cns chapter 7 2016 - uni-muenchen.de · regio- and stereoselective favorskii rearrangement via the...

43
Chemical Neuroscience a course for synthetic chemists Calcium in Neuroscience 7 Calcium is complicated

Upload: trinhcong

Post on 04-Jun-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

Chemical Neuroscience a course for synthetic chemists

Calcium in Neuroscience

7

Calcium is complicated

sarcoplasmatic or endoplasmatic reticulum

cell membrane

cytosol

Ca2+ can come from the extracellular space and from intracellular “stores”

extracellular space

ORAI

ST IM

SM

SMOC

L

ROC

ryanodinereceptor

IP3

IP3 receptor

VOC

Ca2+

Ca2+

SR/ER membrane

VOC = voltage-operated ion channel, SMOC = second messenger-operated in channel,ROC = receptor-operated ion channels; STIM/ORAI = “store-operated ion channel”

Calcium is pumped out of the cytosolby NCX and SERCA

1 Ca2+

3 Na+

ATP ADP + Pi

Ca2+lumen of the SR/ER

cell membrane

cytosol

extracellular space

SR/ER membrane

sodium/calcium exchanger (NCX)

sarcoplasmic/endoplasmicreticulum calcium ATPase (SERCA)

The Sodium Calcium Exchanger (NCX)

extracellular

cytoplasm

pdb 3V5S

1 Ca2+

3 Na+

NCX is an electrogenic antiporter.

OSW-1 inhibits NCX

Me

Me

HO

H

H H

OOH

OMe

O

OHAcO

OOHOHO

OOMe

O

Hui synthesis: J. Org. Chem. 1999, 64, 202

Guo synthesis: J. Org. Chem. 2008, 73, 157

Review: Chem Rev. 2013, 113, 5480

The sarco/endoplasmatic reticulum Ca2+-ATPase (SERCA)

ATP ADP + Pi

Ca2+

cytoplasm

lumen

ATP binding site

pdb 2B4Y

Thapsigargin and cyclopiazonic acid inhibit SERCA

These probes are used to distinguish Ca2+ from intracellular stores from extracellular Ca2+.

O

HOAcMe

OOH

MeOH

O

O

O O

O

O H

NH

H

cyclopiazonic acid

N HOH

H

O

O

thapsigargin

O

HOAcMe

OOH

MeOH

O

O

O O

O

O H

NH

H

cyclopiazonic acid

N HOH

H

O

O

thapsigargin

The thapsigargin binding site

cytoplasm

lumen

pdb 2B4Y

Chem. Eur. J. 2007, 13, 5688

A relatively long but elegant synthesis of a challenging target and the only one to date.

The Ley synthesis of thapsigargin

O

Br

OEt

MeOH PO

OEtOEtHOOC

O

OO

HOAcMe

O OC3H7

OO

O

C7H15

OH

O

OOHMeO

H OAcMe

O OHMe

O

OO HO

O O

C3H7

O

C7H15 O

1,2

3

1) H2O2, NaOH, MeOH → LiCl, CF3COOH2) dihydropyran, PPTS

3) NaOMe, MeOH

Scheffer-Weitz epoxidation → in situ epoxide opening with by LiCl,protection of the alcohol

O(S)-carvone

MeO

THPO

Cl

regio- and stereoselective Favorskii rearrangementvia the following intermediate:

MeOMe

O

Me

THPOCOOMe

4,5

Me

TBDPSO

O

4) PPTS → TBPDSCl, im5) LiAlH4 → NaH, PMBCl → OsO4, NMO → NaIO4

change of alcohol protecting group,reduction → alcohol protection → dihydroxylation → diol cleavage

OPMB

Me

TBDPSO

O

OPMB

6 6) AllylMgBr

Me

TBDPSO OPMB

OHMe

major diastereomerd.r. = 8 :1

H

7-9 7) MOMCl, DIPEA, DMAP8) DDQ9) TPAP, NMO

allylation

protection of the tertiary alcohol,deprotection of the primary alcohol,Ley oxidation

