cluster analysis for gene expression data

35
Cluster Analysis for Gene Expression Data Ka Yee Yeung http://staff.washington.edu/kayee/ research.html Center for Expression Arrays Department of Microbiology [email protected]

Upload: uma-terrell

Post on 31-Dec-2015

39 views

Category:

Documents


2 download

DESCRIPTION

Cluster Analysis for Gene Expression Data. Ka Yee Yeung http://staff.washington.edu/kayee/research.html Center for Expression Arrays Department of Microbiology [email protected]. A gene expression data set. ……. Snapshot of activities in the cell Each chip represents an experiment: - PowerPoint PPT Presentation

TRANSCRIPT

Cluster Analysis for Gene Expression Data

Ka Yee Yeunghttp://staff.washington.edu/kayee/research.html

Center for Expression ArraysDepartment of Microbiology

[email protected]

10/18/2002 Ka Yee Yeung, CEA 2

• Snapshot of activities in the cell

• Each chip represents an experiment:– time course– tissue samples

(normal/cancer)

……..

A gene expression data set

p experiments

n genes

Xij

10/18/2002 Ka Yee Yeung, CEA 3

What is clustering?• Group similar objects together• Objects in the same cluster (group)

are more similar to each other than objects in different clusters

• Data exploratory tool: to find patterns in large data sets

• Unsupervised approach: do not make use of prior knowledge of data

10/18/2002 Ka Yee Yeung, CEA 4

Applications of clustering gene expression data

• Cluster the genes functionally related genes

• Cluster the experiments discover new subtypes of tissue samples

• Cluster both genes and experiments find sub-patterns

10/18/2002 Ka Yee Yeung, CEA 5

Examples of clustering algorithms

• Hierarchical clustering algorithms eg. [Eisen et al 1998]

• K-means eg. [Tavazoie et al. 1999]• Self-organizing maps (SOM) eg.

[Tamayo et al. 1999]• CAST [Ben-Dor, Yakhini 1999]• Model-based clustering algorithms eg.

[Yeung et al. 2001]

10/18/2002 Ka Yee Yeung, CEA 6

Overview

• Similarity/distance measures• Hierarchical clustering algorithms

– Made popular by Stanford, ie. [Eisen et al. 1998]

• K-means– Made popular by many groups, eg.

[Tavazoie et al. 1999]

• Model-based clustering algorithms [Yeung et al. 2001]

10/18/2002 Ka Yee Yeung, CEA 7

How to define similarity?

• Similarity measures:– A measure of pairwise similarity or dissimilarity– Examples:

• Correlation coefficient• Euclidean distance

Experiments

gene

s gene

s

genes

X

Y

X

Y

Raw matrix

Similarity matrix

1

n

1 p n

n

10/18/2002 Ka Yee Yeung, CEA 8

Similarity measures(for those of you who enjoy equations…)

• Euclidean distance

• Correlation coefficient

2

1

)][][(

p

j

jYjX

p

jX

Xwhere

YjYXjX

YjYXjXp

j

p

j

p

j

p

j

1

1 1

22

1

][

,

)][()][(

)][)(][(

10/18/2002 Ka Yee Yeung, CEA 9

Example

X 1 0 -1 0Y 3 2 1 2Z -1 0 1 0W 2 0 -2 0

-3

-2

-1

0

1

2

3

4

1 2 3 4

X

Y

Z

W

Correlation (X,Y) = 1 Distance (X,Y) = 4

Correlation (X,Z) = -1 Distance (X,Z) = 2.83

Correlation (X,W) = 1 Distance (X,W) = 1.41

10/18/2002 Ka Yee Yeung, CEA 10

Lessons from the example

• Correlation – direction only• Euclidean distance – magnitude &

direction• Array data is noisy need many

experiments to robustly estimate pairwise similarity

10/18/2002 Ka Yee Yeung, CEA 11

Clustering algorithms

• From pairwise similarities to groups• Inputs:

