cluster-orbital shell model for neutron-lich nuclei

42
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Un Kiyomi IKEDA, RIKEN Saclay workshop “Importance of continuum coupling for nuclei close to the dr May 18-20, 2009, Sacla

Upload: jared-mckinney

Post on 30-Dec-2015

30 views

Category:

Documents


2 download

DESCRIPTION

CEA/Saclay workshop “Importance of continuum coupling for nuclei close to the drip-lines” May 18-20, 2009, Saclay, France. Cluster-Orbital Shell Model for neutron-lich nuclei. Hiroshi MASUI Kitami Institute of Technology. Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA, RIKEN. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Cluster-Orbital Shell Model  for neutron-lich nuclei

Cluster-Orbital Shell Model for neutron-lich nuclei

Hiroshi MASUIKitami Institute of Technology

Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA, RIKEN

CEA/Saclay workshop “Importance of continuum coupling for nuclei close to the drip-lines”May 18-20, 2009, Saclay, France

Page 2: Cluster-Orbital Shell Model  for neutron-lich nuclei

Introduction

• Formalism of COSM

• Applications– O-isotopes, He-isotopes

• Comparison with GSM

Page 3: Cluster-Orbital Shell Model  for neutron-lich nuclei

Experimental situations and theoretical pictures

Neutron separation energies

R.m.s.radii

ExperimentsStable side

Single-particle state

Bound states(H.O. basis)

Deeply bound

Neutron-rich side

Single-particle state

Bound, continuum,Resonant states

Weakly bound

Page 4: Cluster-Orbital Shell Model  for neutron-lich nuclei

Wave function to describe the weakly bound systems

cm (m )

m

Shell-model-like approach

(m ) (m )

Basis function:

Our COSM approach

(m ) A' G(r1,r2,,rN )(m ) JM (m ) Basis function:

1 m m

b,r,a

dk (k) (k)L

Completeness relation:

•Continuum shell model•Gamow shell model

G(r1,r2,,rN )(m )

exp( (1(m )r1

2 2(m )r2

2 N(m )rN

2))

Linear combination of Gaussian:

Long tail of halo w.f.

Cluster-orbital shell model

Page 5: Cluster-Orbital Shell Model  for neutron-lich nuclei

M-Scheme COSM

1. Hamiltonian and Interaction

2. Basis function

3. Stochastic variational approach

Semi-microscopic approach

Radial: Gaussian, Angular momentum: M-Scheme

To reduce the basis size

Page 6: Cluster-Orbital Shell Model  for neutron-lich nuclei

Cluster-Orbital shell model (COSM)

Y. Suzuki and K. Ikeda, PRC38(1998)

Original: study of He-isotopes

•Shell-model  Matrix elements (TBME)   For many-particles

COSM is suitable to describe systems:

Weakly bound nucleons around a core

•Cluster-model   Center of mass motion

Page 7: Cluster-Orbital Shell Model  for neutron-lich nuclei

1. Hamiltonian and interactions

Core part Valence part

ˆ h i ˆ t 'i ˆ V i

Treated by OCM

ˆ H ˆ t ii

A

ˆ v iji j

A

ˆ T GA-body Hamiltonian

ˆ H ˆ t ik

C

ˆ v kl

kl

C

ˆ t 'i ˆ v ik

k

C

i

V

( ˆ v ij ˆ T ij )i j

V

ˆ V i Cˆ v ik' C V

k

c

Vd Vex ˆ VLS

Different size of the core gives different energy

Decompose: core + valence parts

ˆ T ij 1

i j

Recoil:

Semi-microscopic way:

Anti-sym. Core and N:

S. Saito PTPS 62(1977)11

Folding. direct + exchangeDynamics of the core

H. M, K. Kato, and K. Ikeda,PRC73, 034318 (2006).

“Cluster-Orbital Shell Model” (COSM)

