community energy plans: implementation success and barriers in canadian cities

88
COMMUNITY ENERGY PLANS IMPLEMENTATION SUCCESS AND BARRIERS IN CANADIAN CITIES Laura Tozer

Upload: laura-tozer

Post on 07-Mar-2016

222 views

Category:

Documents


0 download

DESCRIPTION

Community Energy Plans: Implementation Success and Barriers in Canadian Cities

TRANSCRIPT

   

 

COMMUNITY ENERGY PLANS

IMPLEMENTATION SUCCESS AND BARRIERS IN CANADIAN CITIES

Laura Tozer

Community energy plans: implementation success and barriers in Canadian cities Laura Tozer A research paper submitted in conformity with the requirements for the degree of Master of Arts Department of Geography, Collaborative Program in Environmental Studies University of Toronto © Laura Tozer 2010

1

Community Energy Plans Implementation success and barriers in Canadian cities

ABSTRACT Sustainable development and climate change concerns have motivated many local authorities to reassess the energy system on which they depend. Some municipalities in Canada have developed community energy plans, which focus on energy needs at the local level for the development of efficient, economic and environmental energy systems. Five Canadian cities that were early adopters of community energy planning principles were studied in this paper to assess whether community energy plans are being implemented in practice and what barriers have been experienced. The cities studied achieved success in the implementation of energy management in municipal operations despite barriers in jurisdiction, perception of cost, communication, and capacity, but energy management in the larger community had not been fully implemented. Energy conservation and efficiency were a particular focus for the case study cities, but implementation of renewable energy generation was also successful in some instances. Long term changes in community-wide energy management such as combined heat and power systems and land use planning were present but not prevalent. While reductions were successfully made in the greenhouse gas emissions produced by municipal operations, greenhouse gas emissions were not significantly reduced for the whole community in most of the case studies. The expansion of community energy planning as a tool to rethink the way that a city grows and functions will be key if community energy planning is to significantly impact community-wide greenhouse gas emissions and energy use. KEYWORDS: energy management; municipalities; community energy planning; renewable energy; cities; urban planning; environmental planning; local climate change action plan

2

TABLE OF CONTENTS

ABSTRACT ...................................................................... 1

TABLE OF CONTENTS ................................................. 2

LIST OF FIGURES ......................................................... 4

LIST OF TABLES ........................................................... 4

1. INTRODUCTION ............................................................ 6

2. LITERATURE REVIEW ........................................... 10

2.1 Community Energy Planning ........................................................... 10 2.1.1 Economic and Social Rationale for Community Energy Planning ........................................................................................... 14 2.1.2 Community Engagement ......................................................... 16 2.1.3 Research Gaps in Community Energy Planning ..................... 17

2.2 Success and Barriers in Municipal Climate Change Policy Implementation ...................................................................................... 18

2.3 Implementation Research ................................................................ 22

3. CASE STUDIES ........................................................ 24

3.1 Calgary ............................................................................................ 24

3.2 Halifax .............................................................................................. 24

3.3 Vancouver ........................................................................................ 25

3.4 Guelph ............................................................................................. 26

3.5 Pickering .......................................................................................... 27

4. RESEARCH METHODS ......................................... 28

4.1 Case Study Methodology and Implementation Research ............... 28

3

4.2 Research Locations and Participants .............................................. 29

4.3 Recruitment Strategy ....................................................................... 30

4.4 Interview Methods............................................................................ 30

4.4 Data Collection and Analysis ........................................................... 31

4.5 Research Strengths and Limitations................................................ 32

5. RESULTS .................................................................. 34

5.1 Continued Relevance of Community Energy Plans ........................ 35 5.1.1 Guelph ..................................................................................... 37 5.1.2 Calgary .................................................................................... 39 5.1.3 Vancouver ............................................................................... 41 5.1.4 Pickering .................................................................................. 43 5.1.5 Halifax ..................................................................................... 45

5.2 Barriers to the Implementation of Community Energy Plans .......... 48

5.4 Success in the Implementation of Community Energy Plans .......... 53 5.4.1 Areas of Success .................................................................... 54 5.4.2 Reasons for Success .............................................................. 57

5.5 Evaluation ........................................................................................ 65

6. DISCUSSION ............................................................. 67

6.1 Shared Purpose, Different Vocabularies ......................................... 67

6.2 The Different Paths of Implementation ............................................ 68

6.3 A Typology of Barriers ..................................................................... 70

6.4 Expanding Community Energy Planning ......................................... 73

6.5 Concluding Remarks ....................................................................... 74

APPENDIX A: ETHICS APPROVAL ......................... 77 APPENDIX B: RECRUITMENT EMAIL .................... 78 APPENDIX C: INFORMED CONSENT FORM ....... 79 APPENDIX D: INTERVIEW GUIDE .......................... 80 REFERENCES .............................................................. 82

4

LIST OF FIGURES

Figure 1. A conceptual arrangement of various plans related to community energy plans for a theoretical community motivated by climate change concerns. ............................................................. 13 Figure 2. Degree of implementation of energy management activities at the municipal operations and community level for the five case study cities. ........................................................................ 36

LIST OF TABLES Table 1. The greenhouse gas emission reduction targets and the recent emissions of the case study cities ................................... 35

5

6

1 INTRODUCTION Energy has traditionally been generated and managed regionally in Canada

employing centralized, complex technical and social infrastructure. This energy

system has been dependent on fossil fuel and large-scale hydro power plants,

but sustainable development and environmental concerns, particularly climate

change, have motivated many jurisdictions to reassess their energy use and the

type of energy generation technology on which they depend. In the context of

this changing energy system, an opportunity has developed to transition to a

distributed energy system employing smaller scale, efficient, and renewable

energy technologies with increased local management (Hoffman and High-

Pippert, 2005; St. Denis and Parker, 2009). In recognition of this, over the last

several years some Canadian communities have developed community energy

plans (St. Denis and Parker, 2009).

A community energy plan (CEP) is a plan focused on energy needs at the local

level for the development of efficient, economic and environmental energy

systems (Jaccard et al., 1997; St. Denis and Parker, 2009). In a community

energy planning process, a community considers its energy system in a holistic

sense and seeks to match end-use services with the most well-suited energy

technology. This strategic planning process stresses a long-term view of the

energy system and can incorporate a number of different energy management

activities. From building efficiency, to renewable energy generation, to passive

heating and cooling, community energy planning seeks to redesign energy

systems to meet energy needs in the most efficient way possible while

7

respecting economic and environmental considerations. The CEPs developed in

Canada have outlined communities’ planned efforts to increase local

management of their energy systems, particularly in the areas of energy

efficiency, conservation and local renewable energy generation. Energy

efficiency refers to both the ability to provide services with less energy input on

the demand side and the reduction of wasted energy on the supply side in

energy generation and delivery. Energy conservation involves a reduction in the

energy that is demanded in order to provide a service (St. Denis and Parker,

2009). With successful implementation of CEPs, communities hope to reap not

only the social, economic and environmental benefits associated with climate

change mitigation, but the additional benefits associated with increased local

energy management such as the distribution of control over energy systems,

local energy independence, and cost savings from efficient energy use (Jaccard

et al., 1997; Hoffman and Pippert, 2005; NRCan, 2007).

Many communities are using CEPs in order to strive for the reduction in

greenhouse gas (GHG) emissions outlined by the Intergovernmental Panel on

Climate Change to avoid catastrophic climate change (IPCC, 2007; St. Denis

and Parker, 2009). However, there is significant evidence that the emission

reduction targets must be deeper and quicker than those included in the IPCC

reports (McMullen, 2009). While community energy planning has taken place in

many communities, it is not clear if the plans are resulting in more economic,

efficient and environmental local energy systems in practice and if the

reductions in greenhouse gas emissions are happening quickly and extensively

enough to meet scientists’ recommendations to avoid catastrophic climate

change.

Municipalities will be important loci for the transition to a sustainable energy

system. Local governments in Canada “have the potential to create sustainable

communities through the critical functions of land use planning, utility provision,

8

transportation, infrastructure development, and waste management” (Burch,

2009). Local governments have shown that they are willing to take on the

sustainable development agenda, they tend to coordinate action between a

variety of partners at different scales, and they have extensive experience

addressing environmental issues, which makes them well-placed to take action

to work toward sustainable energy systems (Betsill, 2001; Bulkeley and Betsill,

2005). They also have jurisdiction over approximately 52% of Canada’s

greenhouse gas emissions, which means that the implementation of policies to

reduce greenhouse gas emissions at the municipal level will be an integral

element of efforts to avoid catastrophic climate change (Robinson and Gore,

2005). However, studies of local governments’ efforts to implement

environmental policies have shown that municipalities can face significant

barriers. Politics, institutional obstacles, jurisdiction, capacity, funding, and low

prioritization by local leadership have all been identified as barriers to the

implementation of climate change policies in municipalities in the U.S., Canada

and the U.K. (Robinson and Gore, 2005; Allman, 2004; Wheeler, 2008). While

the content of community energy plans in Canada has been analyzed (St. Denis

and Parker, 2009), the implementation of Canadian CEPs has not been

assessed and it is unclear whether or not they are being carried out.

This research paper assesses CEP implementation in Canadian cities to

discover whether CEPs are being implemented or if they remain plans on paper,

and develops a general typology of barriers facing CEP implementation in

Canadian cities. The research focuses on the cities of Calgary, Vancouver,

Halifax, Guelph and Pickering, which were early adopters of community energy

planning principles in Canada. Research questions include whether commitment

to the plan is maintained as implementation occurs, whether efficiency,

conservation, generation, transportation and land-use planning aspects of CEPs

are being implemented with equal success, where success in implementation

has been achieved, and if any barriers to implementation exist. These questions

9

were put to seventeen participants including municipal and utility employees,

politicians and community group members from the five case study cities. The

degree of implementation will be summarized using the five categories of

advanced (well beyond pilot projects, implementation is broad and consistently

applied), preliminary (pilot projects or partial implementation), research (further

knowledge is being pursued in preparation for implementation, or information is

being provided), attempted (implementation is being attempted but no headway

is being made) and none (no implementation of this activity).

This research paper shows that the case study cities have achieved success in

implementing actions focused on municipal operations, particularly in the areas

of energy efficiency and conservation, but the implementation of energy projects

that affected the broader community as a whole was less common. The case

study cities faced similar barriers despite disparate paths of implementation and

achieved success when they adopted CEP principles into general decision-

making, built partnerships, and thought creatively about their areas of influence.

This paper is organized into the following chapters; chapter two is a literature

review of community energy planning and municipal climate change policy

implementation; chapter three briefly outlines the community energy plans

adopted by the five case study cities; chapter four describes the research

methods; chapter five presents the research results; and chapter six is a

discussion of the research findings.

10

2 LITERATURE REVIEW

2.1 Community Energy Planning

“[Community energy planning] combines planning concepts – neo-traditional design, complete communities, green cities – with energy management concepts – energy cascading, demand-side management, integrated resource planning.”

Jaccard, Failing and Berry (1997)

The modern energy system in Canada has been characterized by large scale,

centralized fossil fuel and hydro power plants with transmission lines spanning

the country. The establishment of this centralized energy system dependent on

long distance transmission through the electrical grid represented major

achievements in scientific fields ranging from metallurgy to electronics, but it

also required a parallel social system of equally complex managerial institutions

run by “technical elites largely free from the world of democratic citizenship”

(Hoffman and High-Pippert, 2005). The requirement for complex management

systems resulted in a centralization of regional energy planning that required

little input from local communities (Hoffman and High-Pippert, 2005; St. Denis

and Parker, 2009). Amory Lovins described this hard energy path in 1977 and

pointed out that it “depends on difficult, large-scale projects requiring a major

social commitment under centralized management” (Lovins, 1977).

Opportunities have emerged to shift toward a largely decentralized system with

distributed renewable power generation technology in combination with energy

conservation and efficiency in a soft energy path system first described by

Lovins (1977). This shift makes sense from environmental, social, political,

11

medical, long-term economic, and technical perspectives (Mendonça et al.,

2010), but the motivation presented by climate change is the most urgent. The

Intergovernmental Panel on Climate Change has concluded that developed

countries must peak their greenhouse gas emissions in the next couple of years

and decline greenhouse gas emissions by at least 25-40% from 1990 levels by

2020 to have a chance of avoiding catastrophic climate change (IPCC, 2007).

The rapid deployment of renewable energy and energy efficiency is an integral

part of making these necessary reductions (Mendonça et al., 2010). Wind, solar,

geothermal, and water power technologies have reached the necessary levels

of efficiency and reliability as well as economic feasibility in broad range of

applications (Burda and Peters, 2008; Mendonça et al., 2010) and have the

potential to “become the backbone” of the new energy system (Mendonça et al.,

2010).

