code v introductory tutorial - national cheng kung university · 7 december 2001 cheng-fang ho...

44
7 December 2001 Cheng Cheng - - Fang Ho Fang Ho [email protected] [email protected] 1-1 Optical Optical System System Design Design on Lab. of RF on Lab. of RF - - MW MW Photonice Photonice . Phys. NCKU . Phys. NCKU http://www.phys http://www.phys .ncku.edu.tw .ncku.edu.tw / optics / optics CODE V Introductory Tutorial CODE V CODE V Introductory Tutorial Introductory Tutorial Cheng-Fang Ho Lab.of RF-MW Photonics, Department of Physics, National Cheng-Kung University, Tainan, Taiwan

Upload: others

Post on 04-Oct-2019

5 views

Category:

Documents


0 download

TRANSCRIPT

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-1

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

CODE V Introductory Tutorial

CODE V CODE V Introductory TutorialIntroductory Tutorial

Cheng-Fang Ho Lab.of RF-MW Photonics,

Department of Physics, National Cheng-Kung University, Tainan, Taiwan

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-2

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Tutorial Outline Tutorial Outline Tutorial Outline

•• Introduction to CODE VIntroduction to CODE V•• Optical Design ProcessOptical Design Process•• Code V Design Examples :Code V Design Examples :

1.1. Digital VGA Camera Objective Digital VGA Camera Objective 2.2. 10X Microscope10X Microscope

•• Advanced Applications Advanced Applications •• ReferencesReferences

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-3

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Introduction to CODE VIntroduction to CODE VIntroduction to CODE V

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-4

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

An Overview of CODE V FeaturesAn Overview of CODE V FeaturesAn Overview of CODE V Features

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-5

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Structure of CODE VStructure of CODE VStructure of CODE V

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-6

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

CODE V Version 9.00CODE V Version 9.00CODE V Version 9.00Menu barMenu bar

ToolbarToolbar

Lens DataLens DataManager

CommandCommandWindowWindow

Manager

Window Window NavigationNavigationBar

Error LogError Log

Bar

Status BarStatus Bar

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-7

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Optical Design ProcessOptical Design ProcessOptical Design Process

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-8

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Optical Design Flowchart Optical Design Flowchart Optical Design Flowchart •• TodayToday’’s tutorial will s tutorial will based on this process

Design condition Specificationbased on this process

Initial analysis & Performance evaluation

Optimization

Final analysis & Performance evaluation

Tolerance analysis

Pre-design

Prepare for fabrication

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-9

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Design Example (1):Fixed-focus VGA Digital

Camera Objective

Design Example Design Example ((11))::FixedFixed--focus VGA Digital focus VGA Digital

Camera Objective Camera Objective

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-10

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

•• FixedFixed--focus VGA Digital Camera Objective specificationfocus VGA Digital Camera Objective specification•• Identification of a Starting PointIdentification of a Starting Point

–– FirstFirst--order optics considerationorder optics consideration

•• Selecting a Suitable Starting Point Selecting a Suitable Starting Point –– Code V New Lens WizardCode V New Lens Wizard

•• Perform a Basic AnalysisPerform a Basic Analysis–– Compare with the specifications: Spot Diagram, Aberration curvesCompare with the specifications: Spot Diagram, Aberration curves, MTF output, MTF output……....–– Guideline for OptimizationGuideline for Optimization

•• Optimization Optimization –– Make things better, Performance reMake things better, Performance re--evaluationevaluation

•• Tolerance Analysis Tolerance Analysis –– Prepare for fabricationPrepare for fabrication

•• Summary and ReferencesSummary and References

Outline Outline Outline

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-11

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Identification of a starting point

Identification Identification of a starting point of a starting point

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-12

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Fixed-focus VGA Digital Camera Objective Specifications* Small unmber of elements ( 1-3 ) made from common glasses or plastics

* Image sensor (baseline is Agilent FDCS-2020)Resolution 640 x 480 effective pixels

Pixel size 7.4 x 7.4 microns

Sensitive area 3.55 x 4.74 mm (full diagonal 6 mm)

* Objective LensFocus Fixed, depth of field 750 mm to infinity

Focal length Fixed, 6.0mm

Geometric Distortion < 4%

F/number Fixed aperture, F/3.5

Sharpness MTF through focus range

(central area is inner 3 mm of CCD)

