communication networks - ittcjpgs/courses/nets/lecture-physical-print.pdf · ku eecs 780 –...

45
KU EECS 780 – Communication Networks – Physical Layer –1– Communication Networks The University of Kansas EECS 780 Physical Layer © 2004–2007 James P.G. Sterbenz 07 April 2010 rev. 10.0 James P.G. Sterbenz Department of Electrical Engineering & Computer Science Information Technology & Telecommunications Research Center The University of Kansas [email protected] http://www.ittc.ku.edu/~jpgs/courses/nets © 2004–2010 James P.G. Sterbenz 07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-2 © James P.G. Sterbenz ITTC Communication Networks Physical Layer PL.1 Signals and transmission PL.2 Physical media PL.3 Performance characteristics PL.4 Line Coding

Upload: others

Post on 30-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 1 –

© James P.G. SterbenzITTCCommunication Networks

The University of Kansas EECS 780Physical Layer

© 2004–2007 James P.G. Sterbenz07 April 2010 rev. 10.0

James P.G. Sterbenz

Department of Electrical Engineering & Computer ScienceInformation Technology & Telecommunications Research Center

The University of Kansas

[email protected]

http://www.ittc.ku.edu/~jpgs/courses/nets

© 2004–2010 James P.G. Sterbenz

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-2

© James P.G. SterbenzITTC

Communication NetworksPhysical Layer

PL.1 Signals and transmissionPL.2 Physical mediaPL.3 Performance characteristicsPL.4 Line Coding

Page 2: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 2 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-3

© James P.G. SterbenzITTC

Physical LayerPhysical Layer Communication

network

application

session

transport

network

link

end system

network

link

node

network

link

nodenetwork

link

node

application

session

transport

network

link

end system

• Physical layer– is responsible for moving bits through a channel

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-4

© James P.G. SterbenzITTC

Physical LayerPhysical Layer Communication

networkCPU

M app

end system

CPU

M app

end system

R = ∞

D = 0

• Physical layer communicates digital information– through a communication channel in a medium– digital bits are coded as electronic or photonic signals

• digital or analog coding

– over a link between nodes (layer 2)

Page 3: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 3 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-5

© James P.G. SterbenzITTC

Physical LayerPL.1 Signals and Transmission

PL.1 Signals and transmissionPL.2 Physical mediaPL.3 Performance characteristicsPL.4 Line coding

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-6

© James P.G. SterbenzITTC

CommunicationSignal Types

• Transmission of a signal through a medium

Page 4: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 4 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-7

© James P.G. SterbenzITTC

CommunicationSignal Types

• Transmission of a signal through a medium

• Analog signal: time-varying levels– electrical: voltage levels– photonic: light intensity

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-8

© James P.G. SterbenzITTC

CommunicationSignal Types

• Transmission of a signal through a medium

• Analog signal: time-varying levels– electrical: voltage levels– photonic: light intensity

• Digital signal: sequence of bits represented as levels– electrical: voltage pulses– photonic: light pulses– two levels for binary digital signal

– more levels in some coding schemes more later

Page 5: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 5 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-9

© James P.G. SterbenzITTC

CommunicationDigital vs. Analog

• Digital bits are reconstructed at the receiver

0

1

time

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-10

© James P.G. SterbenzITTC

CommunicationDigital vs. Analog

• Digital bits are reconstructed at the receiver– all transmission is actually analog!– frequency response determines

• pulse rate that can be transmitted• shape of pulse → ability for receiver to recognise pulse

0

1

time

Page 6: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 6 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-11

© James P.G. SterbenzITTC

CommunicationDigital vs. Analog

0

1

harmonic

harmonictime

• Digital bits are reconstructed at the receiver– all transmission is actually analog!– frequency response determines

• pulse rate that can be transmitted• shape of pulse → ability for receiver to recognise pulse

– high-frequency attenuation reduces quality of pulse

attenuated frequencies

adapted from [Tanenbaum 2003]

0

1

time

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-12

© James P.G. SterbenzITTC

CommunicationMedium Types

• Guided through waveguide– wire (generally copper)– fiber optic cable

Page 7: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 7 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-13