In recognition of this context, many Canadian communities have formed

community energy plans (CEPs) to change the way that energy is managed

locally (St. Denis and Parker, 2009). This effort to achieve flexible, sustainable,

autonomous energy systems at the local level has been pursued by other

countries and jurisdictions across the world, with notable success in Denmark

which features district combined heat and power (Clark and Eisenberg, 2008).

Community energy plans are community-led plans that aim to increase and

improve local energy management. Community energy planning can be defined

as “a planning and management process that focuses on energy strategies that

can be implemented at the neighbourhood, municipal or regional level” (Jaccard

et al., 1997) and more broadly as “the concept of strategically planning for a

community’s energy needs and use to result in the implementation of efficient,

economical and environmental energy systems” (St Denis and Parker, 2009).

Communities can generally focus on three areas in order to improve their

energy systems: energy efficiency, energy conservation and switching energy

generation to renewable energy technologies, but the particular mix of these

12

three options in a CEP are contingent on the local communities’ values and

priorities (St. Denis and Parker, 2009). Energy efficiency “refers to how well the

supply side performs in ensuring little waste of energy in generation and

delivery, as well as, the demand side of energy management’s ability to perform

desired services with less energy input” (St. Denis and Parker, 2009). Energy

conservation is “any measure made to reduce the amount of high quality energy

that is demanded to provide goods or services” (St. Denis and Parker, 2009).

Renewable energy generation helps to ensure that energy supply meets

demand, but it does so in a way that is more sustainable over the long-term than

non-renewable energy since it is from regenerative sources, such as wind and

solar (St. Denis and Parker, 2009; Mendonça et al., 2010). Renewable energy

generation could be both regional and/or local depending on the energy,

environmental, and social needs that a community is trying to meet. Overall,

improvements in these areas can significantly reduce the expected increase in

Canada’s energy demands (NRCan, 2007).

The goals and programs found in community energy plans can often be found in

other types of local plans as well. Some communities put energy goals into

broader environmental plans, while others create dedicated energy plans (St.

Denis and Parker, 2009). ‘Community energy management’ is often used as a

synonym for community energy planning and ‘local action plan for climate

change’ and often includes elements of community energy planning (Jaccard et

al., 1997; St. Denis and Parker, 2009). St. Denis and Parker (2009) note that

“not all [local climate change action plans] take on the task of an entire

community energy plan, some focus on only one or a few projects to reduce

their municipal GHG emissions”. Greenhouse gas emissions and energy are so

linked, however, that the Community Energy Association (2008) in BC suggests

the development of ‘community energy and emissions plans’, combining both

efforts. This paper will use the term community energy plans (CEPs) to discuss

the energy management aspects of these plans, which can include energy

13

conservation, energy efficiency, local renewable energy generation,

transportation planning and land use planning (Jaccard et al., 1997; St. Denis

and Parker, 2009). A conceptual illustration of the relationship between different

types of plans is shown in Figure 1.

Figure 1 A conceptual arrangement of various plans related to community energy plans for a theoretical community motivated by climate change concerns.

This conceptual relationship is illustrative only since, in an applied context,

many communities combine or deconstruct various elements of the figure

depending on their motivations and concerns. A community may separate out

land use planning as a stand-alone subset of the official plan rather than as a

part of the community energy plan, for example, if it is particularly concerned

with rapid growth. Community energy planning is not necessarily a component

within a climate change plan, but at present is often employed in this context

due to the current high level of concern about climate change.

The formation of a community energy plan is an emerging trend in Canada (St.

Denis and Parker, 2009). In a preliminary assessment of the content of ten

14

Canadian communities’ CEPs, St. Denis and Parker (2009) found that CEP

formulation typically includes support from national agencies or networks such

as the Federation of Canadian Municipalities, and that the levels of public

participation and the mix of stakeholders that are involved in CEP development

varies. Municipalities generally set higher goals for greenhouse gas emission

reduction in municipal operations than for the overall community. Renewable

energy is a particularly important area of CEPs for significantly reducing

greenhouse gas emissions, but it has been underemphasized in the CEPs of

Canadian communities (St. Denis and Parker, 2009).

2.1.1 Economic and Social Rationale for Community Energy Planning

In addition to the benefits related to climate change mitigation, community

energy planning is attractive to communities for additional reasons. Jaccard et

al. (1997) modelled the impacts of the theoretical implementation of a standard

community energy plan for several communities in BC and demonstrated the

costs and benefits that would be associated with the implementation of a CEP

compared to business as usual. The CEP they used incorporated a densification

of urban dwellings to accommodate population growth, assumed that a variety

of local and imported energy options were available (district heating was

stressed), and influenced vehicle occupancy rates. The results of this study

indicated that a CEP with the parameters constructed by Jaccard et al. could

lead to energy savings of 15-30% and a reduction of air emissions (CO2 and

NOx) by 30-45%, all while achieving a cost savings of 15-30% in the life-cycle

costs of energy services compared to business as usual. In addition, cost

savings per tonne of CO2 abated in transportation ranged from $140 to $230

and for building measures ranged from $28 to $78 (Jaccard et al., 1997).

Furthermore, Jaccard et al. (1997) found that “energy supply related

investments in the [CEP] scenario tend to produce two to three times more jobs

in the local economy than in the [business as usual] scenario”. While the results

15

were theoretical and the life-cycle analysis conducted in this study tends to hide

potential real-life barriers to implementation (for example, high up-front capital

costs), this study clearly demonstrates why communities have an interest in

community energy planning. Managing energy for environmental and social

goals does not mean reducing a community’s standard of living. Instead, a

thorough understanding of energy needs can allow for a redistribution of energy

use to provide the same services (NRCan, 2007). Furthermore, a community

that pursues a significant reduction in its greenhouse gas emissions does not

necessarily face increased costs and can, in fact, save money (Jaccard et al.,

1997; NRCan, 2007).

Energy management at the local level characteristically occurs with more social

input than in regionally managed energy systems, which means that locally

managed energy systems can be more consistent with local values, resources

and needs, and can also be more agile in adapting to threats or opportunities

(Hoffman and High-Pippert, 2005; Lerch, 2007). Community energy planning

can allow for an link to be established between local generation and

consumption, “which in turn can be beneficial in reducing the negative impact

energy generation and consumption has on the environment, economy and

social aspects of the community” (St. Denis and Parker, 2009). This linkage

transforms decisions about the development of the energy system from a series

of individual, technical, entrepreneurial decisions into a social process. Many

authors have recognized the opportunity for new energy technologies

associated with the contextual changes that have allowed for a potential change

in the energy system, but fewer have recognized that these significant social

implications and possibilities that are embedded in sustainable energy

technologies (Bell et al., 2005; Hoffman and High-Pippert, 2005; Barry et al.,

2008). Community energy is also seen as a tool to achieve an environmentally

benign electricity system. Hoffman and High-Pippert (2005) write that “more

environmentally benign choices will almost certainly flow from enhanced public

16

participation in that people will want to make choices that do the least harm to

themselves, their families, and their communities”. As such, environmentally

benign energy systems and community energy management may be co-

nurturing and foster energy systems that are socially, environmentally and

economically acceptable to the community.

2.1.2 Community Engagement

Community engagement in the CEP process varies in practice (St. Denis and

Parker, 2009), but some argue that it should be an integral component (Hoffman

and High-Pippert, 2005). Community energy planning may be a process that

just engages citizens interested and actively involved in democratic debates of

all sorts already according to Hoffman and High-Pippert (2005). They argue,

however, that a more robust conceptualization of community energy planning

would involve the engagement of a broader swath of democratic society,

engaging citizens with diverse interests and levels of involvement in municipal

affairs (Hoffman and High-Pippert, 2005). Hoffman and High-Pippert (2005)

suggest that engagement in community energy could be guided by Barber’s

(1984) concept of a strong democracy where participants are drawn broadly

from society in a sustained pattern of participation. Nonetheless, many difficult

problems emerge in the community planning process. Hoffman and High-

Pippert (2005) point to considerations about;

…how citizens might be brought into the process, the incentives they are given to remain, the reason for their loyalty and/or exit, the kind of work that is required of them, how best to facilitate an aggressive form of grassroots organizing, crafting long-term and well-structured public education campaigns, communicating complex ideas to a largely non-technical audience, forging the appropriate technical and expert networks, and striking the right balance between the expert and the citizen. Hoffman and High-Pippert (2005)

17

These complications can make public engagement difficult in both the formation

of CEPs and their implementation. It has been argued that this engagement is

necessary, however, for the success of the plan; a community energy plan

should reflect the collective desires of a community while achieving the energy

sustainability goals that were set out to be accomplished because “it is the

community that must invest in the product, either in the built environment or the

lifestyle change” (NRCan, 2007). The success of a distributed energy system is

“at least partially dependent on issues of civic culture and society’s capacity to

support or nurture community-based decision making” (Hoffman and High-

Pippert, 2005). While Lovins (1977) argues that citizens are ready and able to

constructively contribute to the development of energy systems, others point out

that the assumption that people want to contribute to fundamental energy

choices in a democratic process is disputable (Hibbing and Theiss-Morse, 2002;

Hoffman and High-Pippert, 2005). In practice, public participation in community

energy planning seems to vary significantly, but it is not clear what impact this

has in terms of success in implementation (St. Denis and Parker, 2009).

2.1.3 Research Gaps in Community Energy Planning

Community energy planning has been modeled and analyzed theoretically, but it

is not clear if a community energy planning approach is working in practice in

Canada and which factors may be influencing its success or failure. Some

authors have studied climate change plans generally, but this can include

broader elements of addressing climate change (such as adaptation) and does

not focus on the community energy framework specifically. It is not clear

whether or not existing CEPs were treated as planning exercises from which the

community quickly moved on or whether they are being seriously pursued in

implementation. If a community is still committed to its CEP, it nonetheless may

not be achieving success in implementation in all areas. Real-life barriers to the

implementation of community energy plans have not been identified in the

18

literature. In addition, it is not clear if the varied levels of community participation

that have been observed in practice in CEP formation will have an impact on the

success and barriers realized in the implementation of a community energy

plan. Research in these areas may have implications for the effectiveness of

CEP planning and provide useful feedback for communities considering a

community energy planning approach.

2.2 Success and Barriers in Municipal Climate Change Policy Implementation

“Municipalities throughout Canada are likely to be struggling with the rapid pace of social change and the ever-evolving advice on climate change provided to them by the scientific community, making a richer understanding of barriers to action a valuable element of future climate change policy design and implementation.”

Burch (2009)

There are commonalities among the types of barriers experienced by

municipalities in their attempts to implement environmental policies, which may

mean that the same barriers recognized in the attempted implementation of

general climate change plans will be experienced in municipalities’ attempts to

implement specific community energy plans. This section summarizes the

barriers that have been found to hold back climate change policy

implementation in anticipation that similar issues may be found in the

exploration of community energy plan implementation. Municipalities in Canada,

the US and the UK have faced many barriers in their attempts to implement

local climate change policies (Allman et al., 2004; Robinson and Gore, 2005;

Wheeler, 2008; Burch, 2009; Dierwechter, 2010). A barrier to implementation

can be broadly defined as any action that impedes action as set out in the policy

or program (Robinson and Gore, 2005).

Robinson and Gore (2005) analyzed the results of a survey completed by 392

Canadian municipalities assessing the extent of Canadian municipalities’

19

response to climate change and barriers that were preventing them from

addressing climate change. The main barriers included finances, human

resources, knowledge, and capacity (Robinson and Gore, 2005). Robinson and

Gore (2005) found that climate change had to be a high priority for both the local

population and city council in order to elicit action in Canadian municipalities,

which was also true of local authorities in the UK (Allman et al., 2004). A study

which focused on successful action on climate change in three municipalities in

BC also identified the low level of priority assigned to climate change by the

local leadership as a barrier (Burch, 2009). In local authorities in Canada and

the UK, a lack of awareness, information and capacity were cited as barriers by

municipalities that were not acting on climate change (Robinson and Gore,

2005; Allman et al., 2004).