Y. Suzuki and K. Ikeda, PRC38(1988)

Page 8: Cluster-Orbital Shell Model  for neutron-lich nuclei

Interactions: semi-microscopic approach

ˆ H ˆ t ik

C

ˆ v kl

kl

C

ˆ t 'i ˆ v ik

k

C

i

V

( ˆ v ij ˆ T ij )i j

V

•Core-N: M=0.58, B=H=0

•N-N: M=0.58, B=H=0.07

N-N interaction :

ˆ v ij Volkov No.2

All interactions are based on the N-N interaction (basically)

ˆ V i Cˆ v ik' C V

k

c

Vd Vex ˆ VLS

Parameters:

LS-interaction:Phenomenological one

17O: 5/2+, 1/2+, 3/2+

A. B. Volkov, NP74 (1965) 33

To reproduce 17O(5/2+,1/2+,3/2+), 18O (0+)

Page 9: Cluster-Orbital Shell Model  for neutron-lich nuclei

2. Basis function

V(m ) A' G(r1,r2,,rN )(m ) MTz

(m )

cm V(m )

m

Radial part:Gaussian

Angular momentum part:Z-component

“M-Scheme”Basis function

G(r1,r2,,rN )(m )

exp( (1(m )r1

2 2(m )r2

2 N(m )rN

2))

Shell-model

Nmax H.O.basis:

Gamow S.M.:

kmax

Non-Orthogonal

Each coordinate is spanned from the c.m. of the core,and is expressed by Gaussian with a different width parameter

Page 10: Cluster-Orbital Shell Model  for neutron-lich nuclei

3. Stochastic Variational Approach

V. I. Kukulin and V. M. Krasnopol’sky, J. Phys. G3 (1977)

“Refinement” procedure

K. Varga, Y. Suzuki and R. G. Lovas, Nucl. Phys. A571 (1994)

K. Varga and Y. Suzuki, Phys. Rev. C52(1995)

Em( i) Em

( i1)

m1

mmax

Stochastic Variational procedure

To reduce the basis size

“exact” method 18O (16O+2n) : N=2100Stochastic approach: N=138

H. M, K. Kato, and K. Ikeda, PRC73, 034318 (2006).

Page 11: Cluster-Orbital Shell Model  for neutron-lich nuclei

Application for the oxygen isotopes

•Same Hamiltonian with the (J-scheme) COSM work

H. M, K. Kato, and K. Ikeda, PRC73, 034318 (2006).

N-N: Volkov No.2 (M=0.58, B=H=0.07), adjusted to 18O 0+ ground state

•Model space

Lmax 5   Lmax 2

•Valence nucleons

N 4   N 10

Page 12: Cluster-Orbital Shell Model  for neutron-lich nuclei

Sn for O-isotopes

Exp.

COSM (J-scheme) [1]

COSM (M-scheme) : present

[1] H. M, K. Kato, and K. Ikeda, PRC73, 034318 (2006).

Page 13: Cluster-Orbital Shell Model  for neutron-lich nuclei

J2-expectation values

J2-value is almost good

J=5/2

J=3/2

J=1/2

J=0

Page 14: Cluster-Orbital Shell Model  for neutron-lich nuclei

However,

What is the key mechanism? N-N int.? Core-N int.? Others?

The abrupt increase of Rrms at 23O can hardly be reproduced

Page 15: Cluster-Orbital Shell Model  for neutron-lich nuclei

Different NN-interactions

•Minnesota: u=1.0

•Volkov No.2, M=0.58, B=H=0.25

Y. C. Tang, M. LeMere, and D. R. Thompson, Phys. Rep. 47 (1978)167.

Different type of NN-int

Weaker than the original so as to reproduce drip-line

Case A

Case B

Page 16: Cluster-Orbital Shell Model  for neutron-lich nuclei

B=H=0.25

B=H=0.07

Minnesota

Sn for O-isotopes

“Case B” reproduce the dlip-line

Case ACase B

Page 17: Cluster-Orbital Shell Model  for neutron-lich nuclei

B=H=0.25

B=H=0.07

Calculated Rrms for O-isotopes

Minnesota

The abrupt increase of Rrms is much more enhanced in “Case B”

