communication system security - gbv · 2013. 7. 25. · 8.6.2 ip-based networkdomainsecurity 316...

12
CHAPMAN & HALL/CRC CRYPTOGRAPHY AND NETWORK SECURITY Communication System Security Lidong Chen National Institute of Standards and Technology Gaithersburg, Maryland, USA Guang Gong University of Waterloo Ontario, Canada CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor St Francis Croup an Informs business A CHAPMAN & HALL BOOK

Upload: others

Post on 10-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • CHAPMAN & HALL/CRC

    CRYPTOGRAPHY AND NETWORK SECURITY

    Communication

    System Security

    Lidong ChenNational Institute of Standards and Technology

    Gaithersburg, Maryland, USA

    Guang GongUniversity of Waterloo

    Ontario, Canada

    CRC PressTaylor & Francis CroupBoca Raton London NewYork

    CRC Press is an imprint of the

    Taylor St Francis Croup an Informs business

    A CHAPMAN & HALL BOOK

  • Contents

    Preface xvii

    Acknowledgments xix

    1 Introduction 1

    1.1 Nodes, Links, and Layers 11.2 Information Security Objectives and Protection Mechanisms . . 3

    1.2.1 Confidentiality 4

    ,1.2.2 Integrity and Authenticity 6

    1.3 Trust Model 8

    1.4 Threat Model. .

    9

    1.4.1 Computation Power of Attackers . 91.4.2 Physical Vulnerability 91.4.3 Jamming and Intrusion 101.4.4 The Man-in-the-Middle Attacks r

    . . .10

    1.5 Communication System Security 11

    1.5.1 Trusted Platform 11

    1.5.2 Protected Communications 13

    1 Practical Cryptography Primitives 15

    2 Pseudorandom Sequence Generators 192.1 Feedback Shift Register Sequences 20

    2.1.1 Feedback Shift Registers 202.1.2 Efficient Hardware Implementation for FSRs 272.1.3 LFSR and m-Sequence Generators . . . 27

    2.2 Linear Spans and Berlekamp-Massey Algorithm • • • • 312.2.1 Discrepancy Sequences . 322.2.2 Updating LFSRs from Discrepancy 332.2.3 Generation of a Discrepancy Table 342.2.4 A Procedure of the BM Algorithm 36

    2.2.5 Linear Span Attacks 37

    v

  • ri Contents

    2.3 Randomness Criteria of a PRSG 37

    2.3.1 Correlation Functions of Sequences 382.3.2 Golomb's Randomness Postulates 40

    2.3.3 One-Time Pad and.Randomness Criteria 422.4 Randomness Properties of m-Sequences 432.5 Nonlinear Generators 45

    2.5.1 Filtering Sequence Generators 462.5.2 Combinatorial Sequence Generators . 49

    2.5.3 Clock-Control Generators and Shrinking Generators . . 522.6 Blum-Blum-Shub (BBS) Generators 55

    2.6.1 Scheme of x2 mod N Generator 552.6.2 Randomness Properties of BBS Generators 56

    2.7 Security Modes of PRSGs 572.7.1 Scrambler Mode for Randomization 57

    2.7.2 Scrambler Mode for Integrity Check 60

    2.8 Known Attacks 62

    2.8.1 Attacking Scenarios 622.8.2 Correlation Attack 63

    2.8.3 A Glance at Algebraic Attacks 682.8.4 Selective Discrete Fourier.Transform (DFT) Attacks . . 732.8.5 A General Model for Solving Equations Related Attacks 81

    Notes.

    82

    Exercises 83

    Bibliography 87

    3 Design of Stream Ciphers 913.1 Design Principles of Stream Ciphers 92

    3.1.1 Two Phases in Stream Cipher . 933.1.2 Design Principles 943.1.3 Finite State Machine and Stream Cipher 95

    3.2 Stream Ciphers in Communication Systems 963.2.1 A5/1 in GSM System 973.2.2 w7 — An Analogue Cipher of A5/1 1013.2.3 E0 in Bluetooth Standard . 102

    3.2.4 RC4in WEP . 1053.3 WG Stream Cipher 107

    3.3.1 Description of WG Cipher 1093.3.2 Key Initialization and Running Phases 1123.3.3 Randomness Properties of WG Ciphers 1133.3.4 A Concrete Design of WG{29,11) 114