– Raw data matrix or similarity matrix– Number of clusters or some other

parameters

10/18/2002 Ka Yee Yeung, CEA 12

Hierarchical Clustering [Hartigan 1975]• Agglomerative (bottom-up)

• Algorithm:– Initialize: each item a cluster– Iterate:

• select two most similar clusters• merge them

– Halt: when required number of clusters is reached

dendrogram

10/18/2002 Ka Yee Yeung, CEA 13

Hierarchical: Single Link

• cluster similarity = similarity of two most similar members

- Potentially long and skinny clusters

+ Fast

10/18/2002 Ka Yee Yeung, CEA 14

Example: single link

04589

07910

036

02

0

5

4

3

2

1

54321

0458

079

03

0

5

4

3

)2,1(

543)2,1(

1

23

4

5

8}8,9min{},min{

9}9,10min{},min{

3}3,6min{},min{

5,25,15),2,1(

4,24,14),2,1(

3,23,13),2,1(

ddd

ddd

ddd

10/18/2002 Ka Yee Yeung, CEA 15

Example: single link

045

07

0

5

4

)3,2,1(

54)3,2,1(

1

23

4

5

0458

079

03

0

5

4

3

)2,1(

543)2,1(

04589

07910

036

02

0

5

4

3

2

1

54321

5}5,8min{},min{

7}7,9min{},min{

5,35),2,1(5),3,2,1(

4,34),2,1(4),3,2,1(

ddd

ddd

10/18/2002 Ka Yee Yeung, CEA 16

Example: single link

045

07

0

5

4

)3,2,1(

54)3,2,1(

1

23

4

5

0458

079

03

0

5

4

3

)2,1(

543)2,1(

04589

07910

036

02

0

5

4

3

2

1

54321

5},min{ 5),3,2,1(4),3,2,1()5,4(),3,2,1( ddd

10/18/2002 Ka Yee Yeung, CEA 17

Hierarchical: Complete Link

• cluster similarity = similarity of two least similar members

+ tight clusters

- slow

10/18/2002 Ka Yee Yeung, CEA 18

Example: complete link

04589

07910

036

02

0

5

4

3

2

1

54321

0459

0710

06

0

5

4

3

)2,1(

543)2,1(

1

23

4

5

9}8,9max{},max{

10}9,10max{},max{

6}3,6max{},max{

5,25,15),2,1(

4,24,14),2,1(

3,23,13),2,1(

ddd

ddd

ddd

10/18/2002 Ka Yee Yeung, CEA 19

Example: complete link

04589

07910

036

02

0

5

4

3

2

1

54321

0459

0710

06

0

5

4

3

)2,1(

543)2,1(

1

23

4

5

0710

06

0

)5,4(

3

)2,1(

)5,4(3)2,1(

7}5,7max{},max{

10}9,10max{},max{

5,34,3)5,4(,3

5),2,1(4),2,1()5,4(),2,1(

ddd

ddd

10/18/2002 Ka Yee Yeung, CEA 20

Example: complete link

04589

07910

036

02

0

5

4

3

2

1

54321

0459

0710

06

0

5

4

3

)2,1(

543)2,1(

0710

06

0

)5,4(

3

)2,1(

)5,4(3)2,1(

1

23

4

5

10},max{ )5,4(,3)5,4(),2,1()5,4(),3,2,1( ddd

10/18/2002 Ka Yee Yeung, CEA 21

Hierarchical: Average Link

• cluster similarity = average similarity of all pairs

+ tight clusters

- slow

10/18/2002 Ka Yee Yeung, CEA 22

Software: TreeView [Eisen et al. 1998]

• Fig 1 in Eisen’s PNAS 99 paper

• Time course of serum stinulation of primary human fibrolasts

• cDNA arrays with approx 8600 spots

• Similar to average-link• Free download at:

http://rana.lbl.gov/EisenSoftware.htm

10/18/2002 Ka Yee Yeung, CEA 23

Overview• Similarity/distance measures• Hierarchical clustering algorithms

– Made popular by Stanford, ie. [Eisen et al. 1998]

• K-means– Made popular by many groups, eg.