© James P.G. SterbenzITTC

CommunicationMedium Types

• Guided through waveguide– wire (generally copper)– fiber optic cable

• Unguided (wireless) free space propagation– wireless

(generally implying RF – radio frequency)• free-space optical

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-14

© James P.G. SterbenzITTC

CommunicationMedium Sharing

• Dedicated– single transmitter attached to medium– signals may be multiplexed by transmitter (link multiplexing)

Page 8: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 8 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-15

© James P.G. SterbenzITTC

CommunicationMedium Sharing

• Dedicated– single transmitter attached to medium– signals may be multiplexed by a single transmitter

• link multiplexing

• Shared: multiple access– multiple transmitters transmit into a the same medium

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-16

© James P.G. SterbenzITTC

CommunicationChallenges1

• Goal: receiver reconstruct signal transmitter sent

Page 9: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 9 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-17

© James P.G. SterbenzITTC

CommunicationChallenges1

• Goal: receiver reconstruct signal transmitter sent• Noise makes this difficult

– background noise No interferes with the signal bit energy Eb• SNR: signal to noise ratio = 10 log10 (Eb /No ) dB

– interference from other signals in shared medium• collisions among multiple transmitters• jamming from adversaries

– imperfections in the physical medium that alters the signal• especially in fiber optic cables

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-18

© James P.G. SterbenzITTC

CommunicationChallenges1

• Goal: receiver reconstruct signal transmitter sent• Noise makes this difficult

– background noise No interferes with the signal bit energy Eb• SNR: signal to noise ratio = 10 log10 (Eb /No ) dB

– interference from other signals in shared medium• collisions among multiple transmitters• jamming from adversaries

– imperfections in the physical medium that alters the signal• especially in fiber optic cables

• Attenuation over distance that reduces the amplitude– 10 log10 (Et /Er ) dB

Page 10: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 10 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-19

© James P.G. SterbenzITTC

CommunicationChallenges1

• Goal: receiver reconstruct signal transmitter sent• Noise makes this difficult

– background noise No interferes with the signal bit energy Eb• SNR: signal to noise ratio = 10 log10 (Eb /No ) dB

– interference from other signals in shared medium• collisions among multiple transmitters• jamming from adversaries

– imperfections in the physical medium that alters the signal• especially in fiber optic cables

• Attenuation over distance that reduces the amplitude– 10 log10 (Et /Er ) dB

• Frequency response of the medium

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-20

© James P.G. SterbenzITTC

CommunicationChallenges2

• Result: difficulty in reconstructing signal

Page 11: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 11 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-21

© James P.G. SterbenzITTC

CommunicationChallenges2

• Result: difficulty in reconstructing signal• Analog: distortion of received waveforms

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-22

© James P.G. SterbenzITTC

CommunicationChallenges2

• Result: difficulty in reconstructing signal• Analog: distortion of received waveforms• Digital: bit errors – an artifact of distortion

– distance attenuation reduces level of pulse– frequency attenuation distorts shape of pulse– distortion changes shape of pulse– dispersion smears pulses

Page 12: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 12 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-23

© James P.G. SterbenzITTC

CommunicationChallenges2

• Result: difficulty in reconstructing signal• Analog: distortion of received waveforms• Digital: bit errors – an artifact of distortion

– distance attenuation reduces level of pulse– frequency attenuation distorts shape of pulse– distortion changes shape of pulse– dispersion smears pulses

• Physical and link layer devices help– amplifiers ameliorate attenuation– regenerators and repeaters reconstruct digital signals

• spaced closely enough to keep bit error rate low

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-24

© James P.G. SterbenzITTC

Physical LayerPL.2 Physical Media

PL.1 Signals and transmissionPL.2 Physical mediaPL.3 Performance characteristicsPL.4 Line coding

Page 13: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 13 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-25

© James P.G. SterbenzITTC

Physical MediaWire

• Unshielded twisted pair– cheap, moderate bandwidth (~100Mb/s)– and increasing with more sophisticated coding techniques

• Shielded twisted pair– expensive, higher bandwidth

• Coaxial cable– expensive, high bandwidth (~ 500 MHz)

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-26

© James P.G. SterbenzITTC

Physical MediaWire: Twisted Pair

• UTP: unshielded twisted pair– twisting reduces radiation and noise susceptibility– used for most wired LANs

