com4 design

18
4/17/2011 1 ECE124D/_____ FN, GN, MI Year Address Email Contact # Date Today Date Today Signature Tabulated room schedule at the back

Upload: chinkayaby16

Post on 29-Nov-2014

162 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Com4 Design

4/17/2011

1

ECE124D/_____  

FN, GN, MIYearAddressEmailContact #Date TodayDate TodaySignature

Tabulated room schedule at the back 

Page 2: Com4 Design

4/17/2011

2

Basic Design RequirementsMicrowave Communication System Optimization: LOS based on 

the assigned sitesthe assigned sites.

Sites:   San Miguel Bulacan , Olongapo Zambales  and Dasmarinas CaviteBase Stations straight line distance minimum of 75kmMaximum tower height: 50 mNumber of repeater stations is unlimited with a maximum hop length of 35 kmlength of 35 kmSystem reliability: 99.99999% or betterAll equipment and infrastructure must be commercially availableLosses to consider: Waveguide/transmission line losses, Miscellaneous Path losses (DLP, DLS, RL), FSL

Page 3: Com4 Design

4/17/2011

3

Requirement: Plates and DefensePlate 1 (due Wk 4, 4:30pm)

Base Stations Description,  Selection of Relays Site – 5%Plate 2 (due Wk 5, , 4:30pm)( 5, , 4 3 p )

Path Profiling  – 15%Plate 3 (due Wk 6, 4:30pm)

Equipment Specifications – 5%Plate 4 (due Wk 8, 4:30pm)

Link Budget  – 15%Plate 5 (due Wk 9, 4:30pm)

Final Compilation, Bid Proposal  – 10%Defense (Wk 10, 20% of which is peer/leader’s evaluation)

‐required to have 2  ECE faculty as panel members       – 50%

Passing: 70%Note: Ten (10) points will be deducted per day of late submission of report.

Plate 1: Base Stations Site Description

Using the assigned sites to serve as the company’s base stations, provide a narrative to include the following details (at   i i )Geographical CoordinatesElevation above Mean Sea LevelWeather ConditionsAccessibility/Access RoadsCommercial Electric Power/Water SupplyTelephone Communications

a minimum):

Telephone CommunicationsPresence of Airports (location of nearest airport)Security/Peace and OrderTerrain Type

Identify your chosen relay stations and provide the same narrative as well.

Page 4: Com4 Design

4/17/2011

4

Plate 2: Path Profiling

E

HLOS

h2

TA

TB

Notations:

h1

d1 d2

D

ho

E

eb

A B

• Eb – earth bulge                                                                      • H  th  l  

> Tower height depends on clearance of highest  obstruction> Higher clearance means higher tower height

b g• E – elevation as seen on 

topographical map                               

• H – path clearance • tg – tree growth

Note:  Scale – 1:50,000National Mapping and Resource Information Authority (Philippines)(NAMRIA) in Binondo

Calculation:

d1 & d2 are in KMeb ‐meters 

ho = eb + E +tg (if any)

aveb K

dde75.12

21=

gho – total heighth1 = eA +TAh2=eB +TB

K factor, an equivalent earth radius factor, conveniently defines the degree and direction of bending. 

K = 1.165 mountain5K =0 .58 waterK= 2/3 rice paddiesK =3/4 coconut treesK = 4/3 dry rock standard

Earth BulgeElevation over EbLOSUpper FresnelLower Fresnelho'

Legend:

Coconut Trees

MountainDry Rock/Standard

Rice Paddies

Water

Page 5: Com4 Design

4/17/2011

5

Sample ComputationsThis section shows how the different parameters for each hop are computed.  The computations shall use data acquired from HOP 1 path profile, (Sorsogon City, Sorsogonto Bulusan, Sorsogon).

K‐Factor (KAVE) dKdKdK( AVE)

Earth Bulge (at maximum elevation)

DdK...dKdKK nn2211

ave+++

=

825.23

)825.12)(43()1)(

34()1)(

32()6)(

43()1)(

34()2)(

43(

Kave

+++++=

79547.0Kave =

ave

21b K75.12

dde =

)79547.)(75.12()825.2)(21(

eb =

m 5.8493eb =

Total Obstruction (ho’ at maximum elevation)

First Fresnel Zone (H at maximum elevation)

bulge earth elevation growth Tree h 'o ++=

5.8493m 157m 15m h'o ++=

m 177.8493 h'o =

First Fresnel Zone (HN at maximum elevation)

Considering 60% of the Fresnel Zone as minimum Path Clearance  we can solve 

fDdd

3.17H 21N =

)825.23)(05.13()825.2)(21(

3.17HN =

m 7.55689HN =

Considering 60% of the Fresnel Zone as minimum Path Clearance, we can solve for the minimum antenna tower heights:

m 4.5345568.7)60.0(H60.0 N ==

Page 6: Com4 Design

4/17/2011

6

From the path clearance equation:

Assuming the tower heights are equal:

1o112 h'h

Dd)hh(

H +−−

=

TA67849.177825.23

21)TA67TB135(534.4 ++−−−+

=

Assuming the tower heights are equal:

The proposed tower height for this Hop is 60 m (both towers).