The implementation of climate change plans in cities in the U.S. has been

studied. It was found that some plans were highly detailed while others were a

series of bullet points, and most were freestanding climate change action plans

rather than part of other plans (Wheeler, 2008). A main distinction between

climate change plans in the US is those that seek to ‘green’ municipal

operations to lead by example and those that seek to influence the wider

community. Early plans in the US were prepared by a single department or

consultant, but later plans had more extensive public involvement (Wheeler,

2008). A common element of the climate change action plans in the United

States is to require utilities to purchase a set percentage of the power they

provide from renewable energy sources, although the amount ranged widely

(Wheeler, 2008). Wheeler (2008) found that the near-term goals of American

state and city climate change action plans are too low and that progress toward

meeting those goals is slow. Very few jurisdictions have released any sort of

evaluation or progress report on implementation, but Wheeler (2008) found that

many of the measures are not being implemented. Interviewees cited politics,

controversy over which measure is best to implement first, institutional obstacles

20

and a sense of powerlessness because of the scale of the jurisdiction as

reasons why many of the measures included in the climate change plans are

not being implemented (Wheeler, 2008).

Allman et al. (2004) found that most local authorities in the UK have

encountered significant barriers in their attempts to implement climate change

mitigation and adaptation policies. They found that the municipalities that were

able to achieve success in policy implementation were able to do so because

they included in the policy frame the secondary benefits of addressing climate

change (such as potential employment), they had the capacity to champion

climate change activities, and they partnered with other groups to finance the

activities. Authorities that did not engage in innovative funding arrangements

cited funding issues as a barrier for implementation (Allman et al., 2004). Local

authorities also felt that they lacked guidance from the regional government and

other external bodies if they lacked the internal capacity to address climate

change. A lack of commitment to the issue by elected representatives was also

found to be a key barrier (Allman et al, 2004).

Municipalities are also limited by their jurisdictional and budgetary ability to

respond to climate change. In particular, Canadian municipalities have been

feeling a squeeze in capacity as a result of downloading and decreased transfer

payments (Robinson and Gore, 2005). Some authors suggest that Canadian

municipalities do not see global climate change as a local matter of concern,

assuming that the responsibility for response lies with the provincial or federal

governments (Betsill, 2001). As a result, climate change is often reframed from

a global issue to one that is already on the local radar, such as air quality, which

allows the municipality to implement a policy response that addresses both

issues (Betsill, 2001). Jurisdiction can also act as a barrier due to issues with

coordination. Local authorities in the UK felt constrained by the lack of a

coordinated regional approach to action on climate change and municipalities in

21

BC felt that counter-productive provincial policies stood in the way of local

success in implementation (Allman et al., 2004; Burch, 2009). Betsill (2001)

questions whether local jurisdictions can have a significant impact on

greenhouse gas emissions in the absence of concerted regional or national

policy. Barriers can also arise due to the municipality’s organizational structure

or the institutional practices that are ingrained in day-to-day functions.

Municipalities with weak communication linkages and ‘silo’ department

structures isolate actions and prevent the kind of coordinated, comprehensive

action that some argue is the most effective way to address climate change

(Betsill, 2001; Robinson and Gore, 2005; Burch, 2009; Dierwechter, 2010).

While the specific barriers varied to some extent depending on the location,

there are some clear commonalities. Jurisdiction issues, organizational

structure, financing and cost, prioritization of climate change concerns, and

capacity were all identified as barriers by municipalities that are attempting to

implement climate change policies. Municipalities that had not yet attempted to

implement climate change policies identified barriers due to the lack of

information, capacity, awareness and prioritization of climate change by city

council and constituents. In general, climate change policy “barriers are deeply

interwoven phenomena, and may reinforce one another, creating substantial

inertia behind unsustainable patterns of municipal operations” (Burch, 2009).

These barriers may extend from general climate change policies to the specific

implementation of community energy plans in Canadian municipalities.

22

2.3 Implementation Research

“At a basic level...implementation research seeks to explain and describe how closely actual implementation meshes with original intended policies, why discrepancies or modifications occur, and what (if any) effect implementation has on subsequent policy decisions.”

Lennon and Corbett (2003)

Implementation research can be defined as a general term that focuses on

research asking “’What is happening?’ in the design, implementation,

administration, operation, services, and outcomes of social programs” (Werner,

2004). Implementation has an independent impact on the outcomes of a policy

or program, including reaching intended targets or goals (Vedung, 1997).

Implementation research involves observing program or policy operations and

measuring the degree to which they are operating as planned and it considers a

program’s practical and theoretical feasibility, including if the agency has the

resources and capacity available to implement the program as planned

(Vedung, 1997; Lennon and Corbett, 2003; Werner, 2004). This type of

research can go by many names, such as process analysis, management

research or organizational analysis, but these generally lack definition and are

often used interchangeably (Lennon and Corbett, 2003).

Implementation studies are commonly used to generalize conditions to a

broader application, to develop typologies and to develop best practices

(Lennon and Corbett, 2003). There are several key dimensions that characterize

implementation studies, including that they seek to understand issues with

policies or programs rather than just describe them. They employ both

qualitative and quantitative analysis and seek to understand the wider

environment in which a program is operating and they focus on implementation

(rather than impact) by using the program, institution or organization as the unit

of analysis (Lennon and Corbett, 2003). Analysis of implementation recognizes

the dynamic environment in which policies are enacted and seeks to recognize

23

when discrepancies between program design and implementation occur due to

normal operational responses versus failure of implementation (Holcomb and

Nightingale, 2003). One of the advantages of implementation research is its

flexibility. New lines of inquiry will unfold as more information about the program

is understood (Werner, 2004).

There is no standard design of an implementation study. They can range from a

top-down orientation focused on analyzing policy development and program

structure to a street-level approach that focuses on the service delivery of the

policy or program (Holcomb and Nightingale, 2003). A main theme is to provide

an understanding of issues of interest, “such as how policy is interpreted in

practice; how practice affects program performance; and what similarities and

differences exist across program, across staff and work units, across locations,

and over time” (Holcomb and Nightingale, 2003). Multiple data sources and

types of analysis should be used in implementation studies in order to avoid the

tendency toward becoming anecdotal (Holcomb and Nightingale, 2003).

24

3 CASE STUDIES

Five Canadian cities were chosen as case studies in order to uncover the

success and barriers that have been encountered in Canadian cities’ attempts

to implement community energy plans.

3.1 Calgary

The city of Calgary has a population of about 1,040,000 and is located in the

foothills of the Rocky Mountains in Alberta (City of Calgary, 2009). A number of

mountain resorts near the city draw tourists and much of the economic activity

of Calgary is based on the oil and gas industry (Calgary, 2010).

Calgary adopted its community energy plan, called the ‘Calgary Climate Change

Action Plan Target Minus 50’, in 2006 and set greenhouse gas emission

reduction goals of 50% from 1990 levels by 2012 for municipal operations and

20% by 2020 and 50% by 2050 from 2005 levels for the entire community.

Calgary’s CEP recommended action on energy efficiency, conservation and

renewable energy generation from a range of technologies in residential,

commercial and municipal applications (Calgary, 2006; St. Denis and Parker,

2009).

3.2 Halifax

The Halifax Regional Municipality (HRM) has a population of 350,000 (HRM,

2007). HRM is located on the southeast shore of Nova Scotia on the Atlantic

Ocean and encompasses both larger urban centres (the former City of Halifax)

25

and small fishing and farming communities. The urban area of HRM is the

largest urban area in Atlantic Canada (HRM, 2010). The port of Halifax and

various resource-based industries are an important element of Halifax’s

economic base (HRM, 2010).

The Regional Plan developed by HRM called for the establishment of a

community energy plan. HRM followed this directive and published its

‘Community Energy Plan’ in 2007 and set greenhouse gas emission reduction

goals of 20% below 2002 levels by 2012 for municipal operations and as well as

for the entire community. Halifax’s CEP recommended research into possibilities

for energy efficiency, conservation and renewable energy generation. The

renewable energies determined to be of interest were the use of biofuel, wood,

solar thermal, solar PV and micro-hydro for municipal operations. Land use

planning and transportation management were also important components of

Halifax’s CEP (HRM, 2007).

3.3 Vancouver

The city of Vancouver has a population of about 600,000, although there are 2.1

million in the Vancouver region (St. Denis and Parker, 2009; Vancouver, 2010).

The City of Vancouver is one of 23 communities governed by the regional

authority Metro Vancouver. Located on the Pacific Ocean in British Columbia,

the city of Vancouver has a mild coastal climate and is an important point for

international trading through its port. Nature and sustainability as well as

progressive social programs are prominent themes in Vancouver, which is

sometimes advertised as “one of the world’s most liveable cities with one of the

smallest carbon footprints of any major city in North America” (Vancouver,

2010).

The city of Vancouver developed greenhouse gas emission reduction goals in

1990 and 2000 through the Partners for Climate Protection program sponsored

26

by the Federation of Canadian Municipalities. In 2003, the Council of Vancouver

formed a ‘Cool Vancouver Taskforce’, bringing together a range of experts and

stakeholders from community, industry and government positions in order to

make recommendations on addressing climate change because the mayor at

the time wanted to adopt the Kyoto targets locally. As a result of these

recommendations, Vancouver created the Corporate Climate Change Action

Plan (referring to municipal operation’s emissions) and the Community Climate

Change Action Plan (for community-wide emissions) in 2005. These plans set

greenhouse gas reduction goals of 20% below 1990 levels by 2010 for

municipal operations and 6% below 1990 levels by 2012 for the larger

community. Vancouver’s plans recommended increased energy efficiency and

conservation and bulk purchase of green power in all sectors and recommended

solar PV and bio-energy for municipal operations (Vancouver, 2005; St. Denis

and Parker, 2009). Transportation planning was also included in the plan, but

land use planning was not due to its inclusion in other plans (Vancouver, 2005).

3.4 Guelph

Guelph has a population of 118,000 and is located about 90km west of Toronto

in Ontario (Guelph, 2010). With roots as a small farming community, Guelph still

hosts a number of agriculture and agri-business related industries, a school of

veterinary medicine and the University of Guelph which is known for science

and agriculture programs. Guelph is experiencing rapid population growth,

partially as a commuter community for people that work in the Greater Toronto

Area. In general, Guelph has a reputation for being a ‘green’ community

(Guelph, 2010).

Guelph adopted its ‘Community Energy Plan’ in 2007 after a long community

and stakeholder engagement process. While it set some targets (such as at

least 30% of Guelph’s anticipated electricity requirements will be associated

with combined heat and power by 2031), it did not determine greenhouse gas

27

emission reduction targets (Garforth, 2007; St. Denis and Parker, 2009).

Guelph’s CEP recommended efficiency and conservation in all sectors and

research into the potential for bioenergy use in the community and research into

wind, bioenergy, solar hot water and PV, and micro-hydro for use in municipal

operations. Transportation management was also included (Garforth, 2007; St.

Denis and Parker, 2005).

3.5 Pickering

Pickering has a population of about 92,000. It is located on Lake Ontario, east of

Toronto, and is part of the Greater Toronto Area (Pickering, 2010). Pickering

has a mixed economic base and hosts the Pickering Nuclear Power Station,

which is operating at a capacity of 3,100 MW.

Pickering’s community energy plan, the ‘PCP Local Action Plan’, was published

in 2006 as a part of ICLEI’s Partners for Climate Protection program which

provides a set of guidelines that municipalities can follow to develop a local

climate action plan. Pickering’s plan set out targets of a 50% reduction in

greenhouse gas emissions from 1995 levels by 2016 for municipal operations

and a 35% reduction by 2016 for the entire community. Pickering’s CEP

recommended efficiency and conservation measures for all sectors, but did not

make any recommendations about renewable energy generation (Pickering,

2006; St. Denis and Parker, 2009).

28

4 RESEARCH METHODS

The primary methods of collecting data for this study were key informant

interviews as well as analysis of any evaluation documentation that had been

produced by the community.

4.1 Case Study Methodology and Implementation Research

The content of Canadian community energy plans has been analyzed to

summarize the types of activities that have been included (St. Denis and Parker,

2009), but an in-depth analysis of success and barriers realized in the

implementation of CEPs in Canada has not been carried out. Therefore, this

research employed a qualitative approach to broadly identify key barriers that

cities in Canada are facing. Five Canadian cities were chosen as case studies.

The small number of locations allowed for in-depth qualitative research to be

carried out, a method which allows for the holistic understanding of social

phenomenon (Creswell, 2003). Case studies can be particularly relevant when

the phenomenon is currently unfolding in a real-life context (Yin, 1985). The five

cities selected represent a relatively geographically and demographically

representative selection of Canadian cities so that the findings could be

generalized as a typology of barriers. Implementation research is often used in

this way to expand a qualitative understanding of how policies are working in

practice into a generalized typology that can be the basis for further research or

policy development (Lennon and Corbett, 2003).