• CAT-{5|6|7} for data applications such as Ethernet• 100 Mb/s supported over 100 m for 100BaseT Ethernet

– legacy telephone wiring• supports much lower data rates (1–10 Mb/s)• used by DSL (digital subscriber line)

• STP: shielded twisted pair

Page 14: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 14 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-27

© James P.G. SterbenzITTC

Physical MediaWire: Shielded Twisted Pair

• UTP: unshielded twisted pair• STP: shielded twisted pair

– adds conducting shield outside of twisted pair– more resistant to noise than UTP– more expensive than UTP– used in IBM Token Ring LANs– no longer commonly used

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-28

© James P.G. SterbenzITTC

Physical MediaWire: Coaxial Cable

• High quality shielded cable– used in some LANs (and early Ethernet)– used in CATV (RG6 better than RG59)

• HFC: hybrid fiber coax for data• 10 Mb/s downstream shared | 300 kb/s upstream typical

Cuconductor dielectric

insulatorshield insulating

jacket

Page 15: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 15 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-29

© James P.G. SterbenzITTC

Physical MediaFiber Optics

• Fiber optics– bandwidth ≈ 20 THz within 800–1700 nm– attenuation [dB/km]– dispersion: waveform smearing limits bandwidth-×-distance

Much more about optical communication in EECS 881

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-30

© James P.G. SterbenzITTC

Physical MediaFiber Optic Cable

• Lightwave travels along glass or plastic core– multimode: reflected along core/cladding boundary– single mode: guided with no reflections

• Transmitter– LED or solid-state laser

glass or plastic core glass or

plasticcladding

insulatingjacket

Page 16: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 16 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-31

© James P.G. SterbenzITTC

Physical MediaFiber Optic Modes

• Multimode: 50 – 85 μm core– signal reflected in multiple modes– intermodal dispersion limits length to a few km

why?

reflections

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-32

© James P.G. SterbenzITTC

Physical MediaFiber Optic Modes

• Multimode: 50 – 85 μm core– signal reflected in multiple modes– intermodal dispersion limits length to a few km

why?

• Single mode: 8–10 μm core– core acts as waveguide with no reflections– suitable for 10s of km between digital regenerators

reflections

Page 17: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 17 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-33

© James P.G. SterbenzITTC

Physical MediaFiber Optic Cable Constraints

• Attenuation More in EECS 882– distance– frequency

• Dispersion: smearing limits bandwidth-×-delay– intermodal: different modes travel different distances– chromatic: different wavelengths travel different velocities– polarisation mode: diff. polarisation states travel at diff. v

• Nonlinearities limit WDM– stimulated Raman scattering (due to molecular vibrations)– stimulated Brillouin scattering (acoustic wave interaction)– carrier-induced cross-phase modulation (c ↑ w/other signals)– four-wave mixing (3 wavelengths induce fourth sum/diff)

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-34

© James P.G. SterbenzITTC

Physical MediaWireless Free Space

• Signals transmitted through free space– no waveguide

• Spectrum (λf = c ; c = 3×105 km/s)– only some spectrum usable for communication– RF: radio frequency– optical

• infrared 800–900 nm = 333–375 THz 41 THz spectrum

Much more about wireless communication in EECS 882[http://www.ntia.doc.gov/osmhome/allochrt.pdf]

Page 18: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 18 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-35

© James P.G. SterbenzITTC

Wireless Free SpaceSpectrum

Usage ExamplesPropagationRangeBand

LOS

LOS

LOS

LOS

LOS

LOS

SW

GW

GW

GW

GW

GW

Sight

770–330 nm400–900THzvisiblevisible

IR

EHF

SHF

UHF

VHF

HF

MF

LF

VLF

VF

ELF

Name Attenuation

300GHz–400THz

30–300GHz

3  –30GHz

300–3000MHz

30 –300MHz

3 – 30MHz

300–3000kHz

30– 300kHz

3– 30kHz

300–3000 Hz

30– 300 Hz

Frequencies

optical comm1000–770nminfrared

wireless LAN/MANO2, H2O vapor10– 1mmext. high

sat. terr microwaveO2, H2O100– 10mmsuper high

television, cell tel.cosmic noise1000–100mmultra high

television, FM radiotemp, cosmic10– 1 mvery high

transportationdaytime100– 10 mhigh

maritime, AM radiodaytime1000–100 mmedium

maritimedaytime10– 1kmlow

submarineatmos. noise100– 10kmvery low

voice tel., modem1000–100kmvoice

home automation10– 1Mmext. low

WavelengthDescription

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-36

© James P.G. SterbenzITTC

Wireless Free SpacePropagation Modes

• Ground-wave propagation < 2 MHz• Sky wave propagation 2 – 30 MHz• Line-of-sight propagation > 30 MHz

ionosphere

Page 19: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 19 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-37