    3.4 Grain and Grain-Like Generators 117

    3.4.1 Grain 2 Key Stream Generator 1173.4.2 Grain-Like Generator Using NLFSR Masked by LFSR . 120

    3.5 Trivium and Trivium-Like Generators 122

    3.5.1 Description of Trivium-Like Generator 122

  • Contents vii

    3.5.2 Key Initialization and IV in Trivium 124

    3.5.3 Periods of Trivium-Like Generator 124

    3.6 Snow 3G 125

    3.6.1 Description of Snow 3G 126

    3.6.2 Key Initialization and Running Phases 128

    3.6.3 Randomness Properties . . 129

    3.7 AIDA/Cube Attacks 1293.7.1 Reed-Muller Transform of Boolean Functions ...... 130

    3.7.2 RMT Spectrum Used in AIDA/Cube Attacks 1313.7.3 Procedure of AIDA/Cube Attacks 133

    Notes 135

    Exercises 135

    Bibliography 140

    4 Design of Block Ciphers, Hash Functions, and MAC 143

    4.1 Design Principles of Block Ciphers 144

    4.1.1 Diffusion and Confusion in the Design of Block Ciphers 1444.1.2 Structure of Block Ciphers . 146

    4.2 DES (Data Encryption Standard, NIST 1976) 1474.2.1 Permutations at Front-End and Key Schedule ...... 147

    4.2.2 Feedback / and S-Boxes 149

    4.2.3 Spectral Properties of S-Box 3 , ... 152

    4.2.4 Triple-DES 153

    4.3 AES (Advanced Encryption Standard) Rijndael ....... v. 1554.3.1 Rijndael's Operators 156

    4.3.2 Rijndael Encryption and Decryption 160

    4.3.3 Word-Operation of AES Rijndael 161

    4.4 Encryption Modes . 162

    4.4.1 Block Cipher Modes 162

    4.4.2 Block Cipher Implemented as Stream Cipher Modes . . 163

    4.5 Hash Functions 165

    4.5.1 MD5 and SHAs. . .

    166

    4.5.2 Description of Secure Hash Algorithm (SHA-1) 167

    4.6 Message Authentication Code (MAC) 1704.6.1 XorMAC

    . . . .171

    4.6.2 CBC-MAC 173

    4.6.3 , NMAC and HMAC 173

    4.6.4 Modes of Encryption and Authentication 174

    4.6.5 Conversions among Symmetric-Key Algorithms .... 1754.7 Birthday Attack and Time-Memory Trade-Off Attacks 176

    4.7.1 Birthday Problem 1764.7.2 Time-Memory Trade-off Attack 177

    Notes 177

    Exercises 178

    Bibliography 180

  • viii Contents

    5 Public-Key Cryptographic Algorithms 185

    5.1 Security of Public-Key Cryptography 186

    5.2 Diffie-Hellman Key Exchange . . 187

    5.3 RSA Encryption and Digital Signature 189

    5.3.1 Some Results in Number Theory 189

    5.3.2 RSA Encryption 191

    5.3.3 RSA Digital Signature Algorithm (RSA-DSA) ...... 193

    5.3.4 Speed-Up RSA Using Chinese Remainder

    Theorem (CRT) . . . 195

    5.4 ElGamal Digital Signature Algorithm and Digital SignatureStandard 196

    5.4.1 ElGamal DSA .196

    5.4.2 How to Attack ElGamal DSA 198

    5.4.3 DSS (Digital Signature Standard) 199

    5.5 Elliptic Curve Digital Signature Algorithm (EC-DSA) ..... 2015.5.1 Elliptic Curves over Finite Fields . 202

    5.5.2 EC-DSA (IEEE P1363/D4, 1998) 205

    5.6 Identity-Based Cryptography from Bilinear Pairing 207

    5.6.1 Pre-Shared Secret Keys and Identity-Based EncryptionScheme 208

    5.6.2 Features of IBC 211

    5.6.3 Distinctive Features of IBC Schemes 211

    5.6.4 Key Escrow and Other Problems 213

    Notes . . : 213

    Exercises 214

    Bibliography • • • 216

    II Security Mechanisms and Protocols 221

    6 Security Infrastructure 225

    6.1 Infrastructure Support . 225

    6.2 Authentication Server - 226

    6.2.1 Entity Authentication 226

    6.2.2 Access Authentication and Backend Server ....... 228

    6.3 Certificate Authority 230

    6.3.1 Public-Key Certificate . . . 232

    6.3.2 Certificate Chain and Revocation 232

    6.4 Key Generation and Distribution Server . . : 234

    6.4.1 Public/Private Key Pair Generation 2346.4.2 Key Escrow .235

    6.4.3 Symmetric Key Generation and Distribution ...... 236

    6.5 Signing Server 237

    6.5.1 Signature for Authorized Software 237