Case A

Case B

Page 18: Cluster-Orbital Shell Model  for neutron-lich nuclei

B=H=0.07

Comparison with experments: Rrms

B=H=0.25Minnesota

However, the discrepancy is still large…

Case A

Case B

Page 19: Cluster-Orbital Shell Model  for neutron-lich nuclei

Components of the wave functions

22O 23O 24O

(d5/2)6

(s1/2)2(d5/2)4

(s1/2)(d5/2)6

(s1/2)(…)

(s1/2)(d5/2)4(d3/2)2

(s1/2)2 (…)

(s1/2)2(d5/2)6

(s1/2)2 (…)

(s1/2)2(d5/2)4 (d3/2)2

22O

23O

24O

B=H=0.07 B=H=0.25

78.7%

15.9%

16.6%

95.0%

3.1%

3.2%

91.2%

2.1%

99.6%

97.0%

0.1%

99.9%

94.6%

4.3%

99.0%

98.5%

1.2%

99.8%

S-wave component is enhanced at 23O and 24O

Case B

Page 20: Cluster-Orbital Shell Model  for neutron-lich nuclei

Volkov: B=H=0.07 Volkov: B=H=0.25

Matter density of oxygen isotopes

Page 21: Cluster-Orbital Shell Model  for neutron-lich nuclei

Matter density of 24O with Volkov B=H=0.25

Rrms = 2.87 (fm)

Exp: 3.19 (0.13)

Page 22: Cluster-Orbital Shell Model  for neutron-lich nuclei

He-isotopes

•Core-N: KKNN potential ( H. Kanada et al., PTP61(1979) )

•N-N: Minnesota (u=1.0) ( T.C. Tang et al. PR47(1978) )

•An effective 3-body force ( T. Myo et al. PRC63(2001) )

calc. Ref.1 Ref.24He 1.48 1.57 1.49 6He 2.48 2.48 2.30 2.468He 2.66 2.52 2.46 2.67

[1] I. Tanihata et al., PRL55(1985)[2] G. D. Alkhazov et al. PRL78 (1997)

Rrmss

H. M, K. Kato, K. Ikeda, PRC75 (2007)

Page 23: Cluster-Orbital Shell Model  for neutron-lich nuclei

Summary

1. M-scheme COSM approach

Qualitative improvement of Rrms

By using Volkov No.2: over binding, Rrms A1/3

2. Different NN-int (so as to reproduce the drip-line)

Number of valence nucleons form 4 to 10

Rrms is still not completely reproduced

e.g. Three-body force, core-excitation (clustering),…

Page 24: Cluster-Orbital Shell Model  for neutron-lich nuclei

Comparison betweenCOSM and GSM

Collaboration with K. Kato, N. Michel, M. Ploszajczak

Page 25: Cluster-Orbital Shell Model  for neutron-lich nuclei

Im.k

Re. k

Bound states

Anti-bound states(Virtual states)

Resonant states

Complex k-plane

Continua

Page 26: Cluster-Orbital Shell Model  for neutron-lich nuclei

G(r1,,rN )JMCluster-orbital shell model (COSM) approach

Gamow shell model (GSM) approach

•Poles (bound, resonant, anti-bound states)

•Continua

Single-particle states

Many-particle states

Page 27: Cluster-Orbital Shell Model  for neutron-lich nuclei

2/1 jL

6HeHamiltonian

•V1, V2:, Core-N int..

• V12c : Effective 3-body int. ))(exp( 22

21

01212 rrVV cc

• Vnn: :NN int.

