communication-rounds tradeoffs for common …communication-rounds tradeo s for common randomness and...

45
Communication-Rounds Tradeoffs for Common Randomness and Secret Key Generation Mitali Bafna , Badih Ghazi * , Noah Golowich , and Madhu Sudan Harvard University * Google Research January 8, 2019 1

Upload: others

Post on 28-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Communication-Rounds Tradeoffs forCommon Randomness and Secret Key

Generation

Mitali Bafna†, Badih Ghazi∗,Noah Golowich†, and Madhu Sudan†

† Harvard University ∗ Google Research

January 8, 2019

1

Page 2: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Common Randomness Generation (CRG)

(Xi ,Yi) ∼ µ (source), Alice ← Xi , Bob ← Yi .

Several rounds of commun., starting w/ Alice:I m1 = m1(Xi);I m2 = m2(m1, Yi);I m3 = m3(Xi,m1,m2), . . ..

At end: Alice & Bob output KA,KB , resp., s.t.:I KA = KA(Xi,m1, . . . ,mr );

KB = KB(Yi,m1, . . . ,mr ).I KA = KB w.h.p., andI KA,KB have large min-entropy.

2

Page 3: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Common Randomness Generation (CRG)

(Xi ,Yi) ∼ µ (source), Alice ← Xi , Bob ← Yi .Several rounds of commun., starting w/ Alice:

I m1 = m1(Xi);I m2 = m2(m1, Yi);I m3 = m3(Xi,m1,m2), . . ..

At end: Alice & Bob output KA,KB , resp., s.t.:I KA = KA(Xi,m1, . . . ,mr );

KB = KB(Yi,m1, . . . ,mr ).I KA = KB w.h.p., andI KA,KB have large min-entropy.

2

Page 4: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Common Randomness Generation (CRG)

(Xi ,Yi) ∼ µ (source), Alice ← Xi , Bob ← Yi .Several rounds of commun., starting w/ Alice:

I m1 = m1(Xi);I m2 = m2(m1, Yi);I m3 = m3(Xi,m1,m2), . . ..

At end: Alice & Bob output KA,KB , resp., s.t.:I KA = KA(Xi,m1, . . . ,mr );

KB = KB(Yi,m1, . . . ,mr ).

I KA = KB w.h.p., andI KA,KB have large min-entropy.

2

Page 5: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Common Randomness Generation (CRG)

(Xi ,Yi) ∼ µ (source), Alice ← Xi , Bob ← Yi .Several rounds of commun., starting w/ Alice:

I m1 = m1(Xi);I m2 = m2(m1, Yi);I m3 = m3(Xi,m1,m2), . . ..

At end: Alice & Bob output KA,KB , resp., s.t.:I KA = KA(Xi,m1, . . . ,mr );

KB = KB(Yi,m1, . . . ,mr ).I KA = KB w.h.p., andI KA,KB have large min-entropy.

2

Page 6: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Secret Key Generation (SKG)

Alice Bob

Eve

Y1, Y2, Y3 ...

X1, X2, X3 ...

Same as CRG, but key must be secure againsteavesdropper Eve that watches the communication.

Question: Are there sources µ such thathaving more rounds can lead to more efficient(i.e. lower communication) protocols for CRGor SKG?

3

Page 7: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Secret Key Generation (SKG)

Alice Bob

Eve

Y1, Y2, Y3 ...

X1, X2, X3 ...

Same as CRG, but key must be secure againsteavesdropper Eve that watches the communication.

Question: Are there sources µ such thathaving more rounds can lead to more efficient(i.e. lower communication) protocols for CRGor SKG?

3

Page 8: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Background: 1-Round & 2-Round Communication

[Ahlswede & Csiszar, ’93 & ’98]: CRG and SKG for1-round, 2-round protocols in amortized setting:For ε→ 0, characterize (H ,C ) pairs s.t.

I Samples: (XN ,Y N) ∼ µ⊗N ;I Communication: (C + ε) · N ;I Entropy of key: (H − ε) · N .