© James P.G. SterbenzITTC

Wireless Free SpacePropagation Modes: Ground Wave

• Ground-wave propagation < 2 MHz– signals follow curvature of earth– scattered in upper atmosphere

• Sky wave propagation 2 – 30 MHz• Line-of-sight propagation > 30 MHz

ionosphere

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-38

© James P.G. SterbenzITTC

Wireless Free SpacePropagation Modes: Sky Wave

• Ground-wave propagation < 2 MHz• Sky wave propagation 2 – 30 MHz

– signals refracted off ionosphere– communication possible over thousands of kilometers

• Line-of-sight propagation > 30 MHz

ionosphere

Page 20: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 20 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-39

© James P.G. SterbenzITTC

Wireless Free SpacePropagation Modes: Line of Sight

• Ground-wave propagation < 2 MHz• Sky wave propagation 2 – 30 MHz• Line-of-sight propagation > 30 MHz

– antennæ must be in view of one-another– terrain and earth curvature block signature

ionosphere

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-40

© James P.G. SterbenzITTC

Wireless Free SpaceLicensing

• Licensed and regulated spectrum– ITU (international) and each country (FCC in US) regulate– most frequency bands require license to transmit

• e.g. broadcast TV, radio, amateur radio, GMRS

– some bands do not require explicit license application• e.g. US CB (citizen band), FRS (family radio system)

Page 21: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 21 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-41

© James P.G. SterbenzITTC

Wireless Free SpaceMicrowave Terrestrial Links

• Microwave links – typically point-to-point directional links– once ubiquitous for long-distance telephony

• 4 GHz TD radio and 6 GHz TH radios• mostly replaced by fiber optic cables

– subject to fading during rain storms– new interest for local loops and MANs

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-42

© James P.G. SterbenzITTC

Wireless Free SpaceSatellite Characteristics

• Satellite orbit characteristics

• Tradeoffs– cost per satellite (GEO), high link power, high delay– total cost of constellation, constellation management

270 ms3 (plus polar)36786 kmGEOgeosynchronous EO

~35–85 ms~105 000 km –15 000 km

MEOmedium earth orbit

~1–10 ms~50 – 1000100 km –1 000 km

LEOlow earth orbit

Link DelayConstellation SizeAltitudeType

Page 22: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 22 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-43

© James P.G. SterbenzITTC

Wireless Free SpaceMicrowave Satellite Links

• Satellite links

IssuesBandwidthTypical Frequency [GHz]

Band

rain fade3.5 GHz3020Ka

rain fade500 MHz1411Ku

terrestrial interference500 MHz6.04.0C

low aggregate BW70 MHz2.21.9S

low aggregate BW15 MHz1.61.5L

UplinkDownlink

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-44

© James P.G. SterbenzITTC

Wireless Free SpaceUnliscenced Spectrum

• Unlicensed spectrum– regulations for use (FCC 15.243–249)

• e.g. max transmit power• e.g. spread spectrum parameters

– ISM: industrial, scientific, and medical• … 900 MHz, 2.4 GHz, 5.8 GHz, 24GHz …

– UNII: unlicensed national information infrastructure• 5.8 GHz

– may be use by anyone for any purpose (subject to regulations)

problem?