Me

TBDPSO

OMOMMeH

H

10, 11 10) t-BuLi, CH2=CHOEt11) TESCl, im

addition of lithiated vinyl ether to aldehyde,protection of secondary alcohol

OTES

EtO

Me

TBDPSO

OMOMMeH

O

H

H OAcMe

O OHMe

O

OO HO

O O

C3H7

O

C7H15 O

12 key step: ring-closing metathesis12) Grubbs II

Me

TBDPSO

H

HTESO

OEt

OMOMMe

Me

TBDPSO

H

HTESO

O

OMOMMe

Me

TBDPSO

OMOMMeH

HOTES

EtO

OH

13 dihydroxylation13) K2OsO2(OH)4, K3Fe(CN)6, NaHCO3, MeSO2NH2

major diastereomerd.r. = 16 :1

H OAcMe

O OHMe

O

OO HO

O O

C3H7

O

C7H15 O

Me

TBDPSO

H

HTESO

OMOMMe

14 ester formation

Me

TBDPSO

H

HTESO

O

OMOMMe

OH

14) , EDCI

Me

TBDPSO

H

HTESO

OMOMMe

OH

16 reduction16) LiBH4

OH

O

O

15

Me

TBDPSO

H

HTESO

O

OMOMMe

O O

P O

15) NaH, Δ intramolecular HWE olefination

HO

OP(OEt)2

O

EtO OEt

H OAcMe

O OHMe

O

OO HO

O O

C3H7

O

C7H15 O

Me

TBDPSO

H

HTESO

OMOMMe

OH

OH

17 acetylation → MOM protection17) Ac2O, DMAP, 2,6-lutidine → MOMCl, DIPEA, DMAP

Me

TBDPSO

H

HTESO

OMOMMe

OMOM

OAc

18

Me

TBDPSO

H

HTESO

OMOMMe

OMOM

dihydroxylation18) K2OsO2(OH)2, K3Fe(CN)6, quinuclidine, K2CO3, MeSO2NH2

HO

OAcHO Me

NN

quinuclidine

H OAcMe

O OHMe

O

OO HO

O O

C3H7

O

C7H15 O

19-21 saponification,Ley oxidation,deprotection, reprotection

19) K2CO3, MeOH20) TPAP, NMO21) Amerlyst-15,

22 deprotection → Dess-Martin oxidation22) TBAF → DMP, NaHCO3

Me

H

H

OHMe

O

HOO

MeO

O

Me

TBDPSO

H

H

OHMe

O

HO

OMe

O

O

O

Me

TBDPSO

H

HTESO

OMOMMe

OMOMHO

OAcHO Me

OMeMeO

H OAcMe

O OHMe

O

OO HO

O O

C3H7

O

C7H15 O

Me

H

H

OHMe

O

HO

OMe

O

OO

23 protection, silyl enol ether formation23) TMSCl

Me

H

H

OTMSMe

OOMe

O

OTMSO RO

R = TMS24 24) DMDO, Me2CO

Me

H

H

OTMSMe

OOMe

O

OO RO

R = TMS

HO

OO

dimethyldioxirane (DMDO)

Rubottom oxidation

H OAcMe

O OHMe

O

OO HO

O O

C3H7

O

C7H15 O

Me

H

H

OTMSMe

OOMe

O

OO RO

R = TMS

HO

25-27 25) SEMCl26) LiHMDS → PhSeCl27) O3

H OTMSMe

OOMe

O

OO RO

R = TMS

SEMO

H OHMe

OO

MeO

OO HO

OSEMO

28) Zn(BH4)2 → TBAF29) Cl

Cl Cl

O

O O28,29

protection,ɑ-selenation,enone formation

HO

O

angelic acid

enone reduction,ester formation via mixed anhydride

Cl O Si

SEMCl

H OAcMe

O OHMe

O

OO HO

O O

C3H7

O

C7H15 O

Me

H

H

OTMSMe

OOMe

O

OO RO

R = TMS

HO

25-27 25) SEMCl26) LiHMDS → PhSeCl27) O3

H OTMSMe

OOMe

O

OO RO

R = TMS

SEMO

H OHMe

OO

MeO

OO HO

OSEMO

28) Zn(BH4)2 → TBAF29) Cl

Cl Cl

O

O O28,29

protection,ɑ-selenation,enone formation

HO

O

angelic acid

enone reduction,ester formation via the mixed anhydride

Cl O Si

SEMCl

H OAcMe

O OHMe

O

OO HO

O O

C3H7

O

C7H15 O

H OAcMe

O OHMe

O

OO HO

O O

C3H7

thapsigargin

O

C7H15 O

H OAcMe

OOMe

O

OO HO

O O

C7H15 O

32) HCl33) butyric anhydride

H OHMe

OOMe

O

OO HO

OSEMO

29) n-BuSH, MgBr2⋅Et2O30) octanoic anhydride31) isopropenyl acetate, p-TsOH

29-31

32,33

SEM removal,acylation,acetylation under acidic conditions

OAc

ACS Cent. Sci. 2017, 3, 47

A very short synthesis that exemplifies Baran’s cyclase-oxidation phase approach. A study in orchestration of oxidation events that took some key insights from previous approaches towards

similar guaianolides. Many transformations are carried out in a one-pot fashion.