[Guruswami & Radhakrishnan, ’16] & [Ghazi & Jayram, ’18]:non-amortized setting (our work): near-optimaltradeoff between communication, key length, &agreement probability for “simple” sources: BSC,BEC, BGS.

4

Page 9: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Background: 1-Round & 2-Round Communication

[Ahlswede & Csiszar, ’93 & ’98]: CRG and SKG for1-round, 2-round protocols in amortized setting:For ε→ 0, characterize (H ,C ) pairs s.t.

I Samples: (XN ,Y N) ∼ µ⊗N ;I Communication: (C + ε) · N ;I Entropy of key: (H − ε) · N .

[Guruswami & Radhakrishnan, ’16] & [Ghazi & Jayram, ’18]:non-amortized setting (our work): near-optimaltradeoff between communication, key length, &agreement probability for “simple” sources: BSC,BEC, BGS.

4

Page 10: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Background: Multi-Round Communication

Generalization of Ahlswede & Csiszarcharacterization to multi-round protocols by [Tyagi,

’13] & [Liu et al., ’16].

For binary channels, additional rounds does nothelp reduce communication.

[Tyagi, ’13]: ternary source s.t. 2-round protocolsrequire less communication than 1-round protocols.

Otherwise: no rounds vs. communication tradeoffs(incl. in non-amortized case)!

5

Page 11: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Formalizing Non-Amortized Setting

Definition ((r , c)-protocol)Π is (r , c)-protocol if:

≤ r rounds (messages).

≤ c bits total.

L represents number of bits of entropy in random keys:

Definition (L-CRG)Π gives L-CRG if Alice, Bob, given samples(X1,Y1), . . . , (XT ,YT ) ∼ µ⊗T , output KA,KB , s.t.:

minH∞(KA),H∞(KB) ≥ L.

Pr[KA = KB ] ≥ 1− ε.

6

Page 12: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Formalizing Non-Amortized Setting

Definition ((r , c)-protocol)Π is (r , c)-protocol if:

≤ r rounds (messages).

≤ c bits total.

L represents number of bits of entropy in random keys:

Definition (L-CRG)Π gives L-CRG if Alice, Bob, given samples(X1,Y1), . . . , (XT ,YT ) ∼ µ⊗T , output KA,KB , s.t.:

minH∞(KA),H∞(KB) ≥ L.

Pr[KA = KB ] ≥ 1− ε.6

Page 13: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

r vs. r/2 gap

Question: ∀δ > 0, r , L, ∃µ s.t.

∃(r , δL)-protocol for L-CRG from µ;

No (r − 1, (1− δ)L)-protocol for L-CRG from µ?

Theorem (BGGS, ’19)∀n, r , L construct µr ,n,L s.t.

∃(r + 1,O(r log n))-protocol for L-CRG from µr ,n,L;

No(

r2 − 2,min

o(L), n

poly log(n)

)-protocol for

L-CRG from µr ,n,L.

Also: same theorem for L-SKG!

7

Page 14: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

r vs. r/2 gap

Question: ∀δ > 0, r , L, ∃µ s.t.

∃(r , δL)-protocol for L-CRG from µ;

No (r − 1, (1− δ)L)-protocol for L-CRG from µ?

Theorem (BGGS, ’19)∀n, r , L construct µr ,n,L s.t.

∃(r + 1,O(r log n))-protocol for L-CRG from µr ,n,L;

No(

r2 − 2,min

o(L), n

poly log(n)

)-protocol for

L-CRG from µr ,n,L.

Also: same theorem for L-SKG!

7

Page 15: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

r vs. r/2 gap

Question: ∀δ > 0, r , L, ∃µ s.t.

∃(r , δL)-protocol for L-CRG from µ;

No (r − 1, (1− δ)L)-protocol for L-CRG from µ?

Theorem (BGGS, ’19)∀n, r , L construct µr ,n,L s.t.

∃(r + 1,O(r log n))-protocol for L-CRG from µr ,n,L;

No(

r2 − 2,min

o(L), n

poly log(n)

)-protocol for

L-CRG from µr ,n,L.

Also: same theorem for L-SKG!