Low freq. 17 lp/mm >90% (central) >85% (outer)

High freq. 51 lp/mm >30% (central) >25% (outer)

Vignetting Corner relative illumination >60%

Transmission Lens alone, >80% 400-700 nm

IR filter 1 mm thick Schott IR638 or Hoya CM500

Fixed-focus VGA Digital Camera Objective Specifications* Small unmber of elements ( 1-3 ) made from common glasses or plastics

* Image sensor (baseline is Agilent FDCS-2020)Resolution 640 x 480 effective pixels

Pixel size 7.4 x 7.4 microns

Sensitive area 3.55 x 4.74 mm (full diagonal 6 mm)

* Objective LensFocus Fixed, depth of field 750 mm to infinity

Focal length Fixed, 6.0mm

Geometric Distortion < 4%

F/number Fixed aperture, F/3.5

Sharpness MTF through focus range

(central area is inner 3 mm of CCD)

Low freq. 17 lp/mm >90% (central) >85% (outer)

High freq. 51 lp/mm >30% (central) >25% (outer)

Vignetting Corner relative illumination >60%

Transmission Lens alone, >80% 400-700 nm

IR filter 1 mm thick Schott IR638 or Hoya CM500

Lens SpecificationsLens SpecificationsLens Specifications

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-13

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Identification of a Starting Point Identification of a Starting Point Identification of a Starting Point

Image height = EFL* tan(semiImage height = EFL* tan(semi--FOV)FOV)

••Starting point schemeStarting point scheme

EFL = 6 mm

Semi-FOV = 26.5 degs

Image HIght = 3 mm3-element System• From specification directly:

– 3-element system– Effective focal length = 6

mm– F/number = 3.5

•• From specification directly:From specification directly:–– 33--element systemelement system–– Effective focal length = 6 Effective focal length = 6

mmmm–– F/number = 3.5F/number = 3.5

• First-order calculation:– Field of view– FOV = 26.5 °

•• FirstFirst--order calculation:order calculation:–– Field of viewField of view–– FOV = 26.5 FOV = 26.5 °°

•• These are useful to be a These are useful to be a ““ filter filter ”” (criterion) for searching exiting (criterion) for searching exiting designs in Code V new lens wizard designs in Code V new lens wizard

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-14

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Selecting a Suitable Starting Point

Selecting Selecting a Suitable Starting Point a Suitable Starting Point

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-15

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Selecting a suitable starting pointSelecting a suitable starting pointSelecting a suitable starting point•• The Code V New Lens WizardThe Code V New Lens Wizard

–– Searching existing designsSearching existing designs-- Patent DatabasePatent Database–– FilterFilter–– A suitable starting lensA suitable starting lens

3. 3. Lens name : Lens name : or022488or022488

1.1.

2.2.

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-16

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Selecting a suitable starting pointSelecting a suitable starting pointSelecting a suitable starting point•• Defining system dataDefining system data

–– Pupil specification, Wavelengths, FieldsPupil specification, Wavelengths, Fields…… 1. 1. PupilPupil

2. 2. WavelengthsWavelengths

3. 3. FieldsFields

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-17

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

•• Lens Data Manager Spreadsheet and CommandLens Data Manager Spreadsheet and CommandWindowWindow 1. 1. LDM LDM

SpreadsheetSpreadsheet

2. 2. Command WindowCommand Window

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-18

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

•• Drawing Pictures and First order DataDrawing Pictures and First order Data

1. 1. Quick 2D plotQuick 2D plot

2. 2. First Order DataFirst Order Data

The lens system is too smallThe lens system is too small

EFL, the result is not suitable for our EFL, the result is not suitable for our specification specification

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-19

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

JAPAN PATENT 50_2807 750129 Scale: 24.00 ORA 18-Nov-01

1.04 MM

•• The lens data has been The lens data has been changedchanged

Updated system layoutUpdated system layout

•• Scale the Lens Scale the Lens

The EFL value is now 6mm as desired.The EFL value is now 6mm as desired.The paraxial image height is 2.99 mmThe paraxial image height is 2.99 mm

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-20

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Analyze the Starting Point

Analyze Analyze the Starting Point the Starting Point

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-21

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Analyze the Starting Point Analyze the Starting Point Analyze the Starting Point •• Basic and Useful AnalysisBasic and Useful Analysis

