cmos circuit design

Upload: debabratalogon

Post on 30-May-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 CMOS Circuit Design

    1/45

    08/09/09 NERIST 2009 1

    CMOS Circuit Design:

    Challenges of Nano Electronics

    Susanta SenInstitute of Radio Physics and Electronics

    University of Calcutta

  • 8/14/2019 CMOS Circuit Design

    2/45

    08/09/09 NERIST 2009 2

    Review of

    MOS Transistor

  • 8/14/2019 CMOS Circuit Design

    3/45

    08/09/09 NERIST 2009 3

    The MOS Transistor

  • 8/14/2019 CMOS Circuit Design

    4/45

    08/09/09 NERIST 2009 4

    MOS Transistor

    Depletion Inversion

  • 8/14/2019 CMOS Circuit Design

    5/45

    08/09/09 NERIST 2009 5

    MOS Transistor (contd.)

    VDS

    ID

    Channel Pinches off Current Saturates

    VG

    Saturation Current increases with VG

    Vt

    Threshold Voltage Vt Device Turns ONMOS can be used as SWITCH

  • 8/14/2019 CMOS Circuit Design

    6/45

    08/09/09 NERIST 2009 6

    MOS as SWITCH

    Designing Logic Circuits

    Logic 0 = 0V : Logic 1 = VDD

    n-MOS :VG VtOFF : VG = VDDON

    p-MOS :VG VDD VtOFF : VG = 0ON

    Gate Voltage Negative w.r.t. Channel

  • 8/14/2019 CMOS Circuit Design

    7/45

    08/09/09 NERIST 2009 7

    n-MOS SWITCHTransferring Logic 1 (VDD):

    VDD

    Vin = VDD VtVDD

    Vo

    t

    Transistor

    OFFSource

    Impedance

    High

    Weak 1

    Transistor

    ON

    Source

    ImpedanceLow

    Strong 0VDD

    Vin = 0 V Vo

    t

    VDD

    Transferring Logic 0 (0 V):

  • 8/14/2019 CMOS Circuit Design

    8/45

    08/09/09 NERIST 2009 8

    p MOS Switch

    Transferring Logic 1 (VDD):

    VDD

    Vo

    t

    0V

    VDD Strong 1

    Transferring Logic 0 (0 V):

    0V

    0 V

    t

    Vo

    VDD

    Vt

    Weak 0

  • 8/14/2019 CMOS Circuit Design

    9/45

    08/09/09 NERIST 2009 9

    CMOS Logic

    Use n-MOS to produce Logic 0 Pull DOWN

    Use p-MOS to produce Logic 1 Pull UP

    The CMOS Inverter

    Equivalent

    Circuit

    Logic 1

    Output

    Logic 0

    Output

  • 8/14/2019 CMOS Circuit Design

    10/45

    08/09/09 NERIST 2009 10

    Review of Switching Theory

    C

    A B

    F = C and (A and B)

    Switches in Series

    A

    B

    C F = C and (A or B)

    Switches in Parallel

  • 8/14/2019 CMOS Circuit Design

    11/45

    08/09/09 NERIST 2009 11

    Using n-MOS Switch

    Constraint : C = 0

    A B

    Series Connection

    C = 0 F = 0 and (A . B) = A nand B

    A

    B

    C = 0 F = 0 and (A or B) = A nor B

    Parallel Connection

  • 8/14/2019 CMOS Circuit Design

    12/45

    08/09/09 NERIST 2009 12

    Using p-MOS Switch

    Constraint : C = 1

    A B

    C = 1 F = 1 and ( A . B) = A + B

    Series Connection

    C = 1

    A

    B

    F = 1 and ( A + B) = A . B

    Parallel Connection

  • 8/14/2019 CMOS Circuit Design

    13/45

    08/09/09 NERIST 2009 13

    CMOS Logic Design

    Pull UP Network

    Build using p-MOS

    Turns ON when Function is TRUE

    Pull DOWN Network

    Build using n-MOS

    Turns ON when Function is FALSE

    Operationally Complement

    Topologically Dual

  • 8/14/2019 CMOS Circuit Design

    14/45

    08/09/09 NERIST 2009 14

    CMOS Logic (contd.)