29

This research employed a top-down implementation research approach where

municipal employees, politicians and other stakeholders that are heavily

involved in energy issues in the community were targeted for key informant

interviews. Implementation research allows for an assessment of success and

barriers being encountered in a program or policy that is currently in the process

of being put into practice, which is well suited to the burgeoning field of

community energy planning in Canada (Lennon and Corbett, 2003).

Multiple methods of data collection are necessary for case study and

implementation research in order to expand the information base (Yin, 1985;

Lennon and Corbett, 2003). Document analysis was also used in order to

analyze the CEPs and to assess any implementation or evaluation documents

that have been issued since the inception of the CEP. Follow-up studies

included subsequently formed policies or programs that incorporated the CEP

principles, implementation documents that went into further detail about a

particular energy management activity, and evaluation reports that reported to

the city council on progress in implementation.

4.2 Research Locations and Participants

The focus of this research paper is an assessment of the progress made on

implementing the CEPs published by five Canadian cities; Calgary, Halifax,

Vancouver, Guelph and Pickering. These five cities were chosen because they

have developed community energy plans, they are early adopters of CEPs who

have had at least three years to begin implementation, and they were part of St.

Denis and Parker’s (2009) original assessment of the content of Canadian

CEPs. Only the large communities from the St. Denis and Parker (2009) study

were assessed due to research constraints. Additional research could assess

CEP implementation in smaller Canadian municipalities and municipalities that

have followed the example of these early adopter communities.

30

Participants in the research included municipal employees (n=11), politicians

(n=2), utility employees (n=2) and staff or volunteers with community groups

(n=2), which amounted to three to four representatives per community for a total

of seventeen interviews. Three to four participants sufficiently represented

relevant experiences in each community because such specialized experience

was sought and not all sectors were important players in CEP implementation in

each community. It was clear that few people in each community interacted

frequently enough with the CEP to be able to provide a level of detail that was

relevant to this research.

4.3 Recruitment Strategy

A key informant recruitment strategy was the starting point for this research,

where people that were most likely to have in-depth experience with the

community energy plan’s formation and/or implementation were targeted. The

preliminary target was the municipal employee or office that holds oversight or

management responsibility for the implementation of environmental policy in

that municipality. Often there was a single point person identified within

municipal staff and this person was contacted using the recruitment letter in

Appendix B. From this point, a snowball sampling method was employed in

order to identify other potential participants. Participants usually identified

municipal staff, but participants were also specifically asked to identify potential

participants with other experiences or from different sectors (politicians,

community groups, the local utility etc.). Potential participants that were

identified were contacted with the recruitment letter and invited to participate in

the research.

4.4 Interview Methods

The interviews employed in this research were semi-structured and included

many open-ended questions. While there was a guideline and general questions

31

were prepared, most of the interviews took a conversational tone that allowed

the participant to bring up topics of interest tangentially.

The interviews focused on understanding how the CEP was working in practice.

General questions about the participant’s background, experience and position

related to the CEP were asked to open the interview and establish context.

Additional topics included:

In what areas has your community made progress toward some of the

goals that were set in the CEP?

What barriers have been encountered in the implementation process?

Have the costs of implementation been meeting expectations?

How is the CEP integrated into municipal governance?

How much participation from the community was there in the formation

or implementation of the CEP and how important was it to achieving

success in implementation?

Are there any evaluation criteria or benchmarks to assess progress?

Questions such as these were included in the interview guide (Appendix D) and

served as launching points for further discussion. Focus areas were first brought

up generally (‘What barriers exist?’) to allow the participant to volunteer his or

her own information, and then more specific barriers were followed up on if they

were mentioned (for example, ‘You mentioned that up-front cost has been an

issue, how has this influenced the type of projects that have been successfully

implemented?’).

4.4 Data Collection and Analysis

Phone interviews were conducted between June 1, 2010 and July 21, 2010

usually during the participant’s regular business hours. Interviews were an

32

average of 30 minutes in length. Participants were emailed a copy of the

consent form (Appendix C) and indicated their consent via email. Interviews

were tape recorded with the participant’s consent, which allowed for a

conversational tone to be achieved due to the researcher’s ability to engage and

respond to the participant’s answers. Interviews were then transcribed and

interpreted using the qualitative analysis software QSR NVivo. Sentences and

phrases were coded using a range of categories in order to allow for the

emergence of themes.

4.5 Research Strengths and Limitations

A research design that stretched more comprehensively across Canada would

have allowed for a more representative construction of a typology of barriers.

Unfortunately, time and cost constraints prevented this type of research design.

Key informant interviews with several key municipalities could have been

combined with a more wide-reaching survey to more municipalities across

Canada. This would provide a better conception of how many municipalities

have adopted a local energy management framework and how far along they

are in its implementation, which would have allowed the typology of barriers to

be scaled up and generalized more effectively. In addition, the research was

carried out by telephone due to constraints faced by the researcher, which

meant that the contact of a face-to-face meeting and observation of any physical

policy outcomes in practice was not possible.

In terms of research strengths, the use of key informant interviews and an

implementation research approach allowed the research to assess success and

barriers in policy implementation while the CEP was still in the process of being

implemented. This real-life assessment allows the research to focus on

phenomenon as they are unfolding. Also, the snowball interview sample method

allows for a flexible structure that can be adjusted to suit each community. The

level of involvement of the local utility or the community was unclear externally

33

and snowball sampling helped to uncover which groups were likely to have

experience with the implementation of the community energy plan. In some

cases the community had many engaged parties from different sectors, and in

other cases only municipal employees were in a position to comment on the

community energy plan specifically.

34

5 RESULTS

There is widespread scientific consensus that more than two degrees of

warming above the pre-industrial level will result in dangerous climate change

(IPCC, 2007; Bramley et al., 2009). The Intergovernmental Panel on Climate

Change (IPCC) states that a 25-40% reduction in greenhouse gas emissions in

developed countries by 2020 from 1990 levels is necessary to have a chance of

staying below two degrees of warming (IPCC, 2007). Recent findings have

concluded that the world is warming faster than even the most extreme of the

IPCC’s projections and that impacts forecasted by the IPCC to occur in the long-

term are already taking place (McMullen, 2009). Therefore, the emission

reduction targets that must be adopted to avoid dangerous climate change are

likely to be at least at the high end of the IPCC’s 25-40% range.

The targets set by the cities in this research fall short of the scientific findings,

as shown in Table 1.

35

Year of

Plan

Baseline Year

GHG Targets - municipal

GHG Targets -

community

Recent Emissions

Calgary, AB 2006 1990 for municipal 2005 for community

50% by 2012

20% by 2020 50% by 2050

Municipality: 33.7% below 1990 levels in 20081 Community: 31% above 1990 levels in 20032

Vancouver, BC 2005 1990 20% by 2010

6% by 2012 Municipality: 33% below 1990 levels in 2008 Community: 0.2% above 1990 levels in 20083

Halifax, NS 2007 2002 20% by 2012

20% by 2012

Municipality: ~10% below 2002 levels4 Community: Unknown

Guelph, ON 2007 N/A N/A N/A Unknown Pickering, ON 2006 1995 50% by

2016 35% by 2016

Municipality: 35.2% above 1995 levels in 20085 Community: 18% above 1995 levels in 20086

Table 1 The greenhouse gas emission reduction targets and the recent emissions of the case study cities

5.1 Continued Relevance of Community Energy Plans

Commitment to a community energy planning framework varied in this research.

In some cases, the community energy plan is commonly referred to in daily work

and in regular reporting to the council. In other cases, the CEP is recognized

distantly as a launching point and a new structure guides day-to-day actions and

1 (City of Calgary, 2010)  2 (Calgary, 2006)  3 (City of Vancouver, 2008b)  4 Informant 4, Halifax 5 (Melymuk, 2010)  6 (Durham Sustain Ability, 2010) 

36

reporting. The degree to which the case studies have been successful in efforts

to implement energy management activities is summarized in Figure 2 and the

recent evolution of energy management in each of the case cities is

summarized in the following sections.

Municipal Operations

Calgary Halifax Pickering Guelph Vancouver

Efficiency

Conservation

Generation

Transportation

Land Use Planning

N/A N/A N/A N/A N/A

Community

Calgary Halifax Pickering Guelph Vancouver

Efficiency

Conservation

Generation

Transportation

Land Use Planning

Advanced: well beyond pilot projects, implementation is broad and consistently applied Preliminary: pilot projects or partial implementation Research: further knowledge is being pursued in preparation for implementation, or information is being provided Attempted: implementation is being attempted but no headway is being made None: no implementation of this activity

Figure 2 Degree of implementation of energy management activities at the municipal operations and community level for the five case study cities.

37

Energy efficiency refers to both the supply side focused on the efficiency of

energy technologies as well as demand side efficiency with measures such as

retrofitting old buildings and instituting building standards. Energy conservation

is the reduction of the energy that is demanded in the provision of services and

largely includes awareness-raising and behaviour change campaigns.

Generation is focused on renewable energy development as well as local

energy systems such as combined heat and power and district energy.

Transportation includes measures such as transport demand management and

transit infrastructure for a less energy intensive transportation system. Land-use

planning can be highly influential in shaping the local energy system and can

include measures such as urban densification.

5.1.1 Guelph

Guelph’s Community Energy Plan was originally spearheaded by the mayor and

supported by the municipally owned utility, Guelph Hydro. The CEP focused

specifically on energy management, making no greenhouse gas goals, because

at the time the focus on energy rather than climate change allowed them to

“create a bigger tent” (Informant 17, Guelph) and work with a greater diversity of

people. Municipalities have had success bundling together related issues in this

manner in the implementation of environmental policies in the past as well

(Betsill, 2001; Allman et al., 2004). Public perception has changed since then

and follow-up documents reengage with climate change rationale. For example,

the district energy feasibility study says, “The driver of this report is the City of

Guelph’s Community Energy Plan (CEP) prepared in response to the global

impact of Climate Change and recognizes the need for a reduction in society’s

carbon emissions to secure a sustainable future” (MCW Associates, 2010).

Goals for the reduction in per capita energy use were set, however, and these

are sometimes verbally translated into what that reduction would mean in terms

of greenhouse gas emission reductions. The Guelph Community Energy Plan is

still regularly referred to among municipal staff and politicians and used as a

38

guiding document. In particular, the idea that all public investments must

demonstrate how they advance the CEP has advanced implementation. In this

way, all public investments become CEP projects.

Because Guelph is partly focused on transformative change to its energy

system and long term planning, success to this stage has largely been in

research, laying groundwork and creating partnerships in governance to move

forward. A particular area of work has been the development of a Mayor’s Task

Force on Community Energy which includes not only municipal staff, but also

representatives from the Ontario Power Authority, Guelph Hydro, Ontario

Centres of Excellence, some industry associations and others. They have

created this forum in order to overcome implementation barriers that have been

experienced and obstacles they predict they will have to overcome. One of the

integral areas of interest to Guelph where this applies is in district energy work.

A key follow-up document to Guelph’s CEP is a district energy feasibility study

completed by Guelph Hydro (MCW Associates, 2010). The feasibility study

found that: (1) cogeneration would be economically feasible in the hospital

district with government funding and a feed-in-tariff, (2) district heating could be

cumulatively integrated into developments in the downtown over the next 20-30

years and would be economically feasible with government funding and a feed-

in-tariff, and (3) a heat recovery system could be developed on the university

campus with no government funding but with a feed-in-tariff (MCW Associates,

2010). Participants in the research noted that no regulations exist for district

energy in Ontario and highlighted how useful the Task Force will be for working

with government and industry to move from research to construction.

Guelph has made progress in conservation and efficiency in the community

through the municipally owned local utility, Guelph Hydro, as well as in its own

operations with LEED certified new buildings as well as fuel-switching and

resizing the municipal vehicle fleet. They have also seen a lot of interest in

39

renewable energy generation (particularly solar PV) and seek to facilitate its

development in the area through Guelph Hydro and private interests. They have

had success in linking renewable energy with economic development through

the pursuit of renewable energy manufacturers to locate in Guelph. ‘Green

industry’ is one area that was not expressly pursued from the outset, but

opportunistically targeted when the Green Energy Act began attracting the

renewable energy industry to Ontario. The CEP did not include any evaluation

methodology so there is no comprehensive account of how Guelph is doing in

implementation. This was seen as an oversight and evaluation criteria are being

developed now. A municipal employee estimated that the city has probably

stopped the upward increase in energy use over time, but has not yet made

reductions in energy use.