–– Ray aberration curvesRay aberration curves and and Spot diagramsSpot diagrams•• Compare with Lens SpecificationsCompare with Lens Specifications

–– Distortion ( Distortion ( Field Curve or Distortion GridField Curve or Distortion Grid ))–– Sharpness ( Sharpness ( Diffraction MTFDiffraction MTF ))–– VignettingVignetting Focal length Fixed, 6.0mm

Geometric Distortion < 4%

Sharpness MTF through focus range

(central area is inner 3 mm of CCD)

Low freq. 17 lp/mm >90% (central) >85% (outer)

High freq. 51 lp/mm >30% (central) >25% (outer)

Vignetting Corner relative illumination >60%

Transmission Lens alone, >80% 400-700 nm

Focal length Fixed, 6.0mm

Geometric Distortion < 4%

Sharpness MTF through focus range

(central area is inner 3 mm of CCD)

Low freq. 17 lp/mm >90% (central) >85% (outer)

High freq. 51 lp/mm >30% (central) >25% (outer)

Vignetting Corner relative illumination >60%

Transmission Lens alone, >80% 400-700 nm

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-22

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

•• Analysis > Diagnostics > Ray Analysis > Diagnostics > Ray Aberration CurveAberration Curve

•• Ray Aberration CurvesRay Aberration CurvesRay Aberration and Spot DiagramRay Aberration and Spot DiagramRay Aberration and Spot Diagram

EnlargeEnlarge

Aberration scale Aberration scale PurplePurple

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-23

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

•• Spot DiagramSpot Diagram•• Analysis > Geometrical > Spot DiagramAnalysis > Geometrical > Spot Diagram

–– Scale by Scale by Pixel Size 7.4 umPixel Size 7.4 um

Scale barScale barField angle Field angle

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-24

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

•• Tool > Macro > Tool > Macro > Sample / Geometrical AnalysisSample / Geometrical Analysis/ sopt2d/ sopt2d.seq.seq

•• Useful Spot Macro Useful Spot Macro

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-25

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ opticsGeometric Distortion < 4%Geometric Distortion < 4%

•• Analysis > Diagnostics > Field CurveAnalysis > Diagnostics > Field Curve•• Analysis > Diagnostics > Distortion Analysis > Diagnostics > Distortion

Grid Grid

1. 1. Field CurveField Curve

2. 2. Distortion GridDistortion Grid

Distortion Distortion Distortion

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-26

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ opticsSharpness MTF through focus range

(central area is inner 3 mm of CCD)

Low freq. 17 lp/mm >90% (central) >85% (outer)

High freq. 51 lp/mm >30% (central) >25% (outer)

Sharpness MTF through focus range

(central area is inner 3 mm of CCD)

Low freq. 17 lp/mm >90% (central) >85% (outer)

High freq. 51 lp/mm >30% (central) >25% (outer)

•• Analysis > Diffraction > MTFAnalysis > Diffraction > MTF

MTF OutputMTF OutputMTF Output

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-27

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ opticsVignetting Corner relative illumination >60%Vignetting Corner relative illumination >60%

1.1. Get from Text tab of MTF outputGet from Text tab of MTF output2.2. Analysis > system > Transmission Analysis > system > Transmission

AnalysisAnalysis

Vignetting / Illumination and TransmissionVignetting Vignetting / Illumination and Transmission/ Illumination and Transmission

Transmission Lens alone, >80% 400-700 nmTransmission Lens alone, >80% 400-700 nm

1.1.

2.2.

Illumination and Transmission for each wavelength

Relative Illumination

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-28

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

•• Tool > Macro > Tool > Macro > glassfit.seqglassfit.seq–– Sample Macro / Material Sample Macro / Material

InformationInformation

Picking on Glass Picking on Glass Picking on Glass

•• Result of Result of glassfit.seqglassfit.seq

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-29

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Optimization:Making Things Better

Optimization:Optimization:Making Things Better Making Things Better

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-30

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Automatic Design Process Automatic Design Process Automatic Design Process

Process

StartingdesignSetup

Choice ofvariables

Choice of constraints,error function controls,

other controls

Auto input

Constructerror

function

Evaluateerror

function

Develop finitedifferences foreach constraintand aberration

Evaluatedesign

STOP (good enough)