    A

    A

    B

    BA

    A

    B

    B

    F F

    NAND GateNOR Gate

  • 8/14/2019 CMOS Circuit Design

    15/45

    08/09/09 NERIST 2009 15

    CMOS Design Example

    Consider the Function

    f = A . (B + C)

    f = 0. [A . (B + C)]

    Design the

    Pull Down

    Network

    A

    B CPullUp

    F

    B

    A

    C

  • 8/14/2019 CMOS Circuit Design

    16/45

    08/09/09 NERIST 2009 16

    CMOS Design Example

    Consider the Functionf = A . (B + C)

    Design the

    Pull Down

    Network first

    A

    B CPullUp

    F

    B

    A

    Cf = [A . (B + C)] is true

    The Pull Down Network connects

    f to ground when

    Connect Ground

  • 8/14/2019 CMOS Circuit Design

    17/45

    08/09/09 NERIST 2009 17

    Power DissipationNo Static Dissipation

    Except leakage currentDynamic Dissipation

    Charging and discharging load capacitor

    Direct Path Dissipation

    During switching

  • 8/14/2019 CMOS Circuit Design

    18/45

    08/09/09 NERIST 2009 18

    Dynamic Dissipation (0 1)

    P-MOS On

    N-MOS

    Off

    Vo

    IL

    IL= CL.dVo/dt

    Edrawn= VDDILdt = VDDCLdVo = CLVDD2

    Ediss(in Rp) = (VDD- Vo) ILdt= CL(VDD- Vo)dVo = CLVDD2 Estored (in CL)= CLVDD2

  • 8/14/2019 CMOS Circuit Design

    19/45

    08/09/09 NERIST 2009 19

    Dynamic Dissipation (1 0)

    VoEdiss(in Rn) = Estored=CLVDD2

  • 8/14/2019 CMOS Circuit Design

    20/45

    08/09/09 NERIST 2009 20

    CMOS Logic Circuit

    Advantages

    Low Power Dissipation in Steady State Either Pull-up OR Pull-down ON

    No direct path current from VDD Gnd

    No (negligible) Steady State Dissipation

    High Packing Density

    Large Circuits on single chip billion devices

    Significant Static Dissipation

  • 8/14/2019 CMOS Circuit Design

    21/45

    08/09/09 NERIST 2009 21

    VDD

    VOVi

    (=VG)

    MOS Amplifier

    VDS

    ID

    VDD

    VG

    Vi

    VO

    Load Line

    RL

    ID

    VO = VDD ID.RL

    VDD

  • 8/14/2019 CMOS Circuit Design

    22/45

  • 8/14/2019 CMOS Circuit Design

    23/45

  • 8/14/2019 CMOS Circuit Design

    24/45

    08/09/09 NERIST 2009 24

    The CMOS InverterAmplifier or Inverter ?

    Vi VO

    VO

    Vi

    Gate Bias of PMOS changes with

    Input Voltage

    VDD

    VDDVDS

    ID

    VDD

  • 8/14/2019 CMOS Circuit Design

    25/45

    08/09/09 NERIST 2009 25

    A Closer Look

    In presence of Noise

    VO = f(Vi + vn)

    = f(Vi) + vn(VO/Vi) + vn2(2VO/Vi2)+VO

    Vi

    noisy_output = noiseless_output +

    noise x gain + higher order terms

    VO= f(Vi)

