

In vivo Application of Clickable Nucleosides: Metabolic Labels

DNAP

A Replication

RNAP

B Transcription

PAP

C Polyadenylation

NH

O

ONO

OH

HO

NH

O

ONO

OH

HO

NH

O

ONO

OH

HO

N3N

NH2

ONO

OH

HO

NH

O

ONO

OH

HO F

[1] Salic and Mitchison (2008) PNAS 105 (7):2415[2] Neef and Luedtke (2011) PNAS 108(51): 20404[3] Guan et al. (2011) ChemBioChem 2 (14):2184[4] Neef and Luedtke (2011) Chembiochem. 15(6):789[5] Rieder and Luedtke (2014) Angew. Chem. Int. Ed. Engl. 53(35):9168[6] Jao and Salic (2008) PNAS 105(41): 15779[7] Curanovic et al. (2013) Nat. Chem. Biol. 9 (11):671 21

Click Chemistry Permits Direct Introduction ofAffinity Tags

§ Analysis of mRNA-polyadenylation

§ Biotin tag ideally suited for streptavidin pulldown and NGS22

Feeding

N

NN

NNH2

O

OHOH

HO

Lysis/ RNA-isolation

CuAAC

Biotin-N3N

NN

S

NHHN

O

Agarose GelSeparation

Northern-Blot

Strep-AP

LuminescenceDetection

Curanovic et al. (2013) Nat. Chem. Biol. 9 (11):671

Superior Efficiency of Click-Labeling to Immunostaining

§ No Antibodies required

§ Label can easily be adapted to individual needs

§ Mutual orthogonality of both techniques23

FixationFeeding

NH

O

ONO

OH

HO

Br

Yanti-Br

BrBrBr

BrBrBr

BrBrBr

Yanti-Fc

BrBrBr

Y

A

NH

O

ONO

OH

HO

N3

FixationFeeding Click

B

Visualization of Metabolically Labeled DNA and RNA

24

Salic and Mitchison (2008) PNAS 105 (7):2415

NH

O

ONO

OH

HO

Rieder and Luedtke (2014) Angew. Chem. Int. Ed. Engl. 53(35): 9168

NH

O

ONO

OH

HO F

NH

O

ONO

OH

HO

NH

O

ONO

OH

HO

Br

Jao and Salic (2008) PNAS 105(41): 15779

NH

O

ONO

OHOH

HO

Click Chemistry on Nucleic Acids

1. Definition and Hallmarks of a Click Reaction

2. Classification of Click Reactions

3. In vitro Synthesis of DNA and RNA Conjugates

4. Clickable Nucleosides in Metabolic Labeling

5. Trends and Perspectives

25

The (Last) Challenge Remaining- Life Cell Imaging

§ Already well established in protein science

§ Metabolic nucleotide labels are rather slow

§ Cytotoxicity of copper

26

[1] Carlson et al. (2013) Angew. Chem. Int. Ed., 52(27): 6917[2] Uttamapinant et al. (2012). Angew. Chem. Int. Ed. Engl. 51 (24):5852.

N B- N+

FF

NN

NN

R

+N B- N

+

FF

NHN

R

OHOH

1600 x turn-on

Turn-On-Tetrazines[1]

N

O

NH

NN N

Cu+

R+N

O

NH N

NNR

10 x decreasedCu(I)-demand

Picolyl Azides[2]

Click Chemistry Is Useful for Anybody Dealing withNucleic Acid Analytics

§ Click reactions are broadly applicable to nucleic acids

§ High modularity in experimental design

§ Small tags are well tolerated by various enzyme classes

§ Allow preparation of previously inaccessible conjugates

§ Virtually any click precursor commercially available

§ Life cell applications subject to current research

27

40 People…

29

30

…working at our new 2,500 m2 corporate building