7

Page 16: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Pointer-chasing source for CRG: µr ,n,L

i0 ~ [n]

π1 , .., π

r ~ S

n

A1 , …, A

n ~ 0,1L

B1 , …, B

n ~ 0,1L

Bob's inputs = (i

0, π

2 , π

4 , …, B

1 , …, B

n )

Alice's inputs = (π

1 , π

3 , …, A

1 , …, A

n )

8

Page 17: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Pointer-chasing source for CRG: µr ,n,L

π1

i0 ~ [n]

π1 , .., π

r ~ S

n

A1 , …, A

n ~ 0,1L

B1 , …, B

n ~ 0,1L

ij+1

= πj+1

(ij).

ij = “pointers”

i0

π2

π3

πr-1

πr

Bob's inputs = (i

0, π

2 , π

4 , …, B

1 , …, B

n )

Alice's inputs = (π

1 , π

3 , …, A

1 , …, A

n )

8

Page 18: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Pointer-chasing source for CRG: µr ,n,L

π1

i0 ~ [n]

π1 , .., π

r ~ S

n

A1 , …, A

n ~ 0,1L

B1 , …, B

n ~ 0,1L

Where Ai = B

i ,

ij+1

= πj+1

(ij).

ij = “pointers”

r r

i0

π2

π3

πr-1

πr

An

A1

A3...A

2B

nB

3...B

2B

1

Bob's inputs = (i

0, π

2 , π

4 , …, B

1 , …, B

n )

Alice's inputs = (π

1 , π

3 , …, A

1 , …, A

n )

8

Page 19: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Background: Standard Pointer Chasing Problem

[Duris et al., ’84] & [Nisan & Wigderson, ’93], etc.:

π1

i0

π2

π3

πr-1

πr

Bob's inputs = (i

0, π

2 , π

4 , …, π

r-1 )

Alice's inputs = (π

1 , π

3 , …, π

r )

ir = π

r ... π

1(i

0) =

?

i0 ~ [n]

π1 , .., π

r ~ S

n 9

Page 20: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Upper/lower bounds for CRG from µr ,n,L

Upper bound: follow pointers:(r + 1) rounds,communication (r + 1)dlog ne.

π1

i0

π2

π3

πr-1

πr

An

A1

A3...A

2B

nB

3...B

2B

1

Bob's inputs = (i, π

2 , π

4 , …, B

1 , …, B

n )

Alice's inputs = (π

1 , π

3 , …, A

1 , …, A

n )

Lower bound for protocols w/ ≤ r rounds:I [Duris et al., ’84] & [Nisan & Wigderson, ’93], etc.:

Pointer chasing is hard (for det. & rand. protocols).I Problem: don’t have to solve pointer chasing for

L-CRG!I “Guess” index j such that Aj = Bj ⇒ dlog ne-bit

non-deterministic protocol!I Modular solution?

10

Page 21: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Upper/lower bounds for CRG from µr ,n,L

Upper bound: follow pointers:(r + 1) rounds,communication (r + 1)dlog ne.

π1

i0

π2

π3

πr-1

πr

An

A1

A3...A

2B

nB

3...B

2B

1

Bob's inputs = (i, π

2 , π

4 , …, B

1 , …, B

n )

Alice's inputs = (π

1 , π

3 , …, A

1 , …, A

n )

Lower bound for protocols w/ ≤ r rounds:I [Duris et al., ’84] & [Nisan & Wigderson, ’93], etc.:

Pointer chasing is hard (for det. & rand. protocols).

I Problem: don’t have to solve pointer chasing forL-CRG!

I “Guess” index j such that Aj = Bj ⇒ dlog ne-bitnon-deterministic protocol!

I Modular solution?

10

Page 22: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Upper/lower bounds for CRG from µr ,n,L

Upper bound: follow pointers:(r + 1) rounds,communication (r + 1)dlog ne.