The Baran synthesis of thapsigargin

O

HOAcMe

O OC3H7

OO

O

C7H15

OH

O

OOHMeO

HO

O

OH

O

C7H15

OH

O

C3H7

O

H OAcMe

O OHMe

O

OO HO

O O

C3H7

O

C7H15 O

1

2

1) KOH, → O2

2) TMSOTf, Et3N→ NBS→ DBU

key step: Robinson annulation → allylic oxidation

O(+)-dihydrocarvone

silyl enol ether formation → bromination→ elimination

3 3) → AD-mix-ɑ elimination using Burgess’ reagent →enantioselective Sharpless dihydroxylation

O

OOH

Me

OOH

Me

MeOOC N S NEt3O O

MeO

Me

OHOH

H OAcMe

O OHMe

O

OO HO

O O

C3H7

O

C7H15 O

4 4) TBSCl, im → SeO2, NaHCO3 TBS protection → allylic oxidation

MeO

Me

OHOH

MeO

Me

OHOTBS

OH

5 5) DEAD, PBu3, PrCOOH Mitsunobu reaction

MeO

Me

OHOTBS

O

O C3H7

5 6) hv, AcOH

HOAcMe

O

OHMe

OTBS

OC3H7

O

H OAcMe

O OHMe

O

OO HO

O O

C3H7

O

C7H15 O

7 key step: ɑ-oxidation and carboxylation7) KMnO4, C7H15COOH, (C7H15CO)2O

8 dihydroxylation and partial TBS deprotection8) OsO4, NMO, citric acid

HOAcMe

O

OHMe

OTBS

OC3H7

O

HOAcMe

O

OHMe

OTBS

OC3H7

OO

O

C7H15

HOAcMe

O

OHMe

OH

OC3H7

OO

O

C7H15

HO

HO

H OAcMe

O OHMe

O

OO HO

O O

C3H7

O

C7H15 O

HOAcMe

O

OHMe

OH

OC3H7

OO

O

C7H15

HO

HO

9,10 Swern oxidation → lactol formation→ oxidation to the lactone,enone reduction,esterification via the mixed anhydride

9) DMSO, SO3⋅py, py, DIPEA

10) ZnBH411) PhCOCl, Et3N,

HOAcMe

O OC3H7

OO

O

C7H15

OH

O

OOHMe

HO

O

O

thapsigargin

Chem. Commun. 2005, 3162

An efficient albeit racemic synthesis of an attractive indole target that hinges on a cationic cyclization.

The Knight synthesis of cyclopiazonic acid

O

O

MgBr

SO2N3

COOMeO2N

Me2N

OMe

OMe

COOEt(EtO)2PO

N H

O

N

N

H

HO

O OH

H

H

N

NH

H

HO

O OH

H

1 1) , → Fe, HOAc

2,3 2) Red-Al3) TBDPSCl, im

key step: Leimgruber-Batcho indole synthesis via:

ester reduction,alcohol protection

4-6 4) POCl3, DMF5) TsCl, NaH6) DBN, LiCl,

formylation,N-tosylation,Horner-Wadsworth-Emmons reaction underMasamune-Roush conditions

COOMeO2N

Me2N

OMe

OMeNH

NH

COOMe

COOMeO2N

N

COOMe

H2N

N

NH

TBDPSO

COOEt(EtO)2PO

NTs

TBDPSO COOEt

N

NH

H

HO

O OH

H

7,8 7) PhSCu,8) KHMDS, trisyl azide

organocuprate addition,α-azidation

9,10 9) PPh310) p-NsCl, py, DMAP

Staudinger reduction,amine nosylation

NTs

TBDPSO COOEt

MgBr

SO2N3

trisyl azideNTs

TBDPSO COOEt

N3

NTs

TBDPSO COOEt

NHp-Ns

O2N

SO2Cl

p-NsCl

An inconsequential mixture of diastereomers is formed.