    6.5.2 Signature for Copyrights 237

  • Contents

    Notes 238

    Exercises 238

    Bibliography 239

    7 Establish Protected Communications 241

    7.1 Mutual Authentication 242' 7.2 Key Establishment 252

    7.2.1 Authenticated Key Establishment 2527.2.2 Key Derivation and Key Confirmation . . .... . . . . 254

    7.2.3 Perfect Forward Secrecy . 2567.2.4 Man-in-the-Middle Attack >. 258

    7.2.5 Key Agreement with Implicit Authentication 259

    7.3 Cryptographic Algorithm Negotiation 2617.4 Protected Communications 264

    Notes 267

    Exercises 268

    Bibliography 271

    8 Network Security Protocols 273

    8.1 Internet Security Protocols 274

    8.1.1 Security Associations (SAs) 2758.1.2 Internet Key Exchange Version 2 (IKEv2) 2768.1.3 IPsec Modes 286

    ,8.1.4 Authentication Header (AH) .2888.1.5 Encapsulating Security Payload (ESP) 289

    8.2 Transport Layer Security (TLS) 2918.2.1 TLS Handshake. 292

    8.2.2 Helios and TLS Cipher Suites 293

    8.2.3 KeyExchange and Key Establishment .......... 2948.2.4 Certificate and Authentication

    . . ...........296

    8.2.5 Finished and Post-Verification. . . .

    297

    8.2.6 Application Data Protection 2978.2.7 Use TLS to Secure HTTP 298

    8.3 The Secure Shell (SSH) 2998.3.1 SSH Transport Protocol 3008.3.2 Plaintext Recover Attacks against SSH 302

    8.4 Hop-by-Hop versus End-to-End Protection 3048.4.1 Hop-by-Hop Protection 3078.4.2 End-to-End Protection 308

    8.5 Intra-Domain versus Inter-Domain Protection 309

    8.5.1 Intra-Domain Protection 310

    8.5.2 Inter-Domain Protection 311

    8.5.3 Virtual Private Network (VPN) 3128.6 Network Domain Security in Cellular Systems 313

    8.6.1 Security Protocol for MAP (MAPsec) 315

  • X Contents

    8.6.2 IP-Based Network Domain Security 316Notes 317

    Exercises 318

    Bibliography 320

    III Wireless Security 323

    9 Network Access Authentication 327

    9.1 Basic Concepts in Access Authentication 3299.1.1 Generalized Model for Access Authentication 330

    9.1.2 Point of Attachment (PoA) 3319.1.3 Access Authentication Methods 332

    9.1.4 Key Establishment and Key Hierarchy 3389.1.5 Practical Access Authentication Protocols . . 344

    9.2 Authentication and Key Agreement (AKA) in 3G and LTE . . 3469.2.1 UMTS Network Architecture 347

    9.2.2 Long-Term Credentials 348

    9.2.3 Authentication Vectors 348

    9.2.4 UMTS Access Authentication Protocol 351

    9.2.5 Sequence Number Resynchronization 3539.2.6 AKA in 3GPP2

    ,,: 354

    9.2.7 AKA Security Discussion 3559.2.8 AKA Evolution in LTE 357

    9.3 Authentication, Authorization, and Accounting (AAA) 3619.3.1 Remote Authentication Dial-In User

    Services (RADIUS) 3629.3.2 RADIUS Messages and Attributes 3639.3.3 RADIUS Protocol Protections 365

    9.3.4 Use RADIUS for PAP and CHAP.367

    9.3.5 Vulnerabilities, Challenges, Limitations, and Evolutions 369

    9.3.6 Diameter 371

    9.4 Extensible Authentication Protocol (EAP) 3759.4.1 EAP Entities and Messages 3769.4.2 EAP Transport Mechanisms in Pass-Through Mode . . 377

    9.4.3 EAP Exported Keys 379

    9.4.4 EAP-TLS 380

    9.4.5 EAP-AKA 383

    9.4.6 Tunneled EAP Methods 386

    9.4.7 EAP Security Claims and Pitfalls 391Notes 393

    Exercises 394

    Bibliography 397

  • Contents'

    xi

    10 Wireless Network Security 40110.1 Special Aspects of Wireless Protection 402

    10.1.1 Key Establishment for Wireless Link 402

    10.1.2 Bandwidth Efficiency 40310.1.3 Throughput and Processing Efficiency 404

    10.1.4 Vulnerabilities 404

    10.2 UMTS and LTE Air Link Protection 405

    10.2.1 Protocol Structure and Protection Profile 406

    10.2.2 Secure Mode Setup 40910.2.3 Encryption of User Data and Control Signals 41110.2.4 Integrity Protection and Local Authentication'1 414