“KKNN” -n phase shift

cnncccc VVVVttH 122121

Minnesota potential

Model space Maximum angular momentum

5)2/1(max jL

Comparison

Energy, pole-contribution, density

Page 28: Cluster-Orbital Shell Model  for neutron-lich nuclei

Calculation

COSMJMrgrgCJMrrGC

m

mmm

m

mm )()(),( 2

)(1

)()(21

N 20 20 20 20 20 20 20 20 20 20 20

Number of Gaussian functions for each core-N space

Max. total basis size: 2310

Max. total basis size: 636

A) Full

B) Reduced

N=20

partial waves: s1/2   p3/2 p1/2 d5/2 d3/2 f7/2 f5/2 g92 g7/2 h11/2 h9/2

L 0 1 2 3 4 5

N 8 20 20 8 8 8 8 5 5 2 2

partial waves: s1/2   p3/2 p1/2 d5/2 d3/2 f7/2 f5/2 g92 g7/2 h11/2 h9/2

L 0 1 2 3 4 5

)2102/2120(2/)1( NNN lj

Page 29: Cluster-Orbital Shell Model  for neutron-lich nuclei

Calculation

GSM JM;

kmax= 3 (fm-1)

Maximum momentumfor continuum:

Re. k

Imag. k

Re. k

Imag. k

•Continuum•Pole : 0p3/2

Page 30: Cluster-Orbital Shell Model  for neutron-lich nuclei

Cn2 G(r1,,rN )

2

Shell model COSM

Preparation of s.p. completeness relation: Diagonalize the s.p. Hamiltonian by using complex scaling method (CSM)

rre i ( ppe i )

1b,r

ki ki

CSM:

•Resonant poles

•No explicit path for continua

Comparison between the COSM w.f. and GSM w.f..

Re. E

Imag

. E

(Products of s.p.w.f.) (Gaussian w.f.)

H. M, K. Kato and K. Ikeda, PRC75, (2007) 034316.  

Components of the poles continua

Page 31: Cluster-Orbital Shell Model  for neutron-lich nuclei

ResultsGround state energy: E(6He: 0+)

GSMCOSM (B:Reduced)Lmax

1

2

3

4

5

Page 32: Cluster-Orbital Shell Model  for neutron-lich nuclei

Ground state energy: E(6He: 0+)

Page 33: Cluster-Orbital Shell Model  for neutron-lich nuclei

ResultsGround state energy: E(6He: 0+)

GSMCOSM (B:Reduced)Lmax

1

2

3

4

5

COSM (A: Full)

Page 34: Cluster-Orbital Shell Model  for neutron-lich nuclei

Ground state energy: E(6He: 0+)

More bound

Page 35: Cluster-Orbital Shell Model  for neutron-lich nuclei

Ground state energy: E(6He: 0+)

Page 36: Cluster-Orbital Shell Model  for neutron-lich nuclei

ResultsPole contribution: (0p3/2)

2

COSM (A: Full)GSMCOSM (B:Reduced)Lmax

1

2

3

4

5

Page 37: Cluster-Orbital Shell Model  for neutron-lich nuclei

Pole contribution: (0p3/2)2c

Real part Imaginary part

Page 38: Cluster-Orbital Shell Model  for neutron-lich nuclei

Density distribution for valence neutron:

Page 39: Cluster-Orbital Shell Model  for neutron-lich nuclei

Why do we have the difference?

Page 40: Cluster-Orbital Shell Model  for neutron-lich nuclei

Why do we have the difference?

Treatment (discretization) of the continuum

•GSM Re. k

Imag. k i

irb

kk,

1

•COSM

)4/exp(')exp( 22m

rikm akedkNraN

Gaussian basis function

Non-discretized continuum

(Fourier trans.)

)( ikk Discretized continuum

Page 41: Cluster-Orbital Shell Model  for neutron-lich nuclei

Discretized continuum Non-discretized continuum

)4/exp(' 2 akedkN rikm

mk

To illustrate…

Page 42: Cluster-Orbital Shell Model  for neutron-lich nuclei

Summary

• COSM approach– J-Scheme and M-Scheme COSM have been performed.– Rrms of 24O is not reproduced only by changing the NN-inter

action/

• Continuum coupling in COSM– COSM and GSM give almost the same feature for the coupli

ng. However, the difference appears in the higher partial waves (pure continuum states). Discretization of the continuum is the key.

(Same kind of discussion has been done in the CDCC approach.)