π1

i0

π2

π3

πr-1

πr

An

A1

A3...A

2B

nB

3...B

2B

1

Bob's inputs = (i, π

2 , π

4 , …, B

1 , …, B

n )

Alice's inputs = (π

1 , π

3 , …, A

1 , …, A

n )

Lower bound for protocols w/ ≤ r rounds:I [Duris et al., ’84] & [Nisan & Wigderson, ’93], etc.:

Pointer chasing is hard (for det. & rand. protocols).I Problem: don’t have to solve pointer chasing for

L-CRG!I “Guess” index j such that Aj = Bj ⇒ dlog ne-bit

non-deterministic protocol!

I Modular solution?

10

Page 23: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Upper/lower bounds for CRG from µr ,n,L

Upper bound: follow pointers:(r + 1) rounds,communication (r + 1)dlog ne.

π1

i0

π2

π3

πr-1

πr

An

A1

A3...A

2B

nB

3...B

2B

1

Bob's inputs = (i, π

2 , π

4 , …, B

1 , …, B

n )

Alice's inputs = (π

1 , π

3 , …, A

1 , …, A

n )

Lower bound for protocols w/ ≤ r rounds:I [Duris et al., ’84] & [Nisan & Wigderson, ’93], etc.:

Pointer chasing is hard (for det. & rand. protocols).I Problem: don’t have to solve pointer chasing for

L-CRG!I “Guess” index j such that Aj = Bj ⇒ dlog ne-bit

non-deterministic protocol!I Modular solution?

10

Page 24: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Reduction 1: Indistinguishability

Marginals of µr ,n,L: X = (π1, π3, . . . , πr ,A1, . . . ,An),Y = (i0, π2, . . . , πr−1,B1, . . . ,Bn).

Π distinguishes µ, ν if TVD(Πµ,Πν) ≥ const.

ClaimSuppose c L. If ∃ (r/2− 2, c) protocol for L-CRGfrom µ = µr ,n,L, then µ & µX × µY are distinguishable by(r/2− 1)-round protocol w/ communication c + O(1).

Idea of proof: L-CRG is impossible with communication L when parties have indep. inputs (e.g., [Cannone et al.,

’17]).

11

Page 25: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Reduction 1: Indistinguishability

Marginals of µr ,n,L: X = (π1, π3, . . . , πr ,A1, . . . ,An),Y = (i0, π2, . . . , πr−1,B1, . . . ,Bn).

Π distinguishes µ, ν if TVD(Πµ,Πν) ≥ const.

ClaimSuppose c L. If ∃ (r/2− 2, c) protocol for L-CRGfrom µ = µr ,n,L, then µ & µX × µY are distinguishable by(r/2− 1)-round protocol w/ communication c + O(1).

Idea of proof: L-CRG is impossible with communication L when parties have indep. inputs (e.g., [Cannone et al.,

’17]).

11

Page 26: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Reduction 1: Indistinguishability

Marginals of µr ,n,L: X = (π1, π3, . . . , πr ,A1, . . . ,An),Y = (i0, π2, . . . , πr−1,B1, . . . ,Bn).

Π distinguishes µ, ν if TVD(Πµ,Πν) ≥ const.

ClaimSuppose c L. If ∃ (r/2− 2, c) protocol for L-CRGfrom µ = µr ,n,L, then µ & µX × µY are distinguishable by(r/2− 1)-round protocol w/ communication c + O(1).

Idea of proof: L-CRG is impossible with communication L when parties have indep. inputs (e.g., [Cannone et al.,

’17]).

11

Page 27: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Overview of Reductions

12

Page 28: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Reduction 2: Pointer Verification

PVYES(r , n),PVNO(r , n) distributions on (X , Y ):X = (π1, π3, . . . , πr), Y = (i0, j0, π2, π4, . . . , πr−1):

PVYES: j0 = πr · · · π1(i0). PVNO: j0 random.

Protocol distinguishing µ = µr ,n,L & µX × µYgives protocol distinguishing PVYES & PVNO

(using Ω(n) disjointness lower bound).

13

Page 29: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Reduction 2: Pointer Verification

PVYES(r , n),PVNO(r , n) distributions on (X , Y ):X = (π1, π3, . . . , πr), Y = (i0, j0, π2, π4, . . . , πr−1):

PVYES: j0 = πr · · · π1(i0). PVNO: j0 random.