    Gain =

    VO/

    Vi

    ViHViL

    VOL

    VOH

    Digital Noise immunity Analog High Gain

  • 8/14/2019 CMOS Circuit Design

    26/45

    08/09/09 NERIST 2009 26

    VG

    VDD

    VOVi

    VDS

    ID

    VQ

    Q

    VDD

    id= gmvi

    +vi+vo

    vo = - gmviRL

    +id

    Gain = vo/vi = - gmRL

    VO = VDD ID.RL

    The Amplifier : A Closer LookSlope = - 1/RL

    iORL

  • 8/14/2019 CMOS Circuit Design

    27/45

    08/09/09 NERIST 2009 27

    Small vs Large Signal

    Where is the Q-point

    VO

    Vi

    Large Signal limits

    Cut off & Saturation

    Q-point

    Middle of range

    Signal will be distorted

    Specify limits

    Small Signal Q-point

    Maximum gain

    Linear region

    Minimize Distortion

  • 8/14/2019 CMOS Circuit Design

    28/45

    08/09/09 NERIST 2009 28

    A Closer Look at the Characteristics

    VDS

    ID

    Gain = gm RL

    ID = (k'/2)(W/L) (VGS VT)2(1 + VDS)

    = L/(LVDS) Channel Length Modulation Coefficient

    RL||rO

  • 8/14/2019 CMOS Circuit Design

    29/45

    08/09/09 NERIST 2009 29

    The Analytical Approach

    ID

    VD

    VGv

    i

    v

    o

    dID = dVG+ dVDIDVG

    IDVDIDVG =gm TransconductanceIDVD=go O/P Conductance

    The current source load keeps drain current const. So,

    dID

    =0 = gm

    .vi

    + go

    .vo

    Hence, Voltage Gain (Ao) is

    Ao= vo/vi = gm / go = gm ro

  • 8/14/2019 CMOS Circuit Design

    30/45

    08/09/09 NERIST 2009 30

    The Equivalent Circuit

    G

    D

    S

    G D

    S

    The 3 terminals

    gOvDS

    Current source dependent

    on output voltage gOvDS Current source dependent on its

    terminal voltage rO= 1/gO

    rO= 1/gOgmvGS

    Current source dependent oninput voltage (gmvGS)

  • 8/14/2019 CMOS Circuit Design

    31/45

    08/09/09 NERIST 2009 31

    The Transistor Parameters: gm & go

    In saturationID= (k'/2)(W/L)(VG VT)

    2

    where, k'= Cox and VT = VT0 Vsb ,

    VT0 is the threshold voltage without substrate bias and

    is the parameter that accounts for the effect ofsubstrate bias Vsb.

    Let VG VT = VGT ID= (k'/2)(W/L) VGTgm = (ID/VG) = k'(W/L) VGT

    2

  • 8/14/2019 CMOS Circuit Design

    32/45

    08/09/09 NERIST 2009 32

    Transconductance (contd.)

    gm = 2ID/VGT

    gm = k'(W/L)VGT

    Also, k'(W/L) = 2ID/VGT2

    2IDk'(W/L)But

    VGT=

    Three Formulae (!!!)

    Is gm linearly dependent onTransistor size ?

    gm = 2k'(W/L)IDOr dependent on its

    square root ?

    Or independent of (W/L) ?

    To increase gm

    Shall we increase VGT?

    Or decrease it ?

  • 8/14/2019 CMOS Circuit Design

    33/45

    08/09/09 NERIST 2009 33

    Which Formula ?

    Depends on how the Transistor is

    BIASED and SIZED

    If Size and VGTare known

    Use the first one

    If Drain Current and Size are known Use thesecond

    If the Drain Current and Gate Voltage are given

    and the Transistor is accordingly sized Usethe third

  • 8/14/2019 CMOS Circuit Design

    34/45

    08/09/09 NERIST 2009 34

    Output Resistance (ro)

    ID = (k'/2)(W/L)VGT(1 + VDS)2

    gO= (ID/VDS) ID= 'ID /LDefining, ' = L = (L/V

    DS)

    A technology dependentparameter

    Also, at VDS = 1/ =VAID = 0VAEarly voltage

    gO=ID/VA

  • 8/14/2019 CMOS Circuit Design

    35/45

    08/09/09 NERIST 2009 35

    Amplifier Gain

    In terms of Geometry and VGT

    AO= (2L/'VGT)In terms of Drain Current and Geometry

    AO= (1/') 2k(W L)/IDThus if the Transistor is biased at a constant current,

    the DC Gain is determined by the square root of the

    Gate Area.

