combining laser light with synchrotron radiation · 2014. 1. 18. · max born and emil wolf,...

27
Combining laser light with synchrotron radiation Part 2 http://www.joachimschulz.de/laser/

Upload: others

Post on 29-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Combining laser light with synchrotron radiation

    Part 2http://www.joachimschulz.de/laser/

  • Literature

    Orazio Svelto, “Principles of Lasers”, Plenum Press, New York (1989)

    Wolfgang Demtröder, “Laser spectroscopy”, Springer, Berlin (2005)

    Max Born and Emil Wolf, “Principles of optics”, Cambridge University Press (1999)

  • Laser PrincipleLight Amplification byStimulated Emission of Radiation

    Stimulated emission amplifies theexisting light wave

    often within an optical resonator

    active medium excited by:

    flash lamp

    discharge

    laser

  • Rate Equation

    ∣2 〉

    ∣1〉

    d dt

    =

    Absorption stim. Emission

    dN 1dt

    =

    spont.Emiss.dN 2

    dt= P

    pump Relaxation

    −h

    -N2 A21

    +N2 A21

    +N1 B12 ρ

    -N1 B12 ρ

    -N1 B12 ρ

    -N2 B21 ρ

    +N2 B21 ρ

    +N2 B21 ρ

    -N2R2

    -N1R1

  • Rate Equations

    dN 2dt

    =P−N 2 A−N 2−N 1B−N 2 R2

    dN 1dt

    =N 2 AN 2−N 1B −N 1R1

    d dt

    =N 2−N 1B−h

    Lasing occurs only if N2>N1: Inversion

  • Two level system

    dN 2dt

    =−N 2 A−N 2−N 1B

    N 2N 1

    =BAB

    No inversion!No lasing!

  • Three level system

    Fast transition

    1

    2

    3

    dNdt

    =W pN t−N −2BN−N tN A

    Nt=N2+N1 N=N2-N1

  • Four level system

    Fast transition

    1

    2

    3

    dNdt

    =W pN t−N −BN−NA

    Fast transition0

    N1=0

  • Laser System at MAX II - I411

    MAX II time structure

    100 Mhz repetition rate: 10ns distance

  • Laser System at MAX II - I411

    desired properties:

    chosen system:

    Titanium dotted Saphire: 770-1000nm

    laser dyes: 550- nm

    wide tuning range

    for absorption spectroscopy

    for reaching different targets

    continuous wave

    no timing necessary

    very high resolution

  • Titanium:Sapphire laser

    Sapphire Al2O3 dotted with Ti ionsA vibronic solid state laser

    Fast transition

    1

    2

    3

    Fast transition

  • Liquid Dye Laser

  • O

    N

    N

    O

    O

    Rhodamine

    Liquid Dye Laser

    Rhodamine 6G

    absorps 532 nm

    fluorescence555-585 nm

  • Crystal pumped with 10 W VerdiFolded ring resonator

    Gross wavelength selection withbirefringent filter

    Optical diode chooses light direction

    Ti:Sa Ring Resonator

    Single mode selection by a setof Fabry-Perot-etalons

    Scans and stabilization withBrewster plate and piezo-mirror.

  • Verdi

    Nd:YVO 4Neodymium Vanadate

    Fundamental wavelength: 1064 nm

    Intra cavity frequency doubling: 532 nm (2.33 eV)

    Up to 10 W output power

  • Neodynium dotted solid state lasers

    Three 4f electrons

    4I9/2

    4I7/2

    4F3/2

    4F5/2 and others

    1064nm Doubled to 532nm

  • Laser System at MAX II - I411

    1 mW alignment laser

  • Alignment Procedures

    Four degrees of freedom specifying alaser beam:

    1 mW alignment laser

    Position on the last mirror

    Direction to the target

    Spot size

  • Adjusting the Beam Diameter

    Kepler telescope

    Galileo telescope

    With pinhole: spacial filter

  • Placing Windowswith Low Losses

    vertical linear polarization

    all objects in Brewster Angle

  • 90°

    i

    Brewster Angle

    No reflection for light polarized inplane of incidence.

    no longitudinal light waves

  • Brewster Angle

    For laser optics:

    no reflection losses for the parallel polarization

    used in polarization crystals

    For classical optics:easy way to produce polarized light

    defines the polarization of the laser mode

    No reflection for light polarized inplane of incidence.

    tan i=n1815 by David Brewster:

    For Glass ~56°

    90°

    i

  • Birefringence

    n2different indexes of refraction

    n1

    n1=1.55for Quartz n2=1.54

    retards one polarization with respect to the other

    /2 -retarding plateflips linear polarization around

    the principal axis/4 -retarding plate

    produces circularly polarized light

    n1=1.49for Calcite n2=1.66

  • Maxwell's equations

    ∇×E=− B t

    ∇× H=J D t

    ∇⋅D= ∇⋅B=0

    D=0 EP B=0 H M

    Gauß' Law

    Faraday's law Ampère's Law

    No magnetic monopoles

  • Polarization of the medium

    D=0 EP

    P=0 E

    D=01 E= E

    No birefringence:

    More general case: χ is a tensor

    Pi= ∑j=1,2 ,3

    0ijE j

  • Frequency doubling

    D=0 EP

    P=0 Ee 202E2

  • More general case

    Er , t =12 [

    E r ,eitc.c. ]

    PNL2 r , t =1

    2 [P2 r ,2e2i tc.c. ]

    Pi2= ∑

    j ,k=1,2 ,30d i , j ,k

    2 E jEk