Page 23: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 23 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-45

© James P.G. SterbenzITTC

Wireless Free SpaceUnlicensed Spectrum

• Unlicensed spectrum– regulations for use (FCC 15.243–249)

• e.g. max transmit power• e.g. spread spectrum parameters

– ISM: industrial, scientific, and medical• … 900 MHz, 2.4 GHz, 5.8 GHz, 24GHz …

– UNII: unlicensed national information infrastructure• 5.8 GHz

– may be use by anyone for any purpose (subject to regulations)

– interference a significant problem• e.g. 2.4 GHz FHSS cordless phones against 802.11b• e.g. interference among 802.11 hubs in dense environments

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-46

© James P.G. SterbenzITTC

Wireless Free SpaceFCC Spectrum Allocation

• FCC allocates and licenses spectrum in US– static allocations lead to significant inefficiency in use

[http://www.ntia.doc.gov/osmhome/allochrt.pdf]

Page 24: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 24 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-47

© James P.G. SterbenzITTC

Wireless Free SpaceRF Antennæ and Attenuation

• Antennæ– omnidirectional: RF radiated in all directions– directional: focused beam of radiation

• reduces contention and improves spatial reuse• significantly complicates network design: beam steering• laser/maser: focused coherent light/microwave transmission

• Attenuation– signal strength decreases as 1/r 2 in perfect medium– signal may decrease as 1/r x with multipath interference

• rural environments: x > 2• urban environments: x → 4

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-48

© James P.G. SterbenzITTC

Physical LayerPerformance Characteristics

PL.1 Signals and transmissionPL.2 Physical mediaPL.3 Performance characteristicsPL.4 Line Coding

Page 25: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 25 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-49

© James P.G. SterbenzITTC

Physical Media PerformanceVelocity

• Velocity v = c /n [m/s]– speed of light c = 3×105 km/s– index of refraction n

Consequences?

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-50

© James P.G. SterbenzITTC

Physical Media PerformanceVelocity and Delay

• Velocity v = c /n [m/s]– speed of light c = 3×105 km/s– index of refraction n

• this is why velocity slower than c in fiber and wire

• Delay d = 1/v [s/m]– generally we will express delay in [s] given a path length

Page 26: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 26 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-51

© James P.G. SterbenzITTC

Physical Media PerformanceLink Length

• Link Length– distance over which signals propagate

• point-to-point: wire length• shared medium: longest path

– constrained by physical properties of medium

Consequences?

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-52

© James P.G. SterbenzITTC

Physical Media PerformanceLink Length and Attenuation

• Link Length– distance over which signals propagate

• point-to-point: wire length• shared medium: longest path

– constrained by physical properties of medium

• Attenuation: decrease in signal intensity• over distance expressed as [dB/m]• at a particular signal frequency

dB

m

mdB

Page 27: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 27 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-53

© James P.G. SterbenzITTC

Physical Media PerformanceFrequency Response and Attenuation

• Frequency range and attenuation– ability to propagate signals of a given frequency

• Characteristics of guided media– wire: generally falls off above a certain fmax

– fiber optic cable & free space transparent to certain rangesanalogy:UV blocking sunglasses (high attenuation )

vs.standard glass (moderate attenuation )

vs.UV transparent black light glass (low attenuation )

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-54

© James P.G. SterbenzITTC

Physical Media PerformanceFrequency Response and Attenuation: Optical

• Fiber-optic cable transparency bands– 1300 and 1550 nm– 850 nm for lower cost

850nm

1300nm

1550nm

1.20.8 0.9 1.4 1.6

1

2

0

Atte

nuat

ion

[dB

/km

]

Wavelength [μm] [adapted from Tannenbaum 2003]

Page 28: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 28 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-55

© James P.G. SterbenzITTC

Physical Media PerformanceFrequency Response and Attenuation: RF

• Atmospheric transparency bands– RF: 10MHz – 10GHz

• VHF meter band, UHF millimeter band– Infrared: N-band

RF

0.5

1.0

0.0

Atm

osph

eric

Opa

city

Wavelength [m] | Frequency [Hz]

10µm0.1nm 10nm 10m 100m 1km1m10cm1cm1mm100µm1µm1nm 100nm

adapted from[coolcosmos.ipac.caltech.edu/cosmic_classroom/ir_tutorial/irwindows.html]

10THz1EHz 10Pz 10MHz 1MHz 100KHz100MHz1GHz10GHz100GHz1THz100THz100PHz 1PHz

N

UHF VHF

microwave shortwave

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-56

© James P.G. SterbenzITTC

Wireless PerformancePropagation Mechanisms

• Direct signal• Reflection• Diffraction• Scattering

WN

Page 29: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 29 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-57