  • 8/14/2019 CMOS Circuit Design

    36/45

    08/09/09 NERIST 2009 36

    1 + srO(Cgd+ CO)

    The AC Behaviour

    gmvi rO

    G

    Cgd

    Cg CO

    vOvi

    S

    sCgd(vi vO) gmvi (vO/rO) sCOvO= 0

    vi(sCgd gm) vO(sCgd+ 1/rO+ sCO)= 0

    1 + srO(Cgd+ CO)1 + srO(Cgd+ CO)1 + srO(Cgd+ CO)1 + srO(Cgd+ CO)1 + srO(Cgd+ CO)1 + srO(Cgd+ CO)1 + srO(Cgd+ CO)

    So the AC Gain

    A1 = vO/vi= gm rO1 sCgd/ gm

    1 + srO(Cgd+ CO)

  • 8/14/2019 CMOS Circuit Design

    37/45

    08/09/09 NERIST 2009 37

    Bandwidth

    A1 = gm rO

    1 sCgd/ gm

    1 + srO(Cgd+ CO)

    Let Ctot= Cgd+ CO

    Therefore, A1 AO/(1 + srOCtot)

    Then ,A1 = gm rO1 sCgd/ gm

    1 + srOCtotNormally, Cgd/gm

  • 8/14/2019 CMOS Circuit Design

    38/45

    08/09/09 NERIST 2009 38

    Gain Bandwidth Product

    GBW= (gm

    rO

    )/(rO

    Ctot

    ) = gm

    /Ctot

    The Gain-Bandwidth product (or the cutoff frequency)

    is independent ofrO

    Ga

    in(dB)

    AO

    (AO 3 dB)

    BW GBW Frequency

  • 8/14/2019 CMOS Circuit Design

    39/45

    08/09/09 NERIST 2009 39

    The Current Source

    IOIref

    Q2

    Q1

    ID1 = (k'/2)(W/L)1(VGS VT)2

    ID1 =Iref= (VDD VGS)/R

    IO = ID2 = (k'/2)(W/L)2(VGS VT)2

    IOIref

    (W/L)2(W/L)1

    =

    R

    VDD

  • 8/14/2019 CMOS Circuit Design

    40/45

    08/09/09 NERIST 2009 40

    Current Steering

    IOIref

    Q2Q1

    I2 I1

    Q3

    Q4Q5

  • 8/14/2019 CMOS Circuit Design

    41/45

    08/09/09 NERIST 2009 41

    Attention to Speed / BW

    Req Transistor (W/L) ratiop-MOS slower than n-MOSHole mobility < Electron mobility

    Pull-UP Higher Resistance

    Rise time longer

    Make p-MOS widerResistance W/L Ratio

    Wp= 2. Wn

    Delay Req.CL

    CL Transistor Area (W.L)

  • 8/14/2019 CMOS Circuit Design

    42/45

    08/09/09 NERIST 2009 42

    SCALING

    Reduce Transistor Dimensions (W and L)by a factors

    Req unaltered W/L

    CL reduced by factors2

    Improves Speed

    Reduces Dissipation per Signal Transition

    Reduce device size Towards nano-MOS

  • 8/14/2019 CMOS Circuit Design

    43/45

    08/09/09 NERIST 2009 43

    CHALLENGES OF SCALING

    Device Technology

    Fabrication Lithography, Etching New Device Configuration

    Material Limitations Thin Oxides

    Gate Oxide Large Leakage

    High-k dielectric

    Inter-layer Large parasitic capacitance

    Low-k dielectric

  • 8/14/2019 CMOS Circuit Design

    44/45

    08/09/09 NERIST 2009 44

    CHALLENGES OF SCALING

    Interconnect Technology Line delay limits circuit speed

    Optical interconnect Silicon Photonics

    Device Physics

    Quantum Size Effect

    Ballistic Transport Develop New Models

  • 8/14/2019 CMOS Circuit Design

    45/45

    08/09/09 NERIST 2009 45