Path Clearance

m 55.446TBTA ==

112 d)hh( −1o

112 h'hD

d)hh(H +−=

127849.771825.23

21)127195(H +−−

=

9.088H =

Fresnel Clearance Ratio

NHH

F =

55689.7088.9F =

Line of Sight Formula (at maximum obstruction)LOS = H + h’oLOS = 9.088 + 177.8493LOS = 186.937

( )

1.203F =

Clearance from 1st Fresnel (C1st at maximum elevation)C1st = LOS – HN – h’oC1st = 186.937 – 7.557 – 177.8493

m 1.53085 C1st =

Page 7: Com4 Design

4/17/2011

7

Note:if TA & TB are not equal, the two obstruction  method is applied.

Note:

Hop 1

Hop 2

Hop 3

X1X2

X1

X2X3

X3siteIn between sites: choose the 

higher valueIf computed TA or TB are negative 

(due to high elevation), choose minimum height = 15 m

To solve for the tower height, consider the highest obstruction per hop.

d1 (Km) d2 (Km) Elevation Eb Add’l Obs ho' Hn 0.6Hn C1stPath

ClearanceTerrain Remarks

0 23.825 67 0.00 0 67.00 0.00 0.00 60.00 60.00 Rice paddies Absorption

1 22.825 67 2.25 15 84.25 4.69 2.81 40.92 45.60 Coconut Absorption

2 21.825 37 4.30 0 41.30 6.48 3.89 84.92 91.40 Dry Rock Absorption

3 20.825 37 6.16 0 43.16 7.75 4.65 84.65 92.40 Dry rock Absorption

4 19.825 37 7.82 15 59.82 8.74 5.24 69.86 78.60 Coconut Absorption

5 18.825 37 9.28 15 61.28 9.52 5.71 70.47 79.99 Coconut Absorption

6 17.825 37 10.55 15 62.55 10.15 6.09 71.43 81.58 Coconut Absorption

7 16.825 54 11.61 15 80.61 10.65 6.39 55.72 66.37 Coconut Absorption

8 15.825 64 12.48 15 91.48 11.04 6.62 47.31 58.35 Coconut Absorption

9 14.825 73 13.16 15 101.16 11.33 6.80 40.20 51.53 Coconut Absorption

10 13.825 73 13.63 0 86.63 11.54 6.92 57.37 68.91 Rice Paddies Reflection

11 12.825 87 13.91 0 100.91 11.65 6.99 45.83 57.49 Dry Rock Absorption

12 11.825 95 13.99 0 108.99 11.69 7.01 40.57 52.26 Coconut Absorption

13 10.825 95 13.88 15 123.88 11.64 6.98 28.59 40.23 Coconut Absorption

14 9.825 97 13.56 15 125.56 11.51 6.90 29.89 41.40 Coconut Absorption

15 8.825 97 13.05 15 125.05 11.29 6.77 33.47 44.76 Coconut Absorption

Page 8: Com4 Design

4/17/2011

8

16 7.825 97 12.34 15 124.34 10.98 6.59 37.34 48.32 Coconut Absorption

17 6.825 104 11.44 15 130.44 10.57 6.34 34.51 45.08 Coconut Absorption

18 5.825 97 10.34 15 122.34 10.05 6.03 45.99 56.04 Coconut Absorption

19 4.825 130 9.04 15 154.04 9.39 5.64 17.80 27.19 Coconut Absorption19 4.825 130 9.04 15 154.04 9.39 5.64 17.80 27.19 Coconut Absorption

20 3.825 100 7.54 15 122.54 8.58 5.15 52.96 61.54 Coconut Absorption

21 2.825 157 5.85 15 177.85 7.56 4.53 1.53 9.09 Coconut Absorption

22 1.825 137 3.96 15 155.96 6.22 3.73 27.62 33.83 Coconut Absorption

23 0.825 137 1.87 15 153.87 4.27 2.56 34.50 38.77 Coconut Absorption

23.825 0 135 0.00 0 135.00 0.00 0.00 60.00 60.00 Coconut Absorption

Additional obstructions- building, trees etc.

Through excel, plot

HLOSTB

ho vs distance

Highest b t ti h

h1

d1 d2

ho

E

eb

h2

TA

obstruction where tower height is computed

eb vs distance

DA B

Plot : ho vs distance, eb vs distance, LOS, upper and lower Fresnel, show terrain

NOTE:Apply engineering judgment for highest obstruction.