    10.2.5 Protections for LTE 419

    10.3 IEEE 802.11 Security Solutions . 42010.3.1 Wired Equivalent Privacy (WEP) 42210.3.2 Authentication and Key Establishment 42610.3.3 Wireless Protection Mechanism — CCMP

    ........430

    10.3.4 TKIP for Backward Compatibility 432

    Notes 434

    Exercises 435

    Bibliography 436

    11 Security for Mobility 43911.1 Challenges in Establishing Protection for a Mobile Node .... 442

    11.2 Secure Handover in UMTS and LTE 445

    11.3 Options for Fast Authentication 44811.3.1 Pre-Authentication 449

    11.3.2 Re-Authentication 452

    11.3.3 Protection Setup and Session Key Derivation 456

    11.3.4 Applicable Scenarios for Fast Authentication 45711.4 Secure Fast BSS Transition in IEEE 802.11 459

    11.4.1 Key Hierarchy for Fast BSS Transition 46111.4.2 Fast BSS Transition 463

    11.5 Security in Mobile IP — Mobility Information Protection . . . 46811.5.1 Introduction to IP Routing and Mobile IP 46811.5.2 Security for Mobile IPv4 . 47211.5.3 Return Routability — Security in Mobile IPv6 48311.5.4 Mobile IP Deployment and Proxy Mobile IP 491

    11.6 Media Independent Handover — Service Protection 49311.6.1 Establish MIH Data Protection

    . , . .495

    11.6.2 Rely on Protections Provided in Transport Protocols . . 497

    Notes 498

    Exercises 498

    Bibliography 500

  • xii Contents

    12 Broadcast and Multicast Key Distribution and

    Authentication 503

    12.1 Basic Models for Multicast Key Distribution 503

    12.1.1 Key Sharing Scenarios 505

    12.1.2 A Naive Protocol 507

    12.2 Logic Key Tree Based Multicast Key Distribution 509

    12.2.1 Basic Concepts of Graph Theory 510

    12.2.2 Tree Topology-Based Multicast Key Distribution

    Protocol 511 .

    12.2.3 Performance Evaluation 520

    12.3 Hash Chain Based Authentication 523

    12.3.1 Hash Chains 524

    12.3.2 Hash Chain Based Message Authentication 525

    12.3.3 Hash Chain Based Access Authentication 526

    12.4 Merkle Trees for Authentication . . 528

    Notes 531

    Exercises 532

    Bibliography 533

    IV System Security 535

    13 Trusted Platform . 539

    13.1 The Platform'

    539

    13.2 Introduction to Trusted Platform 542

    13.2.1 Threats to a Platform 543

    13.2.2 Primary Objectives 546

    13.2.3 Challenges 548

    13.3 Trust Principles and Basic Mechanisms 549

    13.3.1 Root of Trust 549

    13.3.2 Transitive Trust Principle 550

    13.3.3 Secure Boot 551

    13.3.4 Validation and Authorization 555

    13.3.5 Authenticate to Remote Parties 556

    13.4 Technologies and Methodologies for Trusted Platforms 560

    13.4.1 One-Time Programmable Memory 561

    13.4.2 Tamper Response Hardware 562

    13.4.3 Secure Storage 562

    13.4.4 Protected Execution 563

    13.5 Trusted Platform in Practice 565

    13.5.1 Trusted Platform Module (TPM) 566

    13.5.2 Trusted Platform for Mobile Device 575

    Notes 580

    Exercises 580

    Bibliography 581

  • Contents xiii

    14 Physical-Layer Security 583

    14.1 Shannon's Perfect Secrecy 58514.1.1 A Little Knowledge of Entropy Functions 58514.1.2 Shannon's Perfect Secrecy Channel 58714.1.3 Perfect Secrecy and Modern Cryptography 58814.1.4 Comparisons with Quantum Cryptography 589