12,13 12) LiSCH2COOLi

13) KOt-Bu,

double deprotection,

N-acylation → Dieckmann condensation via:

NTs

TBDPSO COOEt

NHp-Ns

11 11) TfOH key step: deprotection → cationic cylization via:

NH

H2O NHp-Ns

COOEtNp-Ns

N

H

HCOOEt

N

N

H

HO

O OH

H

cyclopiazonic acid

O

O

N

N

H

H COOEt

O O

Ts

H

H

The carboethoxy group epimerizes to reside inthe thermodynamically more favorable position.

Important Ca2+ channels

Voltage-gated:

L-Type channels (muscle cells incl. cardiac myocytes, dendrites of cortical neurons, photoreceptor cells, auditory hair cells)

P/Q-Type (axon terminals, crucial for synaptic vesicle release)

Ligand-gated:

IP3 receptors (endoplasmatic reticulum)

ryanodine receptors (sarco/endoplasmatic reticulum)

Neurons talk to muscles

neuromuscular endplate

L-Type Ca2+ channels and muscle contraction

Source: Phil Schatz

Excitation-contraction coupling in skeletal muscle

Source: Phil Schatz

Excitation-contraction coupling in skeletal muscle

Source: Phil Schatz

Structure of the actin-tropomyosin complex

pdb 3J8A

Structure of the actin-tropomyosin-myosin complex

pdb 4A7F

Ryanodine receptors are giant channelsgated by calcium or mechanical forces

27 nm

extracellular view

pdb 3J8E

cryo-EM structure:

Ryanodine receptors are inhibited by ryanodine

OHMeMe

OH

HO

HO

Me

HO

O

ONH

ryanodine

HO O

Ryania spetiosa

ryanodol

O

OHHO

OHHO

OHOH

OH

The Deslongchamps synthesis of ryanodol

On of the greatest (and most under-appreciated) achievements in synthesis. The culmination of an effort spanning ten years and a true classic. The final publication featured no less than 20 students.

Can. J. Chem. 1979, 57, 3348

MeO

MeO

MeO Cl

Cl

OLi

MeIO

HOHO

OHHO

OHOH

O

1,2

3,4

1)TiCl4,

2) BBr3

3) , py4) Na2CO3

5,65) N2H4, KOH → p-TsOH6) NaOH, NBS

MeO

MeO

HO

HOCHO

CHO

O

O

O

OO

O

O Cl

Cl

Br Br

O

O

O

OBr

OO

Wolff-Kishner reductionNBS-promoted oxidative dearomatization via:

Lewis acid promoted formylation using dichloromethyl methyl ether,demethylation

acylation,alkylation

fragment A

O

HOHO

OHHO

OHOH

OH

O

HOHO

OHHO

OHOH

OH

O

7,8 7) Pt, H28) O3 → Pd-C, H2

exo-alkene hydrogenation,ozonolysis

Carvone is a cheap chiral pool building block.

HO

O

O

H

9, 10 9) (CH2OH)2, p-TsOH → NaOH, MeI10) LiH,

acetal formationmethyl ester formationvinyl additionLi

O

O

O

fragment B

(+)-carvone

O

HOHO

OHHO

OHOH

OH

12 12) NaOH, H2O key step: hydrolysis, epimerization (*) followed by intramolecular aldol reaction via:

11) fragment B, PhH, Δ11

OO

O

OO

O

O

O

mixture of isomers

O

O

O

OO

HO

O

O

O

O

OO

O

key step: intermolecular Diels-Alder reaction

*

O

HO

O

O

O+HH

*

O

HOHO

OHHO

OHOH

OH

13,14 13) AcOH14) NaOH

acetal hydrolysiskey step: epimerization followed byiintramolecular aldol addition

15,16 15) COCl2, py16) (Me3O)3CH, p-TsOH

O

OO

O

O

HOHO

H

carbonate formation,acetal formation

MeOOMe

HO

H

O

HO

O

O

OO

HO

O

O

O+HH

O

HOHO

OHHO

OHOH

OH

17,18 17) CH3CO3H, CH3CO2Na18) WCl6, n-BuLi

19 19) O3, DMS → p-TsOH

O

OO

O

OO

OOHO

O

O

O

O

OO

H

OO

OOO

OO

OH

OO

HOOO

O

OH

OO

key step: ozonolysis followed by transannular aldol addition

Baeyer-Villiger oxidation and epoxidation,deoxygenation of the epoxide to reform the alkene