Page 9: Com4 Design

4/17/2011

9

Hn is obtained from highest obstructionH = 0.6Hn with H, TA = TB is solved 

LOS = H + ho’

Lower Fresnel = LOS –Hn

Upper Fresnel zone = LOS  +Hn

Transmitter Transmitter

Table Summary

Recom antenna height Computed antenna height

Station 1

Station 2

Station 3

Plate 3: Equipment Listing/ Specifications

From a set of possible equipment available, select the From a set of possible equipment available, select the company’s choice and justify

Radio / multiplex AntennaWaveguide‐support frequency stated in platesPrimary and secondary power sourcesOther accessories

Page 10: Com4 Design

4/17/2011

10

Plate 4: Link BudgetLink Budget – a summary  of gains and losses; used to determine the system’s reliability ( 99.99999 %)

Tx Tx

Dr=5 m 5 m

Radio Specification

Pt

0 dBm

Antenna gain0 dBm

Waveguide loss

Losses FSL,AAL,RL,DLP,DLS

Isotropic  receive level = EIRP ‐FSL

Received Signal (RF) RSL = IRL + Gr – Lr

Sensitivity

Antenna gain

Sample ComputationsThis section shows how the different losses and gains are computed.  These parameters shall determine what antenna diameter should be used and whether or not the hop will require diversity techniques due to diffraction and reflection.

The computations shall use data acquired from HOP 2 path profile, (Bulusan, Sorsogonp q p p , ( , gto Muiluiol, Samar).

Assumed and Proposed Values:PT = 30 dBm at 8 MbpsCmin = ‐87 dBm at 8 MbpsReliability (R) = 99.9999%TLL multiplier = 11.14 

Lr= ( TB + Dr) * TL loss multiplier + connector loss

Data from Path Profile:D = 27 kmh2 = 155 mh1 = 87 mFrequency = 13.25 GHzTA = TB = 20

Page 11: Com4 Design

4/17/2011

11

Computing for the Losses:Free Space Loss

)km()GHz( Dlog20flog204.92FSL ++=

27log2025.13log204.92FSL ++=

Line Loss

dB 143.472FSL =

Lt = (TA + Dr) * TL loss multiplier + connector loss

Transmission Line LossTLL = ( TA + TB + 12m) * TL loss multiplierTLL = (20 + 20 + 6m+ 6m) * 11.14 m100

dB

dB 5.793TLL =

Atmospheric Absorption LossesAbsorption due to Oxygen at frequency below 57 GHz:

kmdBxxfff

xAo /10)118(

81.4227.0

09.61019.7 3222

3 −−⎥⎦

⎤⎢⎣

⎡−

++

+=

⎤⎡

Absorption due to Water:

km27*km/dB10x)25.31(x)11825.31(

81.4227.0(13.25)

09.610x19.7A 3222

3o

−−⎥⎦

⎤⎢⎣

⎡−

++

+=

dB 0.200Ao =

k/dB10*f*3.493

0670A 42 −⎥⎤

⎢⎡

km/dB10*f*10)3.323f(47.1)3.183f(3.7)3.22f(

067.0A 42222OH2

α⎥⎦

⎢⎣ +−

++−

++−

+=

km27*km/dB10*12)()25.31(*10)3.32325.31(

3.447.1)3.18325.31(

93.7)3.2225.31(

3067.0A 42

222OH2

−⎥⎦

⎤⎢⎣

⎡+−

++−

++−

+=

dB 0.242192AO2H

=

Page 12: Com4 Design

4/17/2011

12

Fade Margin

Roughness Factor (A) = 4  Smooth Terrain  Over water  or flat desertRoughness Factor (A) = 4 ,Smooth Terrain, Over water, or flat desertClimatic Factor (B) = 0.50 ,Hot humid areasNOTE: for the constants A & B to use in the fade margin equation, refer to Tomasi , 5th edition (Barnett‐Vignant Reliability equation)

70)R1log(10)ABf6log(10Dlog30FM −−−+=

70)99999901log(10)]2513)(500)(4(6log[1027log30FM −−−+= 70)999999.01log(10)]25.13)(50.0)(4(6log[1027log30FM +=

dB 54.955FM =

Miscellaneous Path LossFrom the path profile parameter computations, the Fresnel Ratio (F) obtained for this particular hop is 5.828 which is definitely greater than 1.  Thus, there will be no Diffraction Loss due to Path (DLP), DLP = 0.

The line of sight is free from any obstruction since the hop will run over the ocean.  Thus, there will be no Diffraction Loss due to Shielding, DLS = 0.