© James P.G. SterbenzITTC

Wireless PerformancePropagation Mechanisms: Direct

• Direct signal– direct transmission from transmitter to receiver

• Reflection• Diffraction• Scattering

WN

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-58

© James P.G. SterbenzITTC

Wireless PerformancePropagation Mechanisms: Reflection

• Direct signal• Reflection

– reflected off object large relative to wavelength

• Diffraction• Scattering

WN

Page 30: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 30 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-59

© James P.G. SterbenzITTC

Wireless PerformancePropagation Mechanisms: Diffraction

• Direct signal• Reflection• Diffraction

– bending by object comparable to wavelength

• Scattering

WN

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-60

© James P.G. SterbenzITTC

Wireless PerformancePropagation Mechanisms: Scattering

• Direct signal• Reflection• Diffraction• Scattering

– by many objects smaller than wavelength– multiple weaker signals

WN

Page 31: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 31 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-61

© James P.G. SterbenzITTC

Wireless PerformancePropagation Mechanisms: Multipath

• Multipath– multiple signals using different propagation mechanisms

problem?

WN

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-62

© James P.G. SterbenzITTC

Wireless PerformancePropagation Mechanisms: Multipath

• Multipath interference or distortion – multiple signals using different propagation mechanisms– time-shifted versions of signal interfere with one another

WN

Page 32: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 32 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-63

© James P.G. SterbenzITTC

Physical MediaPerformance Characteristics Summary

428–750 THzvisible

0.3–428 THzinfrared 1/r 23.3 s/km1.0c

1–300 GHzmicrowave

Wireless

0.2–0.5 dB/km5 s/km0.68c120–250 THz1700–800 nmglassOptical fiber

7.0 dB/km4 s/km0.66–0.95c0–500 MHzcoax

0.7 dB/km5 s/km0.67c0–1 MHztwisted pairWire

Typical AttenuationDelayVelocity

Frequency RangeMediumType

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-64

© James P.G. SterbenzITTC

Physical LayerLine Coding

PL.1 Signals and TransmissionPL.2 Physical mediaPL.2 Performance characteristicsPL.3 Line coding

Page 33: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 33 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-65

© James P.G. SterbenzITTC

Physical LayerLine Coding and Symbol Rate

• Digital Communication– we consider only digital communication for networking

• transmission of binary data (bits) through a channel

• Line coding– way in which bits are encoded for transmission– digital codes (binary, trinary, …)– analog modulation

• Symbol rate– baud rate [symbols/s]

• baud = b/s only if one symbol/bit

– clever encodings (e.g. QAM) allow high baud rates

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-66

© James P.G. SterbenzITTC

Line CodingDigital Code Types

• Code– level code

• symbol depends on the voltage level (amplitude)

– transition code• symbol depends on transition between levels

– differential code• symbol depends on difference from last symbol

– level or transition

• Polarity in electrical codes– unipolar: transitions between 0 and nonzero voltage – bipolar: transitions between a positive and negative voltage

Page 34: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 34 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-67

© James P.G. SterbenzITTC

Digital Line CodingBinary Codes

• Binary line coding: – two voltage levels: high and low– bit rate = baud rate

• Binary amplitude code– 0 = low, 1 = high– clock rate = bit rate

problems?

0 0 1 0 0 1 0 1 1 1

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-68

© James P.G. SterbenzITTC

Digital Line CodingBinary Codes

• Binary line coding: – two voltage levels: high and low– bit rate = baud rate

• Binary amplitude code– 0 = low, 1 = high– clock rate = bit rate– problems: long runs of 0 or 1

• DC bias• insufficient transitions for clock synchronisation

0 0 1 0 0 1 0 1 1 1

Page 35: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 35 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-69

© James P.G. SterbenzITTC

Digital Line CodingBinary Codes

• Binary line coding: – two voltage levels: high and low– bit rate = baud rate

• Binary amplitude code– 0 = low, 1 = high– clock rate = bit rate– problems: long runs of 0 or 1

• DC bias• insufficient transitions for clock synchronisation

Alternatives?properties?