Protocol distinguishing µ = µr ,n,L & µX × µYgives protocol distinguishing PVYES & PVNO

(using Ω(n) disjointness lower bound).

13

Page 30: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Reduction 2: Pointer Verification

PVYES(r , n),PVNO(r , n) distributions on (X , Y ):X = (π1, π3, . . . , πr), Y = (i0, j0, π2, π4, . . . , πr−1):

PVYES: j0 = πr · · · π1(i0). PVNO: j0 random.

Protocol distinguishing µ = µr ,n,L & µX × µYgives protocol distinguishing PVYES & PVNO

(using Ω(n) disjointness lower bound).

13

Page 31: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Reduction 2: Pointer Verification

PVYES(r , n),PVNO(r , n) distributions on (X , Y ):X = (π1, π3, . . . , πr), Y = (i0, j0, π2, π4, . . . , πr−1):

PVYES: j0 = πr · · · π1(i0). PVNO: j0 random.

Protocol distinguishing µ = µr ,n,L & µX × µYgives protocol distinguishing PVYES & PVNO

(using Ω(n) disjointness lower bound).13

Page 32: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Overview of Reductions

14

Page 33: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Indistinguishability of PVYES, PVNO

r , n implicit: PVYES = PVYES(n, r), PVNO = PVNO(n, r):

Theorem (BGGS, ’19)

∀r , n, PVNO & PVYES are(r−12 ,

npoly log(n)

)-indisting.

Why only r−12 rounds? ∃

(r+12 ,O(r log n)

)-protocol:

PVNO: PVYES:

15

Page 34: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Indistinguishability of PVYES, PVNO

r , n implicit: PVYES = PVYES(n, r), PVNO = PVNO(n, r):

Theorem (BGGS, ’19)

∀r , n, PVNO & PVYES are(r−12 ,

npoly log(n)

)-indisting.

Why only r−12 rounds?

∃(r+12 ,O(r log n)

)-protocol:

PVNO: PVYES:

15

Page 35: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Indistinguishability of PVYES, PVNO

r , n implicit: PVYES = PVYES(n, r), PVNO = PVNO(n, r):

Theorem (BGGS, ’19)

∀r , n, PVNO & PVYES are(r−12 ,

npoly log(n)

)-indisting.

Why only r−12 rounds? ∃

(r+12 ,O(r log n)

)-protocol:

PVNO: PVYES:

15

Page 36: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Proof of indist. of PVYES & PVNO

Idea: “round elimination” ([Nisan & Wigderson, ’93]).

Dealing with non-independence of inputs underPVYES makes proof more difficult.1

Idea: “peel” off 2 permutations (1 round) at a time,maintaining invariants:

I H(π1, . . . , πr | transcript) ≥ r log(n!)− O(c).I H(i0|π1, . . . , πr , transcript) ≥ log(n)− o(1).I H(j0|π1, . . . , πr , transcript) ≥ log(n)− o(1).I H(1[πr · · · π1(i0) = j0]|i0, π1, . . . , πr , transcript) ≥

1− o(1).I Few others...

1Technically under 12 (PVYES +PVNO).

16

Page 37: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Proof of indist. of PVYES & PVNO

Idea: “round elimination” ([Nisan & Wigderson, ’93]).

Dealing with non-independence of inputs underPVYES makes proof more difficult.1

Idea: “peel” off 2 permutations (1 round) at a time,maintaining invariants:

I H(π1, . . . , πr | transcript) ≥ r log(n!)− O(c).I H(i0|π1, . . . , πr , transcript) ≥ log(n)− o(1).I H(j0|π1, . . . , πr , transcript) ≥ log(n)− o(1).I H(1[πr · · · π1(i0) = j0]|i0, π1, . . . , πr , transcript) ≥

1− o(1).I Few others...

1Technically under 12 (PVYES +PVNO).

16

Page 38: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Conclusion

First round/communication tradeoffs for CRG &SKG for r > 2 rounds.Explicitly constructed source µ = µr ,n,L s.t.:

I ∃ efficient (i.e. O(r log n) communication) (r + 1)-roundprotocol for L-CRG/SKG

I Any (r/2− 2)-round protocol for L-CRG/SKG hascommunication Ω (minL, n).