5.1.2 Calgary

Calgary developed the Calgary Local Climate Change Action Plan – Target

Minus 50 in 2006, which led to an expansion of the Air Quality Office in the

Environmental Safety and Management Office to include climate change. An

Energy Management Office was also created in 2007 to coincide with the

beginning of a renewable energy power purchase agreement for municipal

operations. The Energy Management Office manages energy procurement,

energy policy development and energy reporting to tell the municipal

departments how much energy they are using. The Office of Sustainability was

established in early 2009 with a focus on the development of long-term plans

with a sustainability lens. Several such plans have been created (including 30

and 60 year land use plans). The Office of Sustainability was created in

recognition of the fact that implementation of energy projects was stalling due to

the lack of communication between different departments. The difficulty in

addressing comprehensive issues like energy with a silo department structure

has been pointed out extensively in the literature (Betsill, 2001; Robinson and

Gore, 2005; Burch, 2009; Dierwechter, 2010).

40

Calgary started with a local climate change action plan that contained many

elements of energy management, but did not comprehensively describe a

community energy plan. However, the evolution of planning in Calgary has

moved more explicitly toward a community energy planning mentality. Calgary is

working within a fairly new framework that stresses the consideration of the

three lenses of sustainability – environment, social and economic – for all public

decisions. City council has also adopted eleven Sustainability Principles to

guide decision-making. After a Low Carbon Future summit in September 2009,

the City of Calgary’s Community Energy Initiative Team worked with a range of

external partners to try to incorporate a comprehensive set of actions focused

on energy into the updated community greenhouse gas reduction plan that is in

development (Calgary, 2009a; Calgary 2009b).

The target from the Minus 50 plan for greenhouse gas emission reduction of

50% below 1990 levels for municipal operations was met early, so the city

adopted a new target in a short declaration document called the Calgary

Accord. Calgary was largely able to meet its municipal greenhouse gas

emission targets through power purchase agreements with a renewable energy

developer. Wind farms developed by ENMAX (a developer over which Calgary

has partial control) are dedicated to Calgary’s energy consumption, which has

allowed the city to meet its 2012 municipal target ahead of schedule. As of

January 2012, 100% of the city’s municipal operations electricity needs will be

powered by renewable energy. Demand side management for municipal

operations has not been as successfully implemented. There has a policy since

2007 that all new municipal buildings must be LEED gold compliant, but

retrofitting has not been comprehensively pursued.

The city is in the process of writing an updated climate change plan with an

increased focus on energy management goals in the broader community in

41

addition to municipal operations. While broad community action was included in

the 2006 Minus 50 plan, these targets were not met and implementation met

more barriers there than in municipal operations. Some community awareness

raising and outreach has occurred, but no other significant energy or planning

actions have been undertaken in the community. Participants stressed that lack

of success in the community is particularly due to the urban sprawl growth

patterns that the city has had difficulty in addressing. Broader community action

will be particularly important if the city continues to strive to reduce greenhouse

gas emissions considering that Calgary has one of the highest per capita

greenhouse gas emissions among cities across the world (UNEP, 2010). A

follow-up implementation document to the plan, an Energy Mapping Report

completed by the Canadian Urban Institute for the city of Calgary, suggests

ways that district energy, changes to building design and land use, and

alternative energy use can be pursued in an integrated energy plan in order for

the city to meet its community GHG reduction targets (CUI, 2008).

In terms of evaluation, Calgary undertakes regular greenhouse gas accounting

through the Climate Change and Air Quality Office and energy use reporting

through the Energy Management Office. Information is also aggregated into

regular State of the Environment reports, the latest being in 2006 with a new

one due out this year.

5.1.3 Vancouver

The Vancouver local climate change action plan began with an integrative Cool

Vancouver Task Force. A co-ordination unit called the Sustainability Group pulls

together expertise from various departments (district energy, land use planning,

built environment, and community engagement specialists) to oversee the

implementation of the climate change action plan. The original climate change

plan is regularly used in day-to-day activities and the actions of the sustainability

group flow from the actions laid out in the original plan.

42

Participants said that Vancouver is making better progress with municipal

operations than with community actions since they have reached the

greenhouse gas emission goals for municipal operations of reducing GHG

emissions 33% below 1990 levels. Most of the success is attributable to the

city’s landfill gas recovery project, although building retrofits, high efficiency

building standards and electric vehicle deployment have also occurred.

However, success has also been achieved in the implementation of activities in

the community. The city has completed a large district energy project called the

Southeast False Creek Neighbourhood Energy Utility, which recovers waste

heat from the municipal sewage on the way to the nearby sewage treatment

plant for use in a new, mixed-use development. This cut the GHG emissions

from the development in half from what they would have been had the

development been pursued in a business as usual context (Informant 9).

Through the city charter, Vancouver has the power to operate utilities and set its

own rates. The community outreach part of the Sustainability Group has also

been engaging citizens around sustainability and climate change action,

including encouraging home and business owners to do energy retrofits. This

work has faced some challenges, such as determining if any real, verifiable

GHG emission reductions have resulted from the outreach efforts. There has

also been work on housing efficiency in the community through amendments to

the city’s building code, including ensuring that all new developments are ready

for solar hot water installations and requiring that all new buildings citywide be

carbon neutral by 2030. The built environment specialists in the sustainability

group are also working to encourage small-scale renewable energy generation

in the community.

One key element that contributed to success in implementation in Vancouver

that was identified by participants was that land use planning policy in the city

was already focused on reducing personal vehicle transportation and was

43

working with development and planning principles that would contribute to

advancing the energy use and sustainability goals that came later. There was

no mentality or infrastructure to fight against when it became time for

implementation of the CEP – the policy and physical environment was already

aligned. Land use planning continues to affect energy use in the city. New

planning guidelines called EcoDensity include sustainability criteria that apply to

all development in the city, including the requirement that all applicants for

rezoning must meet a LEED Gold standard with their subsequent development

(City of Vancouver, 2008a).

Greenhouse gas accounting is the primary method of evaluation in Vancouver

and these statistics are summarized in reports that are published every two

years. The latest was focused on 2008 and showed that community wide

emissions had returned to 1990 levels despite a 27% population increase (City

of Vancouver, 2008b). A reduction in emissions from solid waste was largely

responsible for the decrease, as well as a small decrease in emissions from

natural gas use in buildings (City of Vancouver, 2008b). Greenhouse gas

emissions from municipal operations had decreased 33% from 1990 levels in

2008, which surpassed the goal of 20% below 1990 levels. The emission

reduction due to the methane capture facility at the Vancouver landfill was

included in the municipal operations inventory.

5.1.4 Pickering

Pickering’s Partnership for Climate Protection (PCP) plan included numerous

energy management activities. A non-profit local community group, Durham

Sustain Ability, was brought in to help extend the capacity of existing staff to

form the plan and continues to work with the city on implementation. The

completion of the plan triggered the development of a Sustainability Office,

which has moved away from using the PCP plan as a reference document.

Instead, the Office sees itself as manager of a sustainability program that is

44

opportunistic in the projects that it pursues. Informant 13 described it as an

“adaptive management kind of approach.” Informant 12 said that the PCP plan

“was a great starting point.” While it started people thinking about the direction

they wanted to move, participants characterized it as narrow in scope.

In the implementation of the sustainability program to achieve goals such as the

ones set out in the PCP plan, the focus has largely been on awareness raising

and encouraging small behavioral changes in both municipal staff and the

broader community. According to the draft follow-up report to council on the

implementation of the PCP plan, “energy conservation is one of the

cornerstones of the Sustainable Pickering plan” (Melymuk, 2010). Participants in

the research described Sustainable Pickering Day, where community members

can get information about conservation and efficiency from accessible booths in

the community, as a particularly important activity that has been pursued. In

addition, some lighting and HVAC retrofitting of municipal buildings has taken

place to coincide with regular renovations and new municipal buildings must be

LEED silver, although not much new building has taken place. Also, five

vehicles that needed to be replaced in the municipal fleet were replaced with

hybrid vehicles (Melymuk, 2010). The Sustainability Office has spent a

significant amount of time developing Sustainability Indicators that will be used

to evaluate progress in the implementation of its program (City of Pickering,

2010).

The targets from the PCP plan were to reduce GHG emissions by 50% per

capita for corporate emissions and by 35% per capita for community emissions

from 1995 levels by 2016 (Pickering, 2006). The city of Pickering is about 20%

of the way to reaching the municipal target according to Informant 13 and follow-

up documents (Melymuk, 2010). However, the approved PCP protocol for

measuring GHG emissions calculates city’s emissions relative to the energy mix

in the province. The provincial energy mix has become more GHG intensive

45

overall since 1995; therefore, the 2010 report to council recommends revised

GHG goals of 22% for corporate emissions and 19% for community emissions

(Melymuk, 2010). In terms of community actions, “the 2008 GHG emissions are

the same as the 1995 baseline year at 6.5 t/person” (Durham Sustain Ability,

2010). Some participants expressed concern with the slow pace of

implementation and the focus on awareness-raising. Larger-scale energy

projects were highlighted as an area where Pickering was lacking progress due

to a lack of capacity as well as institutional barriers. The implementation of land

use planning for growth that better reflected its sustainability goals also faced

significant jurisdictional barriers, which will be elaborated on in section 5.2. A

draft follow-up report to council suggested that in the future in order to meet the

municipal target, the city should focus on energy conservation in municipal

facilities, light duty municipal vehicles and traffic lights. However, Pickering still

has to reduce its emissions by 81% to reach its target and annually “this

translates into a reduction target of 566 tonnes GHG emissions per year, which

is more than double the annual impact of the initiatives implemented by the City

in 2009 and 2010” (Melymuk, 2010).

5.1.5 Halifax

Halifax’s Community Energy Plan was developed out of the Climate Smart work

undertaken by the city in the early 2000s, which was focused on mitigation of

and adaptation to climate change. The CEP includes both high-level policy and

detailed implementation plans and participants in the research found it to be

unwieldy at 1000 pages. Some of the actions included have been pursued, but

many have proved not actionable largely due to jurisdiction issues. The plan

included an extensive amount on implementation, so much that Informant 1

termed the CEP “a shotgun kind of approach, versus trying to build some solid

building blocks and maybe policy and then strategic implementation around

that.” Because it included such a wealth of information, the CEP is being used

as a policy framework to create an opportunistic environment to move projects

46

forward instead of being used as a point-by-point list of activities that Halifax

intends to implement. Overall, people know that there are targets and the CEP

principles are used as aspirational goals, but actual reference to the details of

the CEP is not regular. Informant 2 from Halifax described its continued

relevance as, “It’s one of those things that people sort of hold out there and

work towards.” Halifax has implemented many energy projects; however, they

were not always the ones that were specifically outlined in the CEP.

The Sustainable Energy Management Office is the main office of

implementation and has existed since 2004. SEMO is “kind of like the glue”

(Informant 4, Halifax) with no projects of their own or operational service

delivery, but it coordinates implementation in other offices. The Energy Office is

one operational unit with which it works closely. Another key unit of governance

is the Energy and Underground Services committee of council, in which a few

councilors meet regularly with energy staff to prioritize projects and plan for

implementation and budget expenditures.

Halifax has improved public transit and has completed extensive retrofitting to

improve the efficiency of municipal buildings. This efficiency work achieved

significant financial returns on investment, reflecting the assertion in the

literature that the implementation of community energy management can result

in cost savings (Jaccard et al., 1997; NRCan, 2007). The city has built a district

cooling system using ground source heat pumps connected to five downtown

municipal buildings, which was not originally outlined in the plan but instead was

pursued opportunistically when the expertise and funding became available, and

they have done some solar work. Informant 2 from Halifax said that while there

is significant commitment to the CEP goals, widespread implementation of large

projects has not had extensive success. Informant 3 from Halifax was critical

that the city is not broadly re-prioritizing its infrastructure spending to reflect the

CEP goals. He noted that significant spending is still directed to improving

47

transit times for single occupant personal vehicles and money is not prioritized

for projects like bike lanes. There has not been a strong focus on land use

planning, although this may play a larger role in the updated CEP in 2011/2012.

In addition, Halifax was interested in fostering renewable energy development

through green power purchasing; however, it discovered that it did not have the

jurisdiction to do so. While Halifax has implemented some energy projects

affecting municipal operations, the focus on community action has not been

strong.