0 0 1 0 0 1 0 1 1 1

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-70

© James P.G. SterbenzITTC

Digital Line CodingBinary Codes

• Binary line coding: – two voltage levels: high and low– bit rate = baud rate

• Binary amplitude code– 0 = low, 1 = high

• Manchester coding– 0 = low→high

0 0 1 0 0 1 0 1 1 1

Page 36: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 36 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-71

© James P.G. SterbenzITTC

Digital Line CodingBinary Codes

• Binary line coding: – two voltage levels: high and low– bit rate = baud rate

• Binary amplitude code– 0 = low, 1 = high

• Manchester coding– 0 = low→high 1 = high→low– clock rate = 2 × bit rate– no DC bias– ensures at least one transition per clock cycle

0 0 1 0 0 1 0 1 1 1

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-72

© James P.G. SterbenzITTC

Digital Line CodingBinary Codes

• Binary line coding: – two voltage levels: high and low– bit rate = baud rate

• Binary amplitude code– 0 = low, 1 = high

• Manchester coding– 0 = low→high 1 = high→low

• Differential Manchester coding– transition=0, none=1

0 0 1 0 0 1 0 1 1 1

Page 37: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 37 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-73

© James P.G. SterbenzITTC

Line CodingAnalog Coding

• Analog line coding– modulate an analog carrier

with a digital signal

0 0 1 0 0 1 0 1 1 1

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-74

© James P.G. SterbenzITTC

Analog Line CodingAmplitude Modulation

• Analog line coding– modulate an analog carrier

• Amplitude modulation– each symbol a different level of carrier

• one may be zero voltage

– compare to AM radio• modulate an analog carrier with

an analog signal

0 0 1 0 0 1 0 1 1 1

Page 38: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 38 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-75

© James P.G. SterbenzITTC

Analog Line CodingFrequency Modulation

• Analog line coding– modulate a carrier

• Amplitude modulation– each symbol a different level

• Frequency modulation– each symbol a different frequency– FSK (frequency shift keying)– compare to FM radio

• modulate an analog carrier withan analog signal

0 0 1 0 0 1 0 1 1 1

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-76

© James P.G. SterbenzITTC

Analog Line CodingV.21 AFSK

• AFSK analog modem line coding– AFSK (audio frequency shift keying)– modem (modulate / demodulate)

• ITU V.21 300 baud = 300b/s (1964 – 1980s)– full duplex: one channel for each direction– frequencies within audio spectrum of POTS telephone line

why?

Page 39: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 39 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-77

© James P.G. SterbenzITTC

Analog Line CodingV.21 AFSK

• AFSK analog modem line coding– AFSK (audio frequency shift keying)– modem (modulate / demodulate)

• ITU V.21 300 baud = 300b/s (1964 – 1980s)– full duplex: one channel for each direction– frequencies within audio spectrum of POTS telephone line

• motivation: transport data over existing phone lines• old timers recall modem squeal

1650 Hz1850 Hz1750 Hz2

980 Hz1180 Hz1080 Hz1

1 Symbol0 SymbolCarrierChannel

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-78

© James P.G. SterbenzITTC

Analog Line CodingDTMF

• DTMF (dual tone multi-frequency)– AMFSK (audio multi-frequency shift keying)

• PSTN in-band signalling– handset (user–network) and network–network

• Design goals– within PSTN audio spectrum– not a binary code: symbols include all decimal numbers– MPSK

• multiple frequencies• two frequencies per symbol• avoid harmonics that could lead to false symbol decoding

Page 40: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 40 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-79

© James P.G. SterbenzITTC

Analog Line CodingDTMF

• DTMF (dual tone multi-frequency)– AMFSK (audio multi-frequency shift keying)

• PSTN in-band signalling

941 Hz

852 Hz

770 Hz

697 Hz

480 Hz

440 Hz

350 Hz

ringback

dial tone

440 Hz

ringback

480 Hz

busy

620 Hz 1633 Hz1477 Hz1336 Hz1209 Hz

D#0*

B654

C987

3 A31

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-80

© James P.G. SterbenzITTC

Analog Line CodingPhase Modulation

• Analog line coding– modulate a carrier

• Amplitude modulation– each symbol a different level

• Frequency modulation– each symbol a different frequency

• Phase modulation– each symbol a different phase– e.g. 0°, 180°

0 0 1 0 0 1 0 1 1 1

Page 41: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 41 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-81