Not good enought re-enterprocess at A, B, C, or D

Print each cycle foruser feedback

* EXIT

A

B

C

DCODEV/AUTO tasks

Yes

No

Designer Tasks

Designer Tasks :

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-31

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

The Game PlanThe Game PlanThe Game Plan

•• Define as variable: all radii of curvatures, thickness values, aDefine as variable: all radii of curvatures, thickness values, and nd fictitious glassesfictitious glasses

•• Automatic Design SettingAutomatic Design Setting–– Make sure all glass elements are thick enough and glass index Make sure all glass elements are thick enough and glass index doesndoesn’’t get too t get too

highhigh–– Constrain the effective focal length (EFL) to the current 6 mmConstrain the effective focal length (EFL) to the current 6 mm–– Use the default spot size (transverse ray aberration ) error funUse the default spot size (transverse ray aberration ) error function,but trace ction,but trace

mire rays in the gridmire rays in the grid•• optimizations optimizations

–– Run AUTORun AUTO–– Understanding the output and reevaluations Understanding the output and reevaluations –– Modify AUTO setting to refine the solutionModify AUTO setting to refine the solution

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-32

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

•• Variables are defined in the LDMVariables are defined in the LDM–– To vary the constructs what you want, place the To vary the constructs what you want, place the

cursor on the it in the LDM window, rightcursor on the it in the LDM window, right--click, click, and choose and choose ““ VaryVary”” from the shortcut menu.

Defining Variable Defining Variable Defining Variable

from the shortcut menu. The red, small letter The red, small letter ““V V ””

means variable means variable

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-33

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Automatic Design SettingAutomatic Design SettingAutomatic Design Setting•• The first boundary condition category is The first boundary condition category is General ConstraintGeneral Constraint

–– General Thickness ConstraintGeneral Thickness Constraint–– Glass Map ConstraintGlass Map Constraint

•• The second boundary condition category is The second boundary condition category is Specific ConstraintSpecific Constraint–– Edit Constraint : Optical Definition / First Order or Third OrdeEdit Constraint : Optical Definition / First Order or Third Order r

Aberration Aberration …………–– Defining Constraint Mode and Constraint TargetDefining Constraint Mode and Constraint Target

•• Error Function Definitions and ControlsError Function Definitions and Controls–– Error Function TypesError Function Types

•• Output ControlsOutput Controls

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-34

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

General ConstraintGeneral ConstraintGeneral Constraint•• Min. center thicknessMin. center thickness

–– 0.9 mm0.9 mm•• Min. edge thicknessMin. edge thickness

–– 0.8 mm0.8 mm•• Defining new corner Defining new corner

point for the glass map point for the glass map

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-35

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

•• ConstraintConstraint–– EFL EFL

Specific ConstraintSpecific ConstraintSpecific Constraint

Constraint Constraint categorycategory

Constraints Constraints

Constraints Constraints modemode

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-36

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

•• CODE V Error Function OnlyCODE V Error Function Only•• Error Function type Error Function type

–– Transverse Ray Aberration Transverse Ray Aberration

Error Function Definition and ControlsError Function Definition and ControlsError Function Definition and Controls

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-37

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Run Automatic DesignRun Automatic DesignRun Automatic Design

Error function = 7.48458174 Scale: 24.00 ORA 21-Nov-01

1.04 MM

Error function = 26.38829598 Scale: 24.00 ORA 21-Nov-01

1.04 MM

Error function = 18.58429918 Scale: 24.00 ORA 21-Nov-01

1.04 MM

Error function = 17.45815063 Scale: 24.00 ORA 21-Nov-01

1.04 MM

Error function = 17.06470255 Scale: 24.00 ORA 21-Nov-01

1.04 MM

Error function Error function valvevalve

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-38

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Understanding AUTO OutputUnderstanding AUTO OutputUnderstanding AUTO Output

Active constraintsActive constraints

Error function contributionsError function contributions

Error function Error function contributions

Error function Error function changecontributions change

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-39

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Analyzing and Modifying WeightsAnalyzing and Modifying WeightsAnalyzing and Modifying Weights

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

MODULATION

7.0 14.0 21.0 28.0 35.0 42.0 49.0 56.0 63.0 70.0

SPATIAL FREQUENCY (CYCLES/MM)