Evaluation has not been consistently comprehensive. Operational units of the

municipality evaluate their work on their own. For example, the Energy Office

publishes benchmarking for the energy efficiency of buildings and tracks

progress annually. Generally, return on investment and payback have been

important tools for prioritizing which projects are pursued. Inventories for

corporate greenhouse gas emissions were completed in 2002 and 2008 with

annual inventories beginning in 2009, but complications around GHG

accounting have made this assessment problematic. Halifax has recently made

an effort to improve its GHG accounting methodologies and may reassess

previous inventories. Informant 4 thought that Halifax was about 50% of the way

to meeting its municipal operations 2012 target of 20% below 2002 levels and

thought that they would achieve it, but Informant 2 had some doubts. It should

be noted that this target is significantly lower than recommendations made by

scientists (IPCC, 2007; McMullen, 2009). Council officially adopted the

corporate GHG target from the CEP but the community target was never

officially adopted. Community-wide emissions were inventoried in 2002 before

the CEP, but GHG reporting for the community has not taken place since then.

48

5.2 Barriers to the Implementation of Community Energy Plans

While the five case study cities took different paths of implementation as they

adapted energy system management concepts to their physical and

bureaucratic environment, they shared several common barriers to

implementation. In some cases these barriers shaped the scale of the projects

that could be successful, while in other cases the barriers shaped the actual

type of activity that could be pursued. Jurisdiction, cost, capacity and

experience, and behaviour change issues were all found to be barriers.

Jurisdiction

Issues with jurisdiction and a lack of control were felt in Pickering, Guelph,

Calgary and Halifax. Vancouver has significant control for a municipality and

therefore did not encounter as many jurisdictional barriers as the other case

studies. Municipalities in Canada get their powers through the province because

they are not constitutionally defined, which means the amount of control they

actually have can vary. Some of the case studies found that action items that

were included in the original formation of the CEP could not actually be carried

out by the city:

A lot of the action items in the community energy plan were not within our jurisdiction and were difficult to grapple with without needing broad stakeholder support, provincial policy support, all kind of things.

Informant 1, Halifax

Informant 6 from the city of Pickering described how one of the goals from

Pickering’s plan was to develop sustainable development guidelines for new

housing developments in Pickering. When they attempted to apply the

guidelines to a particular project, however, the developer challenged the city at

the Ontario Municipal Board and won. She said, “There has to be a provincial

commitment to these ideas in order for them to succeed. The Planning Act

needs to have provisions for sustainability in it.” The impact of the provincial

49

context was a common theme, particularly when it came to renewable energy

generation. Alberta legislation prevents the city of Calgary from generating more

electricity than what is used in municipal operations. So while the city has had

some success generating energy from a landfill for its own use, the expansion of

renewable energy generation into the community faces challenges. The

provincial legislative context and the utility in Nova Scotia also controls

generation and constrains the participation of Halifax Regional Municipality:

[HRM has] facilities where the opportunity to be a power producer exists in various ways, they could use PV or wind or combined heat and power but they will always come up against a stumbling block in trying to negotiate with Nova Scotia Power in the absence of any provincial regulation like a [Feed-in-Tariff] program. So that really comes down to the provincial government directing or setting the regulations for making that happen.

Informant 3, Halifax

Even with local political support, implementation cannot move forward

when the province has not given the city the jurisdiction over that action:

I believe there’s something in [the CEP] regarding green power purchasing opportunities. We had a commitment from our regional council to buy up to 40% of our power through green power, like wind energy contracts directly. However, the province won’t give us authority to purchase directly from a renewable energy producer, we have to purchase through Nova Scotia Power. So whatever they’re selling, we have to buy.

Informant 4, Halifax

A sense of powerlessness due to jurisdictional barriers and counteractive

regional policy environments have been noted in the literature as barriers to the

implementation of environmental policies (Allman et al., 2004; Wheeler, 2008;

Burch, 2009). Participants in this research experienced similar barriers and

found that the context of the provincial government was very influential on the

activities that could be successfully implemented. The relationship between

provincial and local authority is not just focused on policy and legislation, but

also the transfer of money. Informant 8 from Guelph noted that a lot of the

50

money in municipal budgets “comes from the province and the province tells us

how to spend it. So again, there’s a policy context here that need to change and

we do…advocate that they need to green up their infrastructure money as it

flows to municipalities”. Informant 2 from Halifax agreed, saying

The big issue is that municipalities and cities are really the front, the ground zero for a lot of what we implement in our communities and in our country. It's problematic when municipalities don't receive funding and support from different levels of governments to really be able to take that and make the changes that will have a significant impact on both how our residents live and on our environment.

Informant 2, Halifax

The local authority is constrained when energy management actions are not

considered eligible for traditional infrastructure funding from the province.

Costs

Costs were frequently mentioned as a barrier, although the extent to which

communities felt they inhibited action varied. Some participants found that cost

influenced the scale of project that was successfully implemented:

It’s still a challenge coming up with the capital I think. So that’s one of the things we’re trying to focus on is how do we finance projects and strategies. There’s big large-scale opportunities within the community but how can we grapple with the finance.

Informant 13, Pickering

Informant 14 from Calgary noted that the financial recession in 2008 impacted

implementation and that smaller, pilot projects had to be pursued rather than

full scale implementation of activities. In terms of the activities included in the

CEP, Informant 4 said that, “Obviously many of these projects are capital

intensive and there is a limit on the amount of capital we’re able to get.” As a

result, some participants from Halifax and Pickering noted that a project had to

be cost-effective with a short payback period in order to be pursued.

51

Participants from Guelph noted that many people consider costs to be a barrier

to community energy work, however they contested whether this is actually true.

Cities actually spend the majority of their money on long-term investments, they’re just traditional ones. So the idea that we don’t have any money is a bit misguided. We have lots of money. It gets spent on road repairs, it gets spent on sewers and water supply systems etc. We know how to build infrastructure and we have a lot of money to do it.

Informant 8, Guelph

While Informant 8 notes that cost is a “perceived barrier”, he argues that “the

idea of layering on a new cost above and beyond business as usual will never

work” and that “incorporating green aspects…into traditional infrastructure

processes is really where you’re getting at the meat of it”. This reassessment of

cost considerations is something that other cities seemed to incorporate into

their practices as well. Informant 9 from Vancouver acknowledged that there

were capital costs associated with a completed municipally owned district

energy development but says,

The approach we took to financing it was a utility model, basically we came up with a funding strategy that looked at amortizing the capital cost over a long period of time so that you could basically spread out the impact on ratepayers and basically finance the utility that way. The city did have to contribute upfront capital dollars but the understanding is that there will be a return on that investment that will extend well into the future.

Informant 9, Vancouver

So while energy projects may have high capital costs, the extent to which cost

acts as a barrier may depend on whether the expenditure is considered to be

additional to the municipality’s regular activities or whether it is considered

similarly to any other long-term infrastructure investment.

Capacity and Experience

As early adopters of community energy planning principles in Canada, some of

the participants discovered barriers related to capacity and experience.

52

Informant 10 summed it up succinctly, saying “The thing is, there are no models

for this. We’re building the airplane in the air, as they say”. The case study cities

have been gathering experience and information as they go, but, as the

literature identifies, this lack of capacity has posed some barriers (Robinson and

Gore, 2005). Participants touched on capacity in terms of both internal staff

power and regional capacity for specialized knowledge. Informant 1 from Halifax

noted that the renewables “industry capacity is small here and it tends to be

fragmented so it doesn’t have the same policy sway as the incumbent status

quo.” Informant 4 from Halifax concurred, saying

There’s only a handful of people that really have this knowledge, that are project ready and ready to execute a project. We need more people to learn these things so that we can execute more projects in our time frames.

Informant 4, Halifax

Informant 3 from Halifax stressed that the capacity of the person filling a

municipal role significantly affected the activity in that portfolio. Pickering was

also concerned about its lack of experience and capacity related to energy

management. Informant 6 from Pickering commented that “[Council is]

concerned because they get a lot of companies and individuals that bring new

technologies to Pickering and they’re worried about snake oil ideas.” Pickering

did not establish a dedicated energy office, instead relying on external capacity

for energy expertise.

Behavior Change

Participants also discussed barriers related to the perception that changes that

they were attempting to implement were inconvenient and, as a result, they

were unable to get buy-in. This barrier was not identified in the literature in

studies of the implementation of other types of municipal environmental policies.

In particular, efforts to change behavior within the wider community as opposed

to targeting just municipal operations were associated with this barrier.

Informant 2 said,

53

It’s either cost or inconvenience or difficulty in changes in pattern of your private lifestyle or travel or work or whatever, when these things become clear then we begin to see a bit of push back or, ‘do we really need to do this’?

Informant 2, Halifax

Informant 13 also recognized barriers in this area. He said,

But I still think that the community side is weaker than I’d like it to be because it’s tough to do, you have to put a lot of time and effort into it and people nowadays are confronted with all kind of options. It’s not necessarily a forefront issue for them in terms of greenhouse gas reduction.

Informant 13, Pickering

Informant 14 from Calgary noted the challenges associated with influencing

community members when the city has no direct control over their energy

choices, and Vancouver was challenged with creating community demand

management strategies that would have measurable outcomes. Community

wide behavior change on issues where the municipality had no direct control

was considered to be challenging across all of the case studies and resulted in

these actions taking second place to changes to municipal operations that were

easier to accomplish.

5.4 Success in the Implementation of Community Energy Plans

The case studies had varied success in the implementation of energy

management activities, which is summarized by type of activity in the following

section. The participants also identified several common reasons why they were

able to achieve success in the implementation of their CEPs, which is explored

in the subsequent section.

54

5.4.1 Areas of Success

Generally the community energy plans of the case studies focused their energy

management activities on efficiency, conservation, generation, transportation,

and land use planning.

Efficiency

Success was realized in the implementation of efficiency retrofits in municipally

owned buildings. In some cases these were pursued comprehensively, such as

in Vancouver, Guelph and Halifax, and in other cases they were pursued more

opportunistically such as in Pickering where energy efficiency was included in

regularly scheduled upgrades. Efficiency was also made an important

component of new municipal buildings. Calgary, for example, stressed this

approach. On the community side, Guelph continued to advance efficiency

through the local utility as they had before the CEP and found some success

with voluntary work with developers. Informant 17 from Guelph said, “So I would

say in the efficiency and conservation area we’ve had some very good uptake

and it’s good for business as well.” Vancouver mandated energy efficiency in

the community through amendments to the building code. Some of the other

cities worked on spreading efficiency and conservation awareness into the

community, but generally the other case study cities did not pursue efficiency

extensively in the community.

Conservation

Conservation was also broadly pursued by the case study cities. Initiatives such

as telework and energy reporting to give departments feedback on their energy

use are used in Calgary, but efforts to create a more comprehensive

conservation plan have hit barriers. Difficulties in influencing behaviour change

in the absence of regulatory tools were mentioned several times among the

case study cities in relation to conservation. It was also difficult for case study

55

cities to attribute conservation efforts to real greenhouse gas emission or energy

use reductions. Pickering particularly stressed conservation work in

implementation, through targeting behaviour modification among employees by

sponsoring clean air commuter programs and installing bike racks as well as

awareness raising in the community with community and industry partners. An

interesting point made by Informant 8 from Guelph was that,

Conservation is the traditional conversation that people have around energy management. So that’s the commonly understood concept of community energy, so this is where the term gets co-opted, where conservation programs are sometimes viewed as community energy. They’re an important component but they don’t represent the whole thing.

Informant 8, Guelph

Along with efficiency, conservation is cost-effective in the current market place

and the case study cities broadly pursued it. However, it was clear that the CEP

goals could not be achieved using conservation and efficiency alone.

Energy Generation

Expansion of local energy generation using renewable energy was for many “an

elusive target” (Informant 1, Halifax). It was more difficult for the cities to get a

diverse group of stakeholders on board, particularly since the returns on

investment are not as straightforward as they are in efficiency projects and the

implementation time frames can be longer. Generation was also difficult for

some of the case study cities due to issues with jurisdiction. Halifax and Calgary

are not allowed to be net generators based on provincial utility legislation.

Calgary circumvented this barrier and is meeting its municipal GHG emission

reduction targets using power purchase agreements mostly for wind energy, but

Halifax was restricted from purchasing renewable power by the provincial utility.

Halifax has worked with heat instead and has completed a cutting edge district

geothermal cooling system for municipal buildings. Vancouver did not face as

many jurisdictional barriers and has completed a landfill gas generation

56

development and done some solar work. Pickering was not doing any work in

local energy generation. Combined heat and power and district energy was an

important element of the generation portfolio of CEP implementation. Guelph

was researching both and Vancouver and Halifax had already been involved in

the development of district energy systems. District energy was approached in

some cities as a long term, large scale project that would demonstrate the city’s

commitment to transformational change to the local energy system. In addition,

Vancouver was working to encourage renewable energy development in the

community through amendments to the building code and redevelopment

criteria that mandate LEED gold standard construction. Pickering was putting

together information for residents on how to get involved in the Ontario feed-in-

tariff program and Guelph was also looking for ways to facilitate renewable

energy development in the community.