© James P.G. SterbenzITTC

Analog Line CodingV.22 APSK

• APSK analog modem line coding– APSK (audio phase shift keying)– modem (modulate / demodulate)

• ITU V.22 600 baud = 1200b/s (1980)– full duplex: one channel for each direction

• frequencies within audio spectrum of POTS telephone line• 1200 Hz and 2400 Hz channels

– two bits per code symbol in each channel• bit rate = 2 × symbol rate

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-82

© James P.G. SterbenzITTC

Analog Line CodingV.22 APSK

• AFSK analog modem line coding– AFSK (audio frequency shift keying)– modem (modulate / demodulate)

• ITU V.21 300 baud = 300b/s (1964 – 1980s)– full duplex: one channel for each direction– two bits per code symbol in each channel

0°01

+ 270°10

+ 180°11

+ 90°00

Phase ChangeDibit value

Page 42: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 42 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-83

© James P.G. SterbenzITTC

Analog Line CodingCombination Codes

• Analog line coding: – modulate a carrier

• Amplitude modulation– each symbol a different level

• Frequency modulation– each symbol a different frequency

• Phase modulation– each symbol a different phase

• Combinations possiblewhy?

0 0 1 0 0 1 0 1 1 1

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-84

© James P.G. SterbenzITTC

Analog Line CodingCombination Codes

• Analog line coding: – modulate a carrier

• Amplitude modulation– each symbol a different level

• Frequency modulation– each symbol a different frequency

• Phase modulation– each symbol a different phase

• Combinations possible– e.g. amplitude and phase

0 0 1 0 0 1 0 1 1 1

00 10 01 01 11 00 10 01 01 11

Page 43: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 43 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-85

© James P.G. SterbenzITTC

Analog Line CodingPAM

• PAM: pulse amplitude modulation– n bits coded in 2n amplitudes per symbol– PAM-5 in 1GBaseT for CAT-5 100MHz frequency limit

5116PAM-16

418PAM-82 + error15PAM-5

214PAM-4

Bits/SymbolPhasesAmplitudesName

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-86

© James P.G. SterbenzITTC

Analog Line CodingQPSK and QAM

• Combination of amplitude- and phase-modulation– allows more bits per symbol

• QAM: quadrature amplitude modulation– quadrature = 4 phases carried on two sine waves– PAM is case for only one phase– QPSK is case for only one amplitude

844QAM-256

643QAM-64

442QAM-16

241QPSK

Bits/SymbolPhasesAmplitudesName

Page 44: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 44 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-87

© James P.G. SterbenzITTC

Analog Line CodingQPSK and QAM

• QAM: amplitude- and phase modulation• Represented by constellation diagram

– amplitude is distance from origin– phase is angle

0°180°

90°

270°

0°180°

90°

270°

0°180°

90°

270°

QAM-64QAM-16QPSK

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-88

© James P.G. SterbenzITTC

Analog Line CodingADSL Spectrum

• POTS telephony – UTP (unshielded twisted pair) local loop– analog baseband signal to 12 kHz– significantly more bandwidth available with clever coding

• ADSL uses frequencies above 12 kHz– upstream: 25.875 – 138 kHz– downstream: 138 – 1104 kHz

12kHz 26kHz 138kHz

voice downstream data upstream data

Page 45: Communication Networks - ITTCjpgs/courses/nets/lecture-physical-print.pdf · KU EECS 780 – Communication Networks – Physical Layer ... Signal Types • Transmission of a signalthrough

KU EECS 780 – Communication Networks – Physical Layer

– 45 –

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-89

© James P.G. SterbenzITTC

Physical LayerFurther Reading

• William Stallings,Data and Computer Communications, 8th ed.Pearson Prentice Hall, Upper Saddle River NJ, 2007.

07 April 2010 KU EECS 780 – Comm Nets – Physical Layer NET-PL-90

© James P.G. SterbenzITTC

Physical LayerAcknowledgements

Some material in these foils comes from the textbook supplementary materials:

• Sterbenz & Touch,High-Speed Networking:A Systematic Approach toHigh-Bandwidth Low-Latency Communicationhttp://hsn-book.sterbenz.org