colligative properties. colligative properties –

42
13.2 Colligative Properties

Upload: avice-waters

Post on 01-Jan-2016

314 views

Category:

Documents


11 download

TRANSCRIPT

Page 1: Colligative Properties. Colligative properties –

13.2Colligative Properties

Page 2: Colligative Properties. Colligative properties –

13.2Colligative properties –

Page 3: Colligative Properties. Colligative properties –

13.2Colligative properties – Anytime a solute is dissolved in

a solvent, the properties of the solvent are changed.

Page 4: Colligative Properties. Colligative properties –

13.2Colligative properties – Anytime a solute is dissolved in

a solvent, the properties of the solvent are changed.

These changes are based on the number of particles dissolved, not the type of particle.

Page 5: Colligative Properties. Colligative properties –

13.2Colligative properties – Anytime a solute is dissolved in

a solvent, the properties of the solvent are changed.

These changes are based on the number of particles dissolved, not the type of particle.

The van’t Hoff factor (i) takes the number of particle(s) into account.

i = the number of particles in solution.

NaCl(s) Na1+(aq) + Cl1-(aq) i = 2

C6H12O6 C6H12O6 i = 1

Page 6: Colligative Properties. Colligative properties –

13.2What is an electrolyte? Nonelectrolyte?

Page 7: Colligative Properties. Colligative properties –

13.2Electrolyte – a solute that when dissolved in a solution

produces ions and it will conduct electricity. This could happen through dissociation or ionization.

Nonelectrolyte – a solute that when dissolved in a solution does not produce ions and it will not conduct electricity.

Page 8: Colligative Properties. Colligative properties –

13.2Electrolyte – a solute that when dissolved in a solution

produces ions and it will conduct electricity. This could happen through dissociation or ionization.

Nonelectrolyte – a solute that when dissolved in a solution does not produce ions and it will not conduct electricity.

Are the following electrolytes or nonelectrolytes?

CaCl2C6H12O6

HCl

NH4Cl

Page 9: Colligative Properties. Colligative properties –

13.2Electrolyte – a solute that when dissolved in a solution

produces ions and it will conduct electricity. This could happen through dissociation or ionization.

Nonelectrolyte – a solute that when dissolved in a solution does not produce ions and it will not conduct electricity.

Are the following electrolytes or nonelectrolytes?

CaCl2C6H12O6

HCl

NH4Cl

What would be the van’t Hoff factor for each of the above?

Page 10: Colligative Properties. Colligative properties –

13.2What does nonvolatile mean?

Page 11: Colligative Properties. Colligative properties –

13.2What does nonvolatile mean?

It does not evaporate easily. All of the solutes in this chapter are nonvolatile.

Page 12: Colligative Properties. Colligative properties –

13.21. What happens to the vapor pressure of the solvent,

when a nonvolatile solute is added?

Page 13: Colligative Properties. Colligative properties –

13.21. Reduction of vapor pressure

The higher the number of solute particles present, the lower the vapor pressure above the solution.

Page 14: Colligative Properties. Colligative properties –

13.21. Reduction of vapor pressure

The higher the number of solute particles present, the lower the vapor pressure above the solution.

Because fewer of the solvent particles turn into a gas, the vapor pressure lowers and the liquid phase exists over a larger temperature range.

Page 15: Colligative Properties. Colligative properties –

13.22. What happens to the freezing point of the solvent

when a solute is added?

Page 16: Colligative Properties. Colligative properties –

13.22. What happens to the freezing point of the solvent

when a solute is added?

Page 17: Colligative Properties. Colligative properties –

13.22. Freezing point depression

The higher the number of solute particles dissolved in the solvent, the lower the freezing point.

Page 18: Colligative Properties. Colligative properties –

13.22. Freezing point depression

The higher the number of solute particles dissolved in the solvent, the lower the freezing point.

Each solvent has a unique constant that its freezing point is lowered by for each mole of particles dissolved in a kilogram of solvent. P. 448

Page 19: Colligative Properties. Colligative properties –

13.22. Freezing point depression

The higher the number of solute particles dissolved in the solvent, the lower the freezing point.

Each solvent has a unique constant that its freezing point is lowered by for each mole of particles dissolved in a kilogram of solvent. P. 448

Water’s freezing point goes down by 1.86ºC for every mole of particles dissolved.

Page 20: Colligative Properties. Colligative properties –

13.22. Freezing point depression

The higher the number of solute particles dissolved in the solvent, the lower the freezing point.

Each solvent has a unique constant that its freezing point is lowered by for each mole of particles dissolved in a kilogram of solvent. P. 448

The change in the freezing point can be calculated using:

Δtf = i Kfm

Page 21: Colligative Properties. Colligative properties –

13.23. What happens to the boiling point of a solvent

when a solute is added?