O

OO

O

MeOOMe

H

MeOOMe

MeOOMe

MeOMeO

MeOMeO

MeOMeO

O

20,21 20) LDA, BEt3 → MeI21) NaBH4

22,23 22) NaH, MOMCl23) LiAlH4

OO

OHOO

O O

HOHO

OO

O

O O

OO

OOHO

O

OMeOMeO

α-methylation via the boron enolate,carbonyl reduction

ortho-carbonate formation,lactone reduction

MeO

MeO

MeO

MeO

H

H

MeO

O

HOHO

OHHO

OHOH

OH

O

HOHO

OHHO

OHOH

OH

24, 25 24) CrO3•2py25) MsCl

26) n-BuLi, DMSO

O

OO

O

O O

OH

26key step: Grob fragmentation

Collins oxidation → hemiacetal formation,mesylate formation

O(H3CO)2HC

OO

O

OMsO

O

HOHO

OO

O

O OMeO

MeO

MeO

MeO

H

Ms

MeO

MeO

OO

O

O

OO

MeO

MeO

MeOMeO

27,28 27) HBF428) CF3CO3H, Na2HPO4

OO

O

O

OO

MeO

MeO

O

O

O

OO

OH

orthocarbonate hydrolysis,epoxidation

O

O

O

OBzp-NO2

OHOH

OO

29,30 29) NaOH30) p-NO2BzCl

p-NO2BzCl =O2N

O

Cl

MeO

MeO

OMe

MeO

ester hydrolysis and epoxide opening,alcohol benzoylation

O

MeO

O

HOHO

OHHO

OHOH

OH

O

HOHO

OHHO

OHOH

OH

O

O

O

OBzp-NO2

OH

OO

31) CrO3•2py32) LiBH433) Ac2O

31-33

O

34) p-TsOH34

O

O

O

OBzp-NO2

OHOH

OO

OMe

MeO

Collins oxidation,stereoselective reduction to the equatorial alcohol,acetylation

MeO

OMe

MeOH elimination

O

O

O

OBzp-NO2

OH

OO

O

MeO

Ac

Ac

O

HOHO

OHHO

OHOH

OH

O

O

O OH

O

O

OO

35) O3 → Me2S36) Ac2O, NaOAc

35,36

3737) DBN, Δ

DBN =

elimination of p-nitrobenzoate to form an exocyclic alkene which tautomerizes to the enone upon acetate deprotection

N

N

O

O

O

OBzp-NO2

OH

OO

O

MeO

O

O

O

OBzp-NO2

OH

OO

R

ozonolysis,enol acetate formation

AcO

O

O

O OH

OO

R

AcO

Ac

Ac

38-40 38) NaBH439) NaOH40) CF3CO3H, Na2HPO4

ryanodol

O

O

O OH

O

O

OO

enone reduction,acetate hydrolysisepoxidation

41 41) Li, NH3 key step: reductive epoxide opening

O

HOHO

OHHO

OHOH

O

O

HOHO

OH

OH

OO

O

Ac

H

H

The reverse sequence (from ryanodol)via Grob fragmentation had been establisedpreviously.

Pierre Deslongchamps

He wrote the book on stereoelectronic effects.

The Inoue synthesis of ryanodol

35 years after Deslongchamps, a second synthesis of ryanodol. Inoue's approach beautifully exploits symmetry to elaborate the central 5,5-ring system featuring the two quaternary stereocenters. Recently, a slightly modified strategy enabled the first total synthesis of ryanodine itself.

J. Am. Chem. Soc. 2014, 136, 5916Chem. Eur. J. 2016, 22, 230

LiLi

SnBu3

SO

I

OH

OH

OO

O

O

HOHO

OHHO

OHOH

OH

O

HOHO

OHHO

OHOH

OH

1

2

1) maleic anhydride, 210 °C

2) H2O → py, Et3N, Pt(+)/Pt(-)

Diels-Alder cycloaddition, followed by enol-to-ketone tautomerisation

hydrolysis to the diacid A, →electrolytic removal of both acids

OH

OH

O

O

OO

O

O

O

OO

O

O

O

HOOCHOOC

A

The product is C2-symmetric.

O

HOHO

OHHO

OHOH

OH

4

5) NaNO2, AcOH

3 3) NaH, stereoselective double epoxide formation via Corey-Chaykovsky reaction

O

O

O

O

OH

HO

5

NH2H2N

O

O

4) NH3 (aq) epoxide opening

twofold ring expansion via twoTiffeneau–Demjanov rearrangements

SO

I

HO O NN

HO

– N2

SO

O O SO

– DMSO

O

NH2

O

HOHO

OHHO

OHOH

OH

O

8

6) TMSOTf, Et3N7) DMDO

6,7

OTMS

O

TMSO

O

O

HO OHO

OH

9

OH

O

HO O

8) TfOH (1 mol%)

9) TfOH (3 mol%), 65 °C

TfOH = SO

OOHF3C

DMDO=OO

silyl enol ether formation,Rubottom oxidation

acidic cleavage to give α-hydroxy ketones

key step: transannular aldol addition

HO

O OHOH

OTMS OTMS

O

OOH

H2O[O]

The C2-symmetry is broken.

