cognitive science principles contrasting cases visualizations prior knowledge & misconceptions...

23
Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

Upload: lucinda-kelly

Post on 02-Jan-2016

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

Cognitive Science Principles

Contrasting CasesVisualizations

Prior Knowledge & MisconceptionsSpaced Rehearsal & Assessment

Page 2: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

• Learning from two (or several) cases that are simultaneously compared and contrasted– Helps students understand abstract features and

structural relations rather than focusing too much on the superficial aspects of individual examples

– Comparison can be very informative to learners even when the cases being compared are new and not well-understood

– Cases are especially effective when they come at the beginning of instruction

Contrasting Cases

Page 3: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

• Textbooks are full of diagrams, graphs, photographs, etc. which are meant to add crucial information to the written text

• Students often ignore them or do not know how to interpret them effectively

• Conventions are often implicit or not clearly indicated

• Visualization activities help students attend to and interpret different image types, relative scale & magnification, perspective, use of color & other conventions, captions, etc.

Visualizations

Page 4: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

Prior knowledge is one of the strongest predictors of future learning.

How well does a student’s prior knowledge fit with new learning?– Have a well-developed, accessible framework– Lack a relevant conceptual framework (no

foundation)– Have an incomplete or inaccurate conceptual

framework (partial or weak fit)– Have a strong misconception (active conflict)

Page 5: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

• Revisiting material helps students remember it longer• Activating prior knowledge makes it easier to prepare

for and connect to new knowledge• Well-designed test items can be more effective for

learning than further review or practice• Modifications include daily warm-ups, weekly short

assessments, and end of unit tests to put these principles into practice

Spaced Testing

Page 6: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

6

Contrasting Cases• A simple example of the power of having multiple cases

• Comparison helps highlight similarities and differences between cases – focus on particular features

Medin, Goldstone, and Gentner, (1993). Respects for similarity. Psychological Review, 100, 254-278.

Page 7: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

7

Contrasting Cases• Comparing cases is more effective than studying them

individually• Timing of the contrasting cases. In most textbooks cases

are usually placed as homework at the end of a unit of study. • Research has found that case comparison should be done

before principles are introduced– Domain: students learning memory concepts– Comparison: analyzing contrasting cases vs. reading a

summary of the cases

– Hypothesis: students given a chance to compare cases will learn deeply from a lecture than those who read a summary of the case data

Schwartz & Bransford, (1998). Time for telling. Cognition and Instruction, 16, 475-522.

Page 8: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

8

Contrasting Cases• Design

Treatment ACompare cases

Treatment BRead case summary

Target Transfer TaskPredictions about a novel memory experiment

Common Learning ExperienceListen to a lecture

Treatment CCompare cases

Compare casesagain

Schwartz & Bransford, (1998). Time for telling. Cognition and Instruction, 16, 475-522.

Page 9: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

9

Contrasting Cases

Compare cases

+ Lecture

Summarize + Lecture

Compare cases twice

Schwartz & Bransford, (1998). Time for telling. Cognition and Instruction, 16, 475-522.

Page 10: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

10

VisualizationsThey are unable to follow the arrows, captions and labels in complex diagramsHegarty, Kriz, & Cate, 2003

Page 11: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

11

Visualizations

• Students often fail to make the most of images they come across in curricula (lacking interpretation skills)Berthold & Renkl, 2009

• When students do not understand the diagrams they can come away with misconceptions– They might then skip diagrams to avoid further

frustrationBartholome & Bromme, 2009

Page 12: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

12

Visualizations are common in the classroom…

In American 8th grade classrooms diagrams are used at least once in 52% of lessons and concept maps in 46% of lessons. In 21% of all lessons observed, students made their own diagrams (K. J. Roth et al., 2006).

Page 13: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

13

… and Visualizations are common in textbooks

Middle school through undergraduate textbooks have >1 image per page, average1-4 features per image such as captions, labels, arrows, abbreviations, etc. (Cromley, Snyder & Luciw)

Page 14: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

14

Visualizations• Middle school science textbooks often have

very complex diagrams

Page 15: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

• We focus on the following– Diagram versus Real Image

– Labeling

– Captions

– Relative scale and magnification

– Colors

– Cut-away

15

Visualizations

Page 16: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

16

Prior Knowledge & Misconceptions• Research shows one of the strongest predictors of

learning is related to what the student already knows(NRC, 1999, 2006)

• If the to-be-learned information matches with the organization and framework of the students’ prior knowledge learning is smooth and rapid

• Unfortunately, not the case in science learning; students lack the proper conceptual frameworks for learning many new concepts

Page 17: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

17

Prior Knowledge & Misconceptions• Much of earth sciences involves learning about entities and

processes at a macroscopic level– Challenges of representing dynamic processes over

long time scales and large 3-D spaces. • Students have trouble understanding geologic time scales• Geologic processes don’t make sense in short scales• Students have trouble representing 3-D structures• Earth science evidence is frequently 3-D, but pictures are 2-D• Students have trouble reasoning across spatial scales• Rock features are small, formations are large

– Students need to add new concepts and explanatory systems to learn new concepts

Page 18: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

18

Prior Knowledge & Misconceptions• Many well-documented misconceptions

– The geologic world is inert and unchanging. – Geology happened long ago and far away.– Object kind vs. material kind– Etc.

• Misconceptions tend to be entrenched in students’ thinking and resistant to change

• It’s important to be aware of them and that teaching and learning activities emphasize the correct concepts

• Countering misconceptions is generally a long, gradual, process, in which a new causal / explanatory concept is constructed and applied repeatedly

Page 19: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

Conceptual Challenges in Earth History

Distinctive attributes of Geoscience as an “interpretive and historical science”:

• involves large-scale datasets that are often incomplete

• involves making “predictions” about the past

• involves synthesis of different kinds of systems and data types

Page 20: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

Distinctive Attributes of Geoscience

• Holistic systems thinking: cycles and interactions among major earth systems (e.g., air, water, ice, rock, living things), feedback loops

• Phenomena involve very large scales for time and space

• High demands on visual representation and three-dimensional spatial thinking

• Variety of methodologies and measurements

Page 21: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

Conceptual Challenges for Students• The Earth is static and unchanging (except for the

weather)• Geology happened “long ago and far away” (vs.

geologic processes and events are occurring all around us all the time)

• Cumulative effects of VERY LONG time scales are underestimated or disregarded, especially for gradual processes (e.g., deposition, erosion)

• Rock cycle: rocks, which seem very permanent to kids, change “kinds,” are created and broken down.

• Magnitudes of time, pressure, temperature, and systems are far beyond everyday experience

Page 22: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

22

Spaced Testing• Why do students forget what they have been taught so

quickly?

• Research has shown that forgetting can be dramatically reduced by occasionally revisiting old concepts in later tests(Rohrer & Pashler, 2007)

– Spaced testing - where the test is spaced out over time instead of being massed

• Repeated testing is better than re-study, or a lecturing again, even controlling for the same amount of time(Roediger & Karpicke, 2006)

Page 23: Cognitive Science Principles Contrasting Cases Visualizations Prior Knowledge & Misconceptions Spaced Rehearsal & Assessment

23

Spaced Testing