Land Use Planning

Land use planning was not stressed in the original formation of many of the

case study’s community energy plans and most of the implementation to date

has focused on municipal operations where land use planning does not apply.

However, the growing role of land use planning is important to note. Calgary

encountered some barriers in the development of its urban development plan,

but there is a plan in place intended to help curb urban sprawl that “the whole

organization is now geared toward” (Informant 10, Calgary). Land use planning

that worked to lower vehicle use and encourage dense, mixed-use development

pre-dates the climate change and energy work in Vancouver and Informant 15

said that without it they “wouldn’t, number one, be in the position [they’re] in now

and, number two, [they] won’t succeed”. Pickering participants were concerned

about their inability to control growth, as their efforts to institute sustainability

criteria into new developments were overturned by the Ontario Municipal Board.

Halifax was just coming to realize that the largest impact that it could have on

57

community energy use and GHG emissions was through land use planning and

it will likely include elements of land use planning in the updated CEP.

Transportation

Transportation was not a large element of the case study cities’ CEPs. Many

had made progress in municipal fleet efficiency upgrades or some fuel

switching, but because CEP implementation has mostly focused on municipal

operations so far, transportation has not been comprehensively approached.

However, Halifax has done work to improve the public transit system,

Vancouver’s land use planning also incorporated transportation planning and

focused on reducing the need for personal car transportation, and Guelph has

developed a multi-year transit growth strategy as part of CEP implementation

that was being considered in council at the time of writing.

5.4.2 Reasons for Success

Some common factors supported the success of the five case study cities in the

implementation of their community energy plans. Political support from the city

council and the mayor was integral to whatever success in implementation has

been achieved, as well as provincial support in combination with the degree of

jurisdiction that municipalities have over energy or greenhouse gas issues in

their community. The institution of a decision-making mentality that broadly

reflects the goals of the CEP supported successful implementation, which was

helped by the cost-effectiveness of many of the projects that have been

successfully implemented so far. Experience and capacity extending beyond a

city’s municipal staff are important for success, combined with the cross-

departmental communication, which characterizes the CEP implementation

offices of the case study cities.

58

Political leadership

The support of the local political leadership is integral to success in

implementing energy management initiatives. Informant 10 said that having a

supportive CEO and general manager of the city has given them “massive

leverage”. In keeping with the literature, where authors have found that the

priority of the issue with the political leadership is key (Allman et al., 2004;

Burch, 2009), participants from the case studies generally attributed success in

the formation and implementation of the community energy plan to strong

municipal political will. Informant 7 from Guelph said,

Just like in a corporation, if you don’t have leadership at the top, then people pull in different directions, so once again Guelph needs to be complimented on the leadership in the community that has taken a stand and said everybody needs to move forward on this, and everybody has pulled together. But without that vision and that leadership, it never would have happened.

Informant 7, Guelph

Participants from a few of the case studies stressed the importance of having

the support of city council, including Informant 11 from Calgary who said that

without it, energy initiatives would be “dead in the water”. Personal

championship from the Mayor’s office was also key in a couple of the case

studies. Informant 9 from Vancouver said,

The mayor has specifically said that he is orienting his tenure toward moving the city toward environmental sustainability in all sorts of areas of focus…Those kinds of directions from that kind of leadership is really important and I think makes a big difference in terms of sending a message to staff, in terms of what kinds of projects we can and can’t get done, we can and can’t get support for.

Informant 9, Vancouver

The support and, in some cases, championship of upper management for

community energy projects is essential for success in implementation.

59

Provincial Support and Control

Participants stressed that actions carried out by the province have the potential

to create an environment that facilitates local action. As has been found with the

implementation of other municipal environmental policies, regional co-ordination

is key (Allman et al., 2004; Burch, 2009). Informant 15 from Vancouver pointed

to the province’s GHG targets and said,

After the province adopted the 33% target by 2020 our city council also adopted it so that’s again, with adopting it, it’s now official city policy and now we can link other work to that and justify work based on that. And then that’s also given us the go ahead to start planning and do longer term planning. I would say hats off to the province for adopting that.

Informant 15, Vancouver

Informants from Guelph also noted the support that strong provincial

conservation targets had for local conservation efforts. Guelph and Pickering

participants both stressed the facilitating influence of Ontario’s Green Energy

and Green Economy Act on the development of renewable energy. The Green

Energy Act instituted a feed-in-tariff program whereby 20-40 year contracts are

offered to renewable energy generators at premium rates. The Act makes

renewable energy projects economically viable and supports the development of

the industry, while significantly improving the province’s energy supply. It also

broadened the rules on who is allowed to be involved in energy generation,

allowing anyone to develop a renewable energy system.

The area of renewables we initially thought would be slower to take off…but with the Green Energy Act that has really turned that over for us. So today we’re seeing a lot of activity and a lot of potential, particularly in the solar area, so that is moving quickly.

Informant 17, Guelph

Informant 3 from Halifax praised the Green Energy Act in Ontario and

emphasized that renewable energy development by the city of Halifax will be

slow and difficult without a similar, enabling provincial legislation. Informant 1

from Halifax commented on the support from the province from Eco Trust, a

60

clean air, clean energy program that supported the development of local

renewables. Nova Scotia also announced a voluntary offset program and

Informant 4 said that they “want to see how the municipality could take

advantage of or exploit that opportunity” and that they have 15-20,000 tonnes of

CO2 eligible to register with a further 10,000 tonnes a year in the pipeline. These

efforts to set regional targets help focus and support local actions in areas that

are not fully under the control of the municipality.

The amount of control that a municipality has is a related factor that facilitated

success in implementation. Pickering and Halifax emphasized the barriers they

faced due to lack of control, but the high level of control of Vancouver and, to

some extent, the additional control afforded to local jurisdictions in Ontario by

the Green Energy Act were highlighted as enabling factors that allowed cities to

succeed in implementation. Of particular note in Vancouver is the municipality’s

ability to set its own building code. This allowed Vancouver to advance energy

efficiency beyond municipal operations into the community itself. Calgary

managed to work around its lack of jurisdiction over energy development,

however, in an expression of innovation that showed how municipalities can

make the best of the control that they do have. Legislation in Alberta prevents

the city from generating more electricity than is used in its own operations, so

the city of Alberta built a relationship with a renewable energy developer. This

allowed the city to not only negotiate renewable energy power purchase

agreements for its own operations, but allowed it to act as an anchor customer

for a completed district energy system which will also be able to serve

commercial customers in the area. Similarly, Guelph put together a Mayor’s

Task Force on Community Energy to work on implementation which pulls

together representatives from municipal staff, provincial governments, and the

energy industry in the acknowledgement that some of the transformational

changes planned will have “legislative, jurisdictional issues to work out and get

through” (Informant 17, Guelph). Cities found success in moving forward with

61

the CEPs by thinking creatively about their influence and constructively about

surpassing jurisdictional barriers as they broke new ground.

Decision-making Mentality

A few of the key informants noted that the decision-making mentality

engendered by the community energy plan supported successful

implementation. Guelph’s CEP included a provision that all public investments

must advance the work of the CEP, so all projects brought forward to council

had to discuss their impact on community energy work. This mentality was

embedded in decision-making and was highlighted by participants as an

enabling condition.

Just by having that conversation, word got out that this council was interested in this type of thing and you should think about it when bringing forward your work. And certainly that gave our staff a lot of room to have conversations with developers about their development.

Informant 17, Guelph

Similarly, development for the Olympics in Vancouver incorporated a

sustainability mandate that inspired the implementation of a neighbourhood

district energy system.

When planning was done for the Athletes’ Village, a strong sustainability mandate was built into all of the planning policies. So the energy system was one component or one opportunity to achieve some of the sustainability objectives and the objectives of reducing the greenhouse gas impact for the development.

Informant 9, Vancouver

This application of the sustainability mentality fit well into the pre-existing

mentality in Vancouver, particularly in land use planning. Informant 15 from

Vancouver commented that it was “pretty key” that the work under the CEP

“became additional on the land use plan as opposed to ‘we need to move to a

new way of planning’”. Calgary also uses a sustainability, triple bottom line

approach.

62

Informant 14 explained that

Any reports that go before council are asked to relate their business case to the triple bottom line, which is the economic, social and environmental impacts. This goes across the corporation.

Informant 14, Calgary

This was not a common implementation enabling factor that was identified in the

literature; however, it reflects the integrative and comprehensive nature of

energy planning. These overarching decision-making frameworks enabled staff

to recognize and pursue unplanned project implementation opportunities, or to

build the goals of the CEP into broader work being pursued by both public and

private interests.

Cost effectiveness

The case study cities all found that cost effectiveness was an important reason

for success in implementation. Cost effective was defined in financial terms by

the research participants and used to mean that the financial return on

investment for an energy project was high enough to quickly pay back the

investment through energy savings. Much of the work that has been

successfully implemented by cities under CEPs in Canada falls into the category

of low hanging fruit, where the improvement in energy efficiency provides a high

return and quick payback. Informant 4 in Halifax said of the actions they have

implemented so far that, “Generally what we find, it’s cheaper than we thought

and the returns are larger”. Another informant from Halifax noted that, “It’s also

been easy because we’ve been delivering energy efficiency projects at such

great return on investment it would make no sense not to support what we’re

doing” (Informant 1, Halifax). Informant 17 from Guelph said, “There has to be a

business case for this. That will be the challenge moving forward is making sure

that those investments can be made.” Overall, the ability to build a business

case around a project was seen as a key reason for success in implementation.

63

Experience and communication

Participants commented on the importance of accessing networks of information

and experience. As early adopters, the case study cities were foraying into new

areas and chose to expand their capacity in different but similar ways. Informant

12 from Pickering highlighted the learning and experience sharing available

through ICLEI – Local Governments for Sustainability. Pickering also expanded

its capacity by working closely with a local non-profit community group, Durham

Sustain Ability, with expertise in the energy and greenhouse gas accounting

rather than developing an energy management office internally. Guelph

participants stressed the importance of their participation in QUEST (Quality

Urban Energy Systems of Tomorrow), which is a network of industry,

environmental groups and governments focused on community-based

approaches to energy management, for information sharing and advocacy.

Informant 17 traces the origin of Guelph’s CEP to experiences on a tour to the

Netherlands focused on community energy planning. Similarly, Informant 2 from

Halifax went to Sweden with a group of employees from across the municipal

departments on a tour focused on district energy, community design and

sustainable transportation. She said, “That was a really important trip, to look at

some projects and to really understand them and being able to work them

through. That was the catalyst for people when they came back.” Access to this

experience was important to give the case study cities the capacity and the

inspiration to implement projects under the CEP, but shared experience was

highlighted as particularly important.

64

Referring to the trip to Sweden, Informant 2 said,

We had a group of people that were spread across different departments, so that was I think very helpful…We all went and we all saw that and people saw it from their different perspectives in terms of what they do in their day-to-day, and that helps to build those links across departments that then people can say – well, we’re talking about these types of projects with these implications, do you know what we should be doing in planning as well as actual infrastructure development.

Informant 2, Halifax

Shared experiences led to the creation of interdisciplinary and cross-cutting

offices, and the communication opportunities created by

energy/sustainability/climate change offices in the case study cities was key to

successful implementation. Informant 4 summed this up, saying

Traditionally in government organizations there’s a lot of bureaucratic silos and the [Sustainable Environment Management Office] helps to knock down those walls and get people working on things on a cross-departmental basis.

Informant 4, Halifax

The importance of interdepartmental communication for environmental policy

implementation is stressed extensively in the literature (Betsill, 2001; Robinson

and Gore, 2005; Burch, 2009; Dierwechter, 2010). Cross-cutting municipal

communication which is connected to external networks and resources was a

recurring reason for successful implementation in the case study cities.

Public support

It has been hypothesized in the literature that public support, built through

extensive community engagement, would be an important factor influencing the

success of community energy planning implementation (Hoffman and High-

Pippert, 2005). Results around public support were mixed. Pickering, Halifax

and Calgary were largely focused on municipal operations in terms of actual

energy project implementation. Municipal employees in Calgary and Halifax said

65

that the public actually knew very little about the CEPs since implementation

was so focused on municipal operations. Community involvement was not

identified as a key factor affecting success in implementation. However, Guelph

cast a broader net in the formation and the implementation of its community

energy plan.

Informant 17 from Guelph found that,

Because it was a community-based initiative, it wasn’t just a city plan, it was a community plan and so we had other groups and businesses not only involved in the process but they endorsed the final outcome. That gave, I think, Council the comfort zone to be able to support something that…is very non-traditional.