O

HOHO

OHHO

OHOH

OH

10,11

12

HO OHO

OH

13

O

O

TBSO

OTBS

10) dimethoxypropane, PPTS11) DMP

12) LDA, TBSOTf

13) m-CPBA Rubottom oxidation

silyl enol ether formation

protection of 1,2-diol,Dess-Martin oxidation

The C2-symmetry is restored.

OO

O

HO OHO

OO

OO

O

HOOH OH

HO

OHHO

HO

14,15

16

14) NaH, MOMCl15) O2, Co(acac)2, Et3SiH, t-BuOOH

16) NfF, DBU → SiO2 column

protection,key step: Et3Si-peroxide formation desymmetrizes and oxidizes key intermediate

key step: elimination, lactol formation

C4F9SO

OFNfF =

OO

O

O

OMOMMOMO

ONfO

O OO

O

OMOMMOMO

O

H

H2O

via:

O

OO

OHO

MOMO OMOMOH

OO

O

MOMO OMOMO

OTESO

OO

O

HO OHO

O

HOHO

OHHO

OHOH

OH

17,18

19

17) BnOH, SiO218) KH, B

19) AIBN,

NPhO

S

NCl

B

SnBu3

N NAIBN = N

N

protection,thiocarbonate formation

key step: radical transfer allylation

O

O O

O

OMOMH

MOMO

H

BnO

via:

O

OO

OBnO

MOMO OMOM

O

OO

OBnO

MOMO OMOMO

S OPh

O

OO

OHO

MOMO OMOMOH

O

HOHO

OHHO

OHOH

OH

20-23

24

20) BF3•OEt2, Me2S21) DMP22) Pd(MeCN)2Cl223) BF3•OEt2, Me2S

24) Li

selective MOM deprotection,Dess-Martin oxidation,alkene isomerization to the internal alkene,MOM deprotection

regio- and stereoselective nucleophilic addition(sterically shielding groups highlighted)

O

O O

O

OHO

H

BnO Li

O

OO

OBnO

HO O

O

OO

OH

OBnO

HO

O

OO

OBnO

MOMO OMOM

O

HOHO

OHHO

OHOH

OH

25

26-28

25) Hoveyda-Grubbs second generation catalyst

26) TMSOTf, py27) BH3•THF → NaBO328) TMSOTf, py → HCl

key step: ring-closing metathesis

double protection,hydroboration → oxidation,reprotection of the secondary alcohol

O

OO O

OBn

O

O

TMSH

TMSO

O

OO

HO

OBnO

HO

O

OO

OH

OBnO

HO

O

HOHO

OHHO

OHOH

OH

29-31

32,33

29) , Sc(OTf)3 → NaOH30) DMP

31) , CeCl3

32) TASF33) HCl

BnO

NPh

CF3

Li

protection → deprotection of secondary silyl ether,

Dess-Martin oxidation,

CeIII-mediated stereoselective nucleophilic addition

silyl ether deprotection,acetonide deprotection

O

HOHO

OHHO

OBn

O

O

O

OO OHO

OBn

O

O

TMSBn

Bn

O

OO O

OBn

O

O

TMSH

TMSO

N S N

NSiF

F

TASF

34

35

34) NaBH(OAc)3 →KHF2

35) H2, Pd-C hydrogenation, hydrogenolysis

stereoselective reduction, borate ester hydrolysis

ryanodol

O

HOHO

OHHO

OHOH

O

O

HOHO

OHHO

OHOBn

O

O

HOHO

OHHO

OBn

O

O

H

Bn

Bn

The Reisman synthesis of ryanodol

A very short synthesis that relies on a powerful Pauson-Khand reaction to furnish the central cyclopentane as well as a late-stage Riley oxidation. The resulting synthesis cuts the total step count in half.