    14.2 Wyner's Wiretap Channel 589

    14.2.1 Equivocation Rate . . 59014.2.2 Achievable Secrecy of Wiretap Channels . . . 591

    14.3 Wiretap Codes for Achievable Secrecy Using ParityCheck Codes 594

    14.3.1 Parity Sets 594

    14.3.2 Encoder and Decoder of Wiretap Parity Codes 59514.3.3 Equivocation Rate of Wiretap Parity Codes 596

    14.4 Wiretap Codes for Achievable Secrecy Using Linear Codes . . . 59914.4.1 Some Basic Concepts about ECC .s 599

    14.4.2 Cosets of Linear Codes.

    604

    14.4.3 Encoder and Decoder of Wiretap Linear Codes 605

    14.4.4 Equivocation Rate of Wiretap Linear Codes 607

    14.5 Other Methods for Physical-Layer Security 61114.5.1 MIMO-Based Approaches 61114.5.2 Smart Antenna Approaches 613

    14.5.3 Exploiting Randomness of Signals and Channels .... 613Notes 614

    Exercises 614

    Bibliography 616

    15 Spread-Spectrum Techniques for Anti-Jamming-Attacks 619

    15.1 Some Basic Concepts of Digital Communications 62015.1.1 Digital Modulation Techniques 62115.1.2 Modulation and Demodulation 621

    15.1.3 Performance of Modulation Schemes 623

    15.1.4 Spread-Spectrum Systems 62515.1.5 Autocorrelation and Power Spectral Density

    of PN-Sequences 62815.2 BPSK Direct-Sequence Spread-Spectrum Systems 631

    15.2.1 DS-BPSK Signals and Bandwidth 63215.2.2 DS-BPSK Modulation and Demodulation

    ........ 635

    15.2.3 Synchronization 63815.3 Frequency-Hopping Spread Spectrum 640

    15.3.1 FH-MFSK Signals and Frequency Hopping Sequences . 64115.3.2 FH MFSK Modulation and Demodulation 642

    15.3.3 Examples of Slow FH and Fast FH Systems 64215.4 The Jamming Attacks 647

    15.4.1 Assumptions and Definitions of a Jamming Game . . . 647

  • xiv Contents

    15.4.2 Pull Band and Partial Band Jamming Attacks 65015.4.3 Pulse Jamming Attacks . 65015.4.4 Single Tone and Multitone Jamming Attacks 651

    15.4.5 Repeat-Back (or Reactive) Jamming Attacks 65215.5 Code-Division Multiple Access (CDMA) and Jamming

    Capacity 655

    15.5.1 Multiple Access Interference and System Models .... 656

    15.5.2 DS-CDMA Transmitters and Receivers .658

    15.5.3 Selection Criteria of Spreading PN Sequences 660

    15.5.4 Revisit of Countermeasures for Repeat-Back Jammers . 665

    15.5.5 Interference Limitation and Jamming Capacity 66715.5.6 Random Code Spread-Spectrum Systems 669

    15.5.7 An Abstract Interpretation of Spread-Spectrum

    Systems , 670

    15.6 Bloom Filters and Or-Channel Schemes 674

    15.6.1 Bloom Filters for Membership Verification • • • 674

    15.6.2 Or-Channel Coding for Spread Spectrum without Pre-

    Shared PN Sequences 678

    15.6.3 Probability of Jamming Errors in Or-Channel CodingSchemes 685

    15.6.4 Some Comparisons with DS/DS-CDMA Systems .... 688Notes 690

    Exercises 691

    Bibliography 695

    APPENDICES 697

    A Computations in Finite Fields 699

    A.l Prime Finite Fields 699

    A.2 Binary Extension Fields 700

    A.3 Properties of Finite Fields 702

    A.4 Trace Functions, Cosets, Relationship with m-Sequences andSubfields 703

    A.5 Finding a Primitive Polynomial over GF(2k) of Degree m byFactorization 706

    B Some Mathematical Formulae 707

    B. l Number of Boolean Functions 707

    B.2 Computation of Euler Function 708

    B.3 Algebraic Immunity 708

    C Signals and Spectra in Physical Layer 709

    C. l Deterministic Signals . . . 709

    C.l.l Energy and Power 709

    C.1.2 Linear Time Invariant Systems 710

  • Contents xv

    C.1.3 Fourier Transform . . 710

    C.1.4 Energy and Power Spectral Density 712

    C.1.5 Autocorrelation 713

    C.2 Random Signals 713

    C.2.1 Autocorrelation and Crosscorrelation of Random Pro¬

    cesses 713

    C.2.2 Wide-Sense Stationary Processes , . . . . 714

    C.2.3 Power Spectral Density of WSS Processes 714

    C.3 Definitions of the Bandwidth 715

    Index 717