Open questions:I Improve (r + 1)-vs-(r/2− 2) tradeoff to (r + 1)-vs-r forµr ,n,L?

I Extend analysis to amortized case?

17

Page 39: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Conclusion

First round/communication tradeoffs for CRG &SKG for r > 2 rounds.Explicitly constructed source µ = µr ,n,L s.t.:

I ∃ efficient (i.e. O(r log n) communication) (r + 1)-roundprotocol for L-CRG/SKG

I Any (r/2− 2)-round protocol for L-CRG/SKG hascommunication Ω (minL, n).

Open questions:I Improve (r + 1)-vs-(r/2− 2) tradeoff to (r + 1)-vs-r forµr ,n,L?

I Extend analysis to amortized case?

17

Page 40: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

I am grateful to the NSF for a SODA travel grant.

Thank you!

18

Page 41: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Proof Outline of Reduction 2

Overall goal: µ & µX × µY are indistinguishable to(r ′, c)-protocols.

Intermediate distr. µmid:

Aj = Bj forrandom j .

I.e., j isindependent ofπr · · · π1(i0).

π1

i0

π2

π3

πr-1

πr

Aj

A1

A3...A

2B

jB

3...B

2B

1

Bob's inputs = (i, π

2 , π

4 , …, B

1 , …, B

n )

Alice's inputs = (π

1 , π

3 , …, A

1 , …, A

n )

An

... Bn

...

19

Page 42: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Proof Outline of Reduction 2

Intermediate distr. µmid:

Aj = Bj for random j .

I.e., j isindependent ofπr · · · π1(i0).

π1

i0

π2

π3

πr-1

πr

Aj

A1

A3...A

2B

jB

3...B

2B

1

Bob's inputs = (i, π

2 , π

4 , …, B

1 , …, B

n )

Alice's inputs = (π

1 , π

3 , …, A

1 , …, A

n )

An

... Bn

...

µX × µY indist. from µmid to protocols w/communication o(n) (set disjointness hard).

PVYES & PVNO indist. to (r ′, c)-protocols⇒ µ indist. from µmid to (r ′, c)-protocols.

20

Page 43: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Proof Outline of Reduction 2

Intermediate distr. µmid:

Aj = Bj for random j .

I.e., j isindependent ofπr · · · π1(i0).

π1

i0

π2

π3

πr-1

πr

Aj

A1

A3...A

2B

jB

3...B

2B

1

Bob's inputs = (i, π

2 , π

4 , …, B

1 , …, B

n )

Alice's inputs = (π

1 , π

3 , …, A

1 , …, A

n )

An

... Bn

...

µX × µY indist. from µmid to protocols w/communication o(n) (set disjointness hard).

PVYES & PVNO indist. to (r ′, c)-protocols⇒ µ indist. from µmid to (r ′, c)-protocols.

20

Page 44: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Proof of indisting. of PVYES & PVNO

Idea: “round elimination” ([Nisan & Wigderson, ’93]).

“Problem” 1: Want to work with a functionalproblem.

Solution 1:Π disting. PVYES & PVNO

⇔ Π outputs 1[j0 = πr · · · π1(i0)] whp

under PVMIX = 12(PVYES + PVNO).

“Problem” 2: Players’ inputs under PVMIX aren’tindependent.

21

Page 45: Communication-Rounds Tradeoffs for Common …Communication-Rounds Tradeo s for Common Randomness and Secret Key Generation Mitali Bafnay, Badih Ghazi , Noah Golowich y, and Madhu Sudan

Proof of indisting. of PVYES & PVNO

Idea: “round elimination” ([Nisan & Wigderson, ’93]).

“Problem” 1: Want to work with a functionalproblem.

Solution 1:Π disting. PVYES & PVNO

⇔ Π outputs 1[j0 = πr · · · π1(i0)] whp

under PVMIX = 12(PVYES + PVNO).

“Problem” 2: Players’ inputs under PVMIX aren’tindependent.

21