Science 2016, 353, 912

O

HOHO

OHHO

OHOH

OH SnBu3

O

COBrMg

EtO MgBr

Me MgBr

O

HOHO

OHHO

OHOH

OH

1,2

3,4

1) KHMDS → Davis’ oxaziridine

2) , DIPEA TBAI

double α-hydroxylation

protection of the 1,3-diol

OH

OO

OBnOBn

O

3)4) O3/O2 → PPh3

Me MgBr

OO

OBnOBn

O

BnO Cl

O

Davis’ oxaziridine =NO SO2PhPh

alkynylation,ozonolysis

(S)-Pulegone is the enantiomer of the widely available (R)-pulegone.

O

HOHO

OHHO

OHOH

OH

5,6

7

5)6) AgOTf

7) , CuIBrMg

O

OO

O

OBnOBn

O

OO

O

OBnOBn

OH

OO

OBnOBn

O

EtO MgBr alkynylation,Ag-catalyzed lactonization via:

OHOEt

OHR

R2R3

Ag+

OH

OHR

R2R3

Ag

OEt

O

OHR

R2R3

Ag

OEt OR2

R3

Ag

OEt

R

H2O

OR2

R3

Ag

OEt

R

OH H+ OR2

R3

R

O

-Ag+

-EtOH

O

HOHO

OHHO

OHOH

OH

8

9

8) [RhCl(CO)2]2, CO

9) SeO2, 4 Å MS, 110 °C

key step: Pauson-Khand reaction

key step: Riley oxidation to selectively introduce three hydroxy groups

O

HOHO

O

O

O

O

OBnOBn

HO

O

HO

O

O

OBnOBn

O

O

OO

O

OBnOBn

O

HOHO

OHHO

OHOH

OH

10, 11

12,13 12) LiBH4 → KHF2/MeOH13) H2, Pd(OH)2-C

SnBu3

reduction → boronate removal,deprotection

O

HOHO

O

O

O

O

OBn

O

HOHO

OH

HO

O

O

H

OBn

enol triflation

Stille coupling

O

HOHO

O

O

O

O

OBnOBn

HO

10) , DIPEA

11) Pd(PPh3)2Cl2, LiCl,

N

Cl

Tf2N

O

HOHO

OHHO

OHOH

OH

14

15

14) CF3CO3H, H3PO4, urea hydrogen peroxide

15) Li, NH3/THF key step: reductive epoxide opening

epoxidation

ryanodol

O

HOHO

OH

OHOH

O

O

HOHO

OH

OH

OO

O

O

HOHO

OH

HO

O

O

H

H

H

HO

The synapse

http://en.wikipedia.org/wiki/Synapse

neurotransmitterrelease

synaptic vesicle

AP triggersCa2+ influx

Ca2+ triggersvesicle fusion

Ca2+

synaptic cleft

ca. 20 nm

vesicle fusion is mediatedby SNARE proteins

P/Q typeCa2+ channels

Synaptic vesicle release is driven by SNARE proteins

source: Wikipedia

Tetanus toxin cleaves SNARE proteins at inhibitory synapses

It proteolytically cleaves primarily synaptobrevin. This results in overstimulation and muscle spasms typical of tetanus (AKA lock jaw).

Charles Bell (1809)

Botulinum toxins (“Botox”) cleave SNARE proteins at excitatory synapses

This results in muscle relaxation.

Molecules that target P/Q-type Ca2+ channels

ω-agatoxin(blocker)

Aglenopsis aperta (funnel web spider)

COOH

NH2

pregabalin

COOHH2N

gabapentin

Richard Silverman

Gabapentin and pregabalin, both initially developed to target GABA receptors, bind to the α2δ subunit of voltage-gated Ca2+ channels and promote the trafficking of these channels away from the plasma membrane. They have anticonvulsant and analgesic effects.

Drugs that block L-type calcium channels

N

S

O

OMe

OAc

N diltiazem

N

NCMeO

MeO

OMe

OMe

verapamil

NH

NO2COOMeMeOOC

NH

ClCOOMeEtOOC

Cl

nifedipin (Adalat) felodipin

NH

MeOOC E

O2N

The Jacobsen-Tanabe synthesis of diltiazem

An asymmetric version of the industrial route using Jacobsen’s signature reaction.