Since the terrain of the hop is water in majority, there is a possibility that Reflection Loss (RL) will occur.  Computing for the needed p gparameters:

12

12

hhh-hc

+=

7855187-155c

+=

0.281c =

Page 13: Com4 Design

4/17/2011

13

)h25.5k(hDm

21

km2

+=

)551)(8725.5(0.77227m

2

+=

0.153m =

[ ]}01 180

3mm12

m1

3c

cos31cos

3mm12b +

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

++

⎩⎨⎧+

= −

⎟⎞

⎜⎛ )2810(3

0.153m

[ ]}π+

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

++

⎩⎨⎧+

= −

3(0.153)0.15312

153.01)281.0(3

cos31cos

3(0.153)0.15312b 1

363.0b =

Computing for the Reflection Point Distances:

Locating the Point on the map  it will fall on water  a 

( ) km 8.605)363.01(227b1

2Dd1R =−=−=

( ) km 18.395)363.01(227b1

2Dd2R =+=+=

Locating the Point on the map, it will fall on water, a reflective terrain.  The reflection coefficient (RC) of water is 0.8.

Computing for the Reflection Factor, we need the following parameters: dhh

22R' −=

22R1R

fd2d1

1D

+

=

k75.12hh 22 −=

)722.0(75.12395.81551h

2'

2 −=

m242.118h '2 =

'2kaDh

1 +

8.242)374)(27)11(0.772)(6.8.395)2(8.605)(11

1D2f

+

=

854.0D f =

Page 14: Com4 Design

4/17/2011

14

Thus, the Reflection Factor (RC) can be computed as:

fD* RCRF =

(0.854)*)8.0(RF =

68330RF

From the Reflection Loss Graph, RL can be obtained as:

6833.0RF =

dB9RL =

Therefore, the Miscellaneous Path Loss (MPL) is equal to RL since DLP and DLS is not present.

dB9PLM =

Other Losses ( from the equipment manual)

Hybrid Loss = 1.00 dBCoupling Loss = 0.50 dBConnector Loss = 0 50 dBConnector Loss = 0.50 dBRadome Loss = 0.50 dBThus, the Total Losses can be obtained:

LossesOther MPL FM AAL TLL FSL Losses Total +++++=3(0.5)] [1 9 54.955 0.574) (0.2 5.792 143.472 Losses Total +++++++=

216 494LossesTotal 216.494 Losses Total =

Page 15: Com4 Design

4/17/2011

15

Computing for the Gains:

Total Gainmintotaltotal CPt -Loss Gain +=

Antenna Gain

mintotal total

87 30 -216.494 Gain total −=

dB 99.494 Gaintotal =

GainG total

2Gain

G totalant =

2dB 99.494

Gant =

dB 49.747 Gant =

We can now solve for the minimum Dish Antenna Diameter:

208.17flog20G

min

ant

10d−−

=

h d d h d ff

208.17)25.31log(20747.94

min 10d−−

=

m986.2dmin =

The proposed antenna diameter is 3 m.  The difference with the proposed diameter and the minimum diameter corresponds to a change on the antenna gain and Fade Margin, thus, affecting the Reliability of the Hop. 

Page 16: Com4 Design

4/17/2011

16

New Antenna Gain

8.17dlog20flog20G )m()GHz(ant ++=

8173l202513l20G

New Fade Margin

8.173log2025.13log20Gant ++=

dB 49.787Gant =

LossesOtherMPLAALTTLFSLCPtGain FM mintotal −−−−−−+= mintotal

)]5.0(31[9)574.02.0(792.5472.143)87(302(49.787) FM +−−+−−−−−+=

dB 5.0345 FM =

Hop Reliability

1070ABf6log10Dlog30FM

101R −+−−

−=

1070)]25.13)(5.0)(4(6log[10)72log(30034.55

101R+−−

10101R −−=

81%99.9999901=R

R1Undp −=

1999999901801U

100%1810.99999990 ×=R

19999999018.01−=ndpU

100%8188510.00000009 ×=ndpU

851%0.00009818Undp =

Page 17: Com4 Design

4/17/2011

17

“If reliability doesn’t meet the minimum required, apply diversity techniques.”

Other Path Parameters needed for the hop are as follows:Effective Isotropic Radiated Power (EIRP)p ( )

Isotropic Receive Level (IRL)

Received Signal Level (RSL)

LtGPEIRP antt −+=

FSLEIRPIRL −=

LrGIRLRSL ant −+=

Put a table summarizing all computed gains losses and reliability.

Note:    Examples given are theoretical and may not work in practice.

Plate 5:  Bid Proposal Consider all equipment/accessories and other Consider all equipment/accessories and other miscellaneous cost Propose a budget for this equipment listing. This will serve as your basis for your bid proposal of your site design. “The most cost effective design, the better the grade.”

Page 18: Com4 Design

4/17/2011

18

The EndThe End