[Tavazoie et al. 1999]

• Model-based clustering algorithms [Yeung et al. 2001]

10/18/2002 Ka Yee Yeung, CEA 24

Partitional: K-Means[MacQueen 1965]

1 2

3

10/18/2002 Ka Yee Yeung, CEA 25

Details of k-means• Iterate until converge:

– Assign each data point to the closest centroid

– Compute new centroid

2

1

)(

k

i Cxi

i

CCentroidxObjective function:

Minimize

10/18/2002 Ka Yee Yeung, CEA 26

Properties of k-means• Fast• Proved to converge to local optimum• In practice, converge quickly• Tend to produce spherical, equal-sized

clusters• Related to the model-based approach• Gavin Sherlock’s Xcluster:

http://genome-www.stanford.edu/~sherlock/cluster.html

10/18/2002 Ka Yee Yeung, CEA 27

What we have seen so far..

• Definition of clustering• Pairwise similarity:

– Correlation– Euclidean distance

• Clustering algorithms:– Hierarchical agglomerative– K-means

• Different clustering algorithms different clusters

• Clustering algorithms always spit out clusters

10/18/2002 Ka Yee Yeung, CEA 28

Which clustering algorithm should I use?

• Good question• No definite answer: on-going

research• Our preference: the model-based

approach.

10/18/2002 Ka Yee Yeung, CEA 29

Model-based clustering (MBC)

• Gaussian mixture model:– Assume each cluster is generated by the

multivariate normal distribution– Each cluster k has parameters :

• Mean vector: k – Location of cluster k

• Covariance matrix: k

– volume, shape and orientation of cluster k

• Data transformations & normality assumption

10/18/2002 Ka Yee Yeung, CEA 30

More on the covariance matrixk

(volume, orientation, shape)Equal volume, spherical (EI)

unequal volume, spherical (VI)

Equal volume, orientation, shape (EEE)

Diagonal model Unconstrained (VVV)

10/18/2002 Ka Yee Yeung, CEA 31

Key advantage of the model-based approach:

choose the model and the number of clusters

• Bayesian Information Criterion (BIC) [Schwarz 1978]

– Approximate p(data | model)• A large BIC score indicates strong

evidence for the corresponding model.

10/18/2002 Ka Yee Yeung, CEA 32

Gene expression data sets

• Ovary data [Michel Schummer, Institute of Systems Biology]

– Subset of data : 235 clones (portions of genes)

24 experiments (cancer/normal tissue samples)

– 235 clones correspond to 4 genes (external criterion)

10/18/2002 Ka Yee Yeung, CEA 33

BIC analysis: square root ovary data

• EEE and diagonal models -> first local max at 4 clusters

• Global max -> VI at 8 clusters

-3000

-2500

-2000

-1500

-1000

-500

0

0 2 4 6 8 10 12 14 16

number of clusters

BIC

EIVIdiagonalEEE

10/18/2002 Ka Yee Yeung, CEA 34

How do we know MBC is doing well?

Answer: compare to external info

• Adjusted Rand: max at EEE 4 clusters (> CAST)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16

number of clusters

Ad

jus

ted

Ra

nd

EIVIdiagonalCASTEEE

10/18/2002 Ka Yee Yeung, CEA 35

Take home messages• MBC has superior performance on:

– Quality of clusters– Number of clusters and model chosen (BIC)

• Clusters with high BIC scores tend to produce a high agreement with the external information

• MBC tends to produce better clusters than a leading heuristic-based clustering algorithm (CAST)

• Splus or R versions:http://www.stat.washington.edu/fraley/mclust/