Tetrahedron 1994, 50, 4323

N

S

O

OAc

OMe

NH

Cl

OMe

OHCSH

NO2

ClCOOi-Pr

CBr4

ClCH2CH2NMe2

Ac2O

N

S

O

OAc

OMe

NH

Cl

1-3

4

1) CBr4, PPh32) n-BuLi → ClCOOi-Pr3) H2, Lindlar catalyst

4) (R,R)-Jacbosen catalyst 4-picoline-N-oxide, NaOCl

Corey-Fuchs homologation,addition of isopropyl chloroformate,semihydrogenation

OMe

OHC

N N

O O

t-Bu t-Bu

t-But-Bu

HH

Mn

Cl

(R,R)-Jacobsen catalyst

Gylcidates are a motif common to most syntheses of diltiazem.

ee = 96%cis/trans = 10:1

OMei-PrOOC

O

OMei-PrOOC

Jacobsen epoxidation

N

S

O

OAc

OMe

NH

Cl

5 5) NaHCO3

OMe

SH

NO2

The epoxide opening occursmostly via a SN2 mechanism. (threo/erythro = 6.7:1)

nucleophilic epoxide opening

NH

S

O

OH

OMe

NO2

SOH

OMe

COOi-Pr

6-8 6) FeSO4, NH4OH7) NaOH8) xylenes, Δ

Béchamp reduction,ester hydrolysis,amide formation

i-PrOOC

O

9-11 9) ClCH2CH2NMe2⋅HCl, NaH10) Ac2O11) HCl in EtOH

Steps 9 to 11 were carried out according to Tanabe Pharma.

NH

S

O

OH

OMe

cis-(+)-diltiazem hydrochloride

N

S

O

OAc

OMe

NH

Cl

N-alkylation,acylation of the alcohol,salt formation

A not-so-small molecule that activates Ca2+-permeant channels

OO

OO

OO

OO

O

O

O

OO

OO

O

OO

OHO

Me

OHHO

H

Me

MeH

OH

Me

H

H

HMe

H

H

OOHO

HOO

O

O

Me

H

HH

O

O

OO

OO

O O

OH

HO

HO

OHMe

Me

MeMe

Me

MeMe

Me

Me

HH

HH

HH

H

H

H

OH

HO OH

HOOSO3Na

H

HH

H

H

HH

H

HO

OHHO

H

H H

H

OH

OHMe

MeH

H

HH

H

H

H

H

OHHO

OHH

H Me

OH

Me

NaO3SO

OH

Me OH

OH

H

HO

H

HH H

H

Nicolaou approaches:J. Am. Chem. Soc. 1996, 118, 10335Angew. Chem. Int. Ed. 2007, 46, 8875J. Am. Chem. Soc. 2008, 130, 7466J. Am. Chem. Soc. 2010, 132, 6855J. Am. Chem. Soc. 2010, 132, 9900J. Am. Chem. Soc. 2011, 133, 214J. Am. Chem. Soc. 2011, 133, 220

Nakata approaches:Chem. Pharm. Bull. 1996, 44, 627Heterocycles 1997, 44, 105Org. Lett. 2001, 3, 2749Heterocycles 2007, 74, 259Org. Lett. 2008, 10, 1675Org. Lett. 2008, 10, 1679Org. Lett. 2008, 10, 1683

maitotoxin

Fluorescent sensors of [Ca2+]

O O

N NO O

O OO O

OO

Ca2+O O

N

N

OOC COO

COOOOC Ca2+

BAPTA

Fluorescent sensors of [Ca2+]

O O

O

NO

OOO

O

N

CH3

N

OO

O

O

O

O

O

O

O

O

O

O

O O

O

O

Fura2-AMλex = 340 nmλem = 390/510 nm

O O

N

N

O

O

O

O

O

O

O

O

O

O O

O

O

Fluo2-AMλex = 488 nmλem = 515 nm

O

O

O

O

OO

O

O

Acetoxymethyl (AM) esters make the dyes cell permeant and are enzymatically cleaved intracellularly.

Fluorescent sensors of [Ca2+]

OO

N

NO

O

O

O

O

O

O

O

O O

O

O

X-Rhod1-AMλex = 580 nmλem = 602 nm

ON

NO

O

OO

OO

N

N

O

O

O

O

O

O

O

O

O

O O

O

Oregon Green 488 BAPTA1λex = 494 nmλem = 523 nm

NHO

O

O

O

O

O OO

O

O

FFCOO

Acetoxymethyl (AM) esters make the dyes cell permeant and are enzymatically cleaved intracellularly.

GCaMP is a genetically encoded sensor of [Ca2+]

pdb 3SG3

Ca2+-binding domain

fluorescent domain

N

N

OH

HN

OH

OO

O

R

NHR'G

T

Y

fluorophore

Roger Tsien

2008 Nobel Prize in Chemistry

The in vivo visualization of neuronal activity with Ca2+-sensitive dyes

courtesy of Arthur Konnerth