Digtial VGA Carmera

DIFFRACTION MTF

ORA 22-Nov-01

DIFFRACTION LIMIT

AXIS

T R

0.4 FIELD ( )11.00 O

T R

0.7 FIELD ( )19.00 O

T R

1.0 FIELD ( )26.50 O

WAVELENGTH WEIGHT

656.0 NM 1

589.0 NM 2

430.0 NM 1

DEFOCUSING 0.00000

F 3 F 3 –– X X

F 4 F 4 –– X X

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-40

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

•• Optimized MTF ResultsOptimized MTF ResultsAnalyzing and Modifying WeightsAnalyzing and Modifying WeightsAnalyzing and Modifying Weights

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

MODULATION

7.0 14.0 21.0 28.0 35.0 42.0 49.0 56.0 63.0 70.0

SPATIAL FREQUENCY (CYCLES/MM)

Digtial VGA Carmera

DIFFRACTION MTF

ORA 22-Nov-01

DIFFRACTION LIMIT

AXIS

T R

0.4 FIELD ( )11.00 O

T R

0.7 FIELD ( )19.00 O

T R

1.0 FIELD ( )26.50 O

WAVELENGTH WEIGHT

656.0 NM 1

589.0 NM 2

430.0 NM 1

DEFOCUSING 0.00000

Error function Error function WeightWeight

F 3 F 3 –– X X

Field AngleField AngleAberration Aberration DirectionDirection

F 4 F 4 –– X X

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-41

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

•• The results are accepted for infinite The results are accepted for infinite objection distanceobjection distance

Optimization and Re-evaluations (1) Optimization and ReOptimization and Re--evaluations (1) evaluations (1)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

MODULATION

7.0 14.0 21.0 28.0 35.0 42.0 49.0 56.0 63.0 70.0

SPATIAL FREQUENCY (CYCLES/MM)

Digtial VGA Carmera

DIFFRACTION MTF

ORA 22-Nov-01

DIFFRACTION LIMIT

AXIS

T R

0.4 FIELD ( )11.00 O

T R

0.7 FIELD ( )19.00 O

T R

1.0 FIELD ( )26.50 O

WAVELENGTH WEIGHT

656.0 NM 1

589.0 NM 2

430.0 NM 1

DEFOCUSING 0.00000

0.25

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-42

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

•• Optimization for objection distance =750 mmOptimization for objection distance =750 mm–– Consider the defocus effect (Through Consider the defocus effect (Through

focus) focus) –– The error functions are weighting by The error functions are weighting by

different focus different focus

••MTF (object MTF (object distance 750 mm)distance 750 mm)

Optimization and Re-evaluations (2) Optimization and ReOptimization and Re--evaluations (2) evaluations (2) Defocus Defocus definingdefining

Focus Focus assigningassigning

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-43

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ opticsSharpness MTF through focus range

(central area is inner 3 mm of CCD)

Low freq. 17 lp/mm >90% (central) >85% (outer)

High freq. 51 lp/mm >30% (central) >25% (outer)

Sharpness MTF through focus range

(central area is inner 3 mm of CCD)

Low freq. 17 lp/mm >90% (central) >85% (outer)

High freq. 51 lp/mm >30% (central) >25% (outer)

Final Evaluations Final Evaluations Final Evaluations •• MTF at defocus MTF at defocus ––0.048 mm0.048 mm•• MTF at defocus 0 mmMTF at defocus 0 mm

Digtial VGA Carmera Scale: 24.00 ORA 26-Nov-01

1.04 MM

•• Through focus MTF at defocus 17 Through focus MTF at defocus 17 lplp/mm and 51 /mm and 51 lplp/mm/mm•• Field curve and Distortion Field curve and Distortion

7 December 2001 ChengCheng--Fang Ho Fang Ho [email protected] [email protected]

1-44

OpticalOptical SystemSystem DesignDesign on Lab. of RFon Lab. of RF--MW MW PhotonicePhotonice. Phys. NCKU. Phys. NCKU

http://www.physhttp://www.phys.ncku.edu.tw.ncku.edu.tw / optics/ optics

Final Evaluations – illumination Final Evaluations Final Evaluations –– illumination illumination •• Analysis > Illumination Analysis > Illumination

–– Using Bitmap images as illumination Using Bitmap images as illumination sourcesource

–– The imaging process is base on The imaging process is base on Raytrace Raytrace method method