Page 22: Colligative Properties. Colligative properties –

13.23. What happens to the boiling point of a solvent

when a solute is added?

Page 23: Colligative Properties. Colligative properties –

13.23. Boiling point elevation

The higher the number of solute particles dissolved in the solvent, the higher the boiling point.

Page 24: Colligative Properties. Colligative properties –

13.23. Boiling point elevation

The higher the number of solute particles dissolved in the solvent, the higher the boiling point.

Again, each solvent has a unique constant that its boiling point is elevated by for each mole of particles dissolved in a kilogram of solvent. P. 448

Water’s boiling point goes up by 0.51ºC for every mole of particles dissolved.

Page 25: Colligative Properties. Colligative properties –

13.23. Boiling point elevation

The higher the number of solute particles dissolved in the solvent, the higher the boiling point.

Again, each solvent has a unique constant that its boiling point is elevated by for each mole of particles dissolved in a kilogram of solvent. P. 448

The change in the boiling point can be calculated using:

Δtb = i Kbm

Page 26: Colligative Properties. Colligative properties –

13.2Example 1: What will be the new freezing point and

boiling point of an aqueous solution containing 55.0g glycerol, C3H5(OH)3, in 250g of water? Glycerol is a nonvolatile nonelectrolyte.

Page 27: Colligative Properties. Colligative properties –

13.2Example 2: How many grams of glucose, C6H12O6, are

required to lower the freezing point of 150g of H2O by 0.750ºC? Glucose does not dissociate in water.

Page 28: Colligative Properties. Colligative properties –

13.2Example 3: What would be the freezing point of a

solution combining 5.13g of KBr in 255g of water?

Page 29: Colligative Properties. Colligative properties –

13.2What does this mean?

Page 30: Colligative Properties. Colligative properties –

13.2Using percent composition, change in freezing point or

boiling point, and grams used, this can be used in the lab to determine a new compound formed.

Page 31: Colligative Properties. Colligative properties –

13.2Example 4: Lauryl alcohol (a nonelectrolyte) is

obtained from coconut oil and is used to make detergents. A solution of 5.00g of lauryl alcohol in 0.100kg of benzene freezes at 4.1ºC. What is the molar mass of lauryl alcohol?

Page 32: Colligative Properties. Colligative properties –

13.2Example 5: What is the change in boiling point and

freezing point if 3.69 g of K2SO4 is added to 100.0 mL of water?

Page 33: Colligative Properties. Colligative properties –

13.24. What is osmosis? What is osmotic pressure?

Page 34: Colligative Properties. Colligative properties –

13.24. Osmotic Pressure

Osmosis is the movement of a solvent through a semi permeable membrane.

Page 35: Colligative Properties. Colligative properties –

13.24. Osmotic Pressure

Osmosis is the movement of a solvent through a semi permeable membrane. The solvent always moves from an area of high solvent concentration to an area of lower solvent concentration.

Page 36: Colligative Properties. Colligative properties –

13.24. Osmotic Pressure

Osmosis is the movement of a solvent through a semi permeable membrane. The solvent always moves from an area of high solvent concentration to an area of lower solvent concentration.

Osmotic pressure is the pressure that must be applied to stop osmosis from happening.

Page 37: Colligative Properties. Colligative properties –

13.24. Osmotic Pressure

Osmosis is the movement of a solvent through a semi permeable membrane. The solvent always moves from an area of high solvent concentration to an area of lower solvent concentration.

Osmotic pressure is the pressure that must be applied to stop osmosis from happening.

The higher the number of solute particles dissolved in the solvent, the higher the osmotic pressure which must be applied to stop osmosis.

Page 38: Colligative Properties. Colligative properties –

Tube is filled with water on one side and sucrose solution on the other.

Water particles move to the right. As the sucrose solution increases in height it exerts a pressure against the water moving.

If extra pressure is applied to the sucrose side, the water can be forced to move “backwards”.

Page 39: Colligative Properties. Colligative properties –

REVERSE OSMOSIS FILTRATION

Page 40: Colligative Properties. Colligative properties –

TIME RELEASE DRUG CAPSULE

Page 41: Colligative Properties. Colligative properties –

CHAPTER 13 TEST15 multiple choice (4 points each)5 colligative property questions (5 points each)5 writing net ionic equations (3 points each)1 extra credit (5 points)

Dissociation vs ionizationWriting equations for both

Precipitation reactionsWriting net ionic equationsPredicting precipitatesLabeling spectator ions

Electrolytes vs nonelectrolytesWeak vs strong electrolytes

4 colligative propertiesVapor pressure reductionBoiling point elevationFreezing point depressionOsmotic pressure

Page 42: Colligative Properties. Colligative properties –

Calculate changes in boiling point or freezing pointCalculate molar massCalculate molality