Informant 17, Guelph

Vancouver has done some work trying to get community leaders engaged in

energy management activities in order to help meet its GHG emission reduction

goals, so community involvement in CEP implementation was a minor aspect of

Vancouver’s activities. Some of the key informants also noted that now that they

have built their capacity and have examples to point to in their own operations,

they were looking at moving into energy work within the broader community.

The divide between energy management in municipal operations and energy

management in the broader community was distinct in all cases except for

Guelph, which may be why Guelph participants had a different perception of the

importance of community engagement in the CEP.

5.5 Evaluation

Evaluation was not usually explicitly planned from the outset, which is similar to

the situation that Wheeler (2008) found in the US when studying climate change

policy implementation. The case studies generally created evaluative tools as

the implementation evolved, often using GHG emission reduction as a

measurement of success. Other measurable outcomes were not commonly

used, but Pickering has established thirty-two sustainability indicators that will

be measured and the Sustainability Office in Calgary was attempting to set

66

measureable outcomes for each of the municipal departments. The case study

cities often evaluate progress through reports to council, sometimes expressly

reporting on plan implementation and sometimes bundling it into larger reports

encompassing all municipal environmental activities. In terms of criteria that are

used in order to prioritize which activities are pursued on a day-to-day basis,

financial metrics were the most frequently employed criteria, including years to

payback and financial return on investment. Prioritization is often opportunistic

as energy work is incorporated into regularly scheduled upgrades or

redevelopments.

Additionally, an overarching mentality incorporated into municipal decision-

making patterns was employed as an evaluative tool. Calgary used a triple

bottom line sustainability framework where project proposals brought to council

had to discuss their environmental, social and economic impact. In Guelph, the

CEP included the requirement that all public investments had to further the

goals of the CEP. This requirement is considered seriously among council and

staff and is regularly used to assess projects and activities across municipal

decisions. These integrated decision-making approaches allowed cities to

evaluate all projects and decisions in light of community energy planning

principles.

67

6 DISCUSSION

“Begin at the beginning,” the King said gravely, “and go on till you come to the end: then stop.”

Lewis Carroll (1865) Implementation is not a straightforward process. Plans hit barriers moving from

rhetoric to practice and sometimes new plans can represent more of a capacity

building and aspiration setting exercise than a guide to implementation. In this

research, the implementation of energy management activities did not follow a

consistent path across the five cities. Nonetheless, the case studies illustrated

the growing pains of community energy planning in Canada, provided some

insight into common barriers and successes, and allowed for an assessment of

how effective this approach may be as it evolves in Canada in the future.

6.1 Shared Purpose, Different Vocabularies

The case study cities took different approaches to dealing with the same issue,

which was demonstrated in the language and themes employed in the written

plans and in interviews. The plans largely place a strong emphasis on the

concept of greenhouse gas emission reduction through redistribution or

redesign of energy use, but the vocabularies that were employed differed

among the case studies. While some worked with a framework associated with

climate change action, others adopted themes that reflected ‘community energy’

language or ‘sustainability’ language. Some cities found a strict climate change

angle to be too narrow and sought to discuss activities that were more easily

conceived as cross-cutting and integrative using sustainability and community

energy vocabularies. Often cities seemed to evolve from the use of relatively

68

narrow concepts to vocabularies that allowed them to express broader,

integrative energy planning.

The case study cities tended to use the three themes of sustainability, climate

change, and community energy at the same time, in whichever combination

made sense given the existing departmental expertise or future goals. The case

study cities adapted concepts to their goals, institutional contexts, and physical

environments. In this way, it was clear that implementation is not happening in a

void and energy management is being incorporated into existing municipal

activities with pre-existing context weighing on how implementation unfolds.

Community energy planning in practice is not an activity that neatly unpacks

according to a pre-determined schedule; rather, it is negotiated by municipal

staff and politicians as they function day-to-day and influence the mental and

physical infrastructure of the community. However, a lack of common language

can mean that there are complications in attempting to assess progress and

success. The concept of co-optation of the term ‘community energy’ came up in

the research and the difficulty in assessing whether a city is working on long-

term transformation to the local energy system, an implicit characteristic of

community energy planning in the literature, or whether the city is just targeting

one or two short-term aspects of energy management with no change to the

foundation of the local energy system. In some cases, overlapping plans which

all included some element of energy management (or plans developed in rapid

succession) made the implementation of energy management activities difficult

to see as a cohesive, directional effort.

6.2 The Different Paths of Implementation

The case study cities varied in their continued commitment to the original CEPs

as they moved from the planning stage to the implementation stage. Pickering

and Halifax developed a programmatic approach where the principles outlined

in their CEPs were developed into a broader policy that took advantage of

69

opportunities that arose rather than following a strict menu of activities from the

original plan. Participants from both communities described their original CEP

efforts as a good starting point, but implementation was not necessarily

unfolding as outlined in the original document. Halifax expressed interest in

updating its CEP to a smaller, more nimble document including more high level

policy. Pickering found the original local climate change action document narrow

in scope, inflexible and potentially overreaching in goal-setting and had

developed a sustainability program to implement activities that include energy

conservation and efficiency measures. In both cases, the cities focused on

municipal operations and did not extensively implement energy projects that

affected the broader community. Calgary did not use its CEP as a day-to-day

guiding document, instead using a kaleidoscope of plans that built off of one

another and moving the municipal corporation towards a decision-making

mentality that incorporated CEP principles. Calgary largely focused on municipal

operations and struggled with land use planning, one of the big contributors to

the community’s high per capita greenhouse gas emissions. Vancouver and

Guelph used their CEPs as touchstone plans that guided day-to-day

implementation and shaped activities in both short-term energy management

and long-term transformation of local energy systems. Vancouver is farther

along and had had more success in physical implementation, but Guelph had

engaged in a significant amount of groundwork laying the foundation for large

energy system changes. Overall, the role that the plans played in the community

seemed to be reflective of how much time they had spent considering the topic.

Vancouver has had climate change goals since the early 1990s and so the local

action plan studied in this research represented less of a learning experience

than other case studies where the topic was being considered for the first time.

The evolution of governance frameworks for CEP implementation was another

prominent theme in the research. The case study cities spent a significant

amount of time in the early years of implementation establishing offices or

70

adding new positions and expertise to municipal staff. Guelph, for example, had

to wait almost two years after the CEP was adopted by council to add a position

dedicated to overseeing the implementation of the CEP because new full-time

positions can only be added at the beginning of the fiscal year when the budget

is adopted. In this research, cities were also in the midst of developing

partnerships with private and public bodies that were necessary to expand their

implementation or research capacity. Governance was slightly different between

the case study cities, but generally expertise in climate change and energy was

established and frequently an integrative office (often associated with

sustainability) was established as a cross-cutting body that was able to reach

horizontally across municipal operations to establish communication and seek

out expertise and opportunities. This reflects a common assertion in the

literature that broad, integrative initiatives such as community energy cannot be

effectively addressed using isolated departments (Allman et al., 2004; Burch,

2009). Due to the integrative nature of many energy projects, the case study

cities stressed the importance of communication that crosses traditional

institutional boundaries and, in many cases, sought capacity from beyond

municipal staff.

6.3 A Typology of Barriers

Common barriers were realized across the case studies despite the different

paths of implementation. This research highlighted jurisdictional issues, cost,

capacity and experience, as well as difficulties in inspiring behavioural change in

the absence of regulatory tools. Cost and capacity are common barriers to the

implementation of municipal environmental policy (Robinson and Gore, 2005),

but behavioural change is not touched on in the literature and jurisdiction has

been highlighted slightly differently. Studies have identified how local authorities

sometimes feel that environmental issues are beyond the scope of their control

and therefore refocus their goals (Betsill, 2001; Wheeler, 2008), but participants

in this research highlighted how individual activities were challenged by the

71

jurisdictional control of the city. Their overarching goals remained the same

despite jurisdictional challenges, but the cities often had to rethink the methods

with which they would get there. In this way jurisdiction was not a high-level

barrier that left municipalities questioning whether they could affect their energy

system, but was an operational barrier that shaped the scale and type of activity

they could accomplish on the path to their energy goals. Nonetheless, there

were issues that were beyond the jurisdictional control of the cities and

demonstrated that aggressive federal and provincial greenhouse gas reduction

and energy policies are necessary to achieve swift and extensive change. While

municipalities may find ways to work around barriers to achieve preliminary

greenhouse gas emission reductions, jurisdictional issues will be a significant

barrier to the implementation of deep cuts to greenhouse gas emissions.

Many of the reasons that cities experienced some success in implementation

were actually successful responses to the encountered barriers. Cities extended

their capacity beyond municipal staff experience into networks in order to find

their way as they broke new ground, and evolved the internal governance of

CEP implementation into crosscutting units that sought to break down

institutional barriers related to siloed communication. Similar to other studies of

municipal policy implementation (Allman et al., 2004; Burch, 2009), strong

leadership from the mayor and city council was highlighted as a key enabling

factor that had a significant effect on whatever successes in implementation

were achieved. Case study cities that achieved some success often had to think

creatively about their spheres of influence and constructively about partnerships

and innovative approaches to funding. The fact that there is still significant

opportunity in Canada to improve energy management in ways that are very

cost effective in the short term aided some cities in garnering support for their

efforts. However, if the focus is only on measures with short-term paybacks,

long-term energy savings will be undervalued and transformational change to

the energy systems will not be pursued. Cities should consider bundling energy

72

projects with a range of payback periods together in proposals so that 3-5 year

payback projects are bundled with 20-30 year payback projects to achieve an

energy package with a 10 year payback. This will minimize implementation

barriers that may occur in the future if only projects with longer and longer

paybacks remain and will get the long implementation process started for

investments that will transform the energy system over the longer term. An

exclusive focus on financial cost effectiveness for short-term paybacks is short

sighted and will not allow for the full achievement of the goals of community

energy planning.

Cost is not a straightforward consideration, and the research demonstrated the

impact that a reconsideration of the concept of cost can have. A key finding is

that when the goals of the CEP are broadly integrated into decision making and

municipal expenditures, CEP implementation is more comprehensively

successful, particularly in the establishment of a base for long-term

transformative action. Some of the case studies experienced barriers due to

cost, but when the energy management costs were not considered as additional

activities above and beyond business as usual but were instead integrated into

the activities that were already being pursued, implementation was more

consistent and extensive. This is a more nuanced understanding of cost as a

barrier than has been identified in the literature (Allman et al., 2004; Robinson

and Gore, 2005). It is not just that one new flagship building is built to LEED

gold standards, for example, but that all building stock expenditures must meet

the highest efficiency standard available and be compatible with renewable

energy generation technologies.

In this research, a distinction arose between efforts to implement activities that

are financially cost-effective in the short-term and efforts to affect long-term

transformational change of the local energy system. Guelph, for example, has

laid the foundation for transformational change with long term energy

73

infrastructure planning and multi-sectoral and jurisdictional communication

pathways. However, it became clear that not all of the case study cities had

reached a stage where they considered both incremental and transformative

energy planning with equal weight. In some cases, municipalities felt that they

had so much to do in improving municipal operations’ energy use and

greenhouse gas emissions that longer term changes in the community energy

system were secondary. Many participants did note that their city intended to

increase the implementation of energy actions that impacted the broader

community in the future. The case study cities recognized that actions that

affected the city’s whole energy system were integral to the successful

implementation of their community energy plans.

6.4 Expanding Community Energy Planning

This research highlighted several initiatives that could be adopted by all

municipalities in a community energy planning framework. The case study cities

had success in completing energy efficiency retrofits for municipally owned

buildings, and municipalities can also combine this effort with enhanced

purchasing and building guidelines so that all new expenditures meet a high

level of energy efficiency and increase renewable energy opportunities. Another

key initiative is the consideration of a municipality’s assets. A municipally owned

landfill, for example, is a significant opportunity for local energy generation and

a planned business park development can be assessed for the feasibility of a

combined heat and power system. Each municipality will have a different set of

assets, but all will have opportunities to apply improved local energy

management to entities over which they have significant control. These

opportunities will arise from across municipal operations, however, which is why

the case study cities present important ‘lessons learned’ for governance.

Municipalities can address the integral issue of communication by creating a

municipal office with a mandate to focus on a long-term, integrated picture of the

city’s energy management activities and to build cross-cutting communication

74

across municipal structures. This effort can be further advanced through the

development of a culture within municipal operations that reflects CEP

principles. Municipalities can strive to build CEP principles right into decision-

making to consistently show municipal employees which kinds of activities will

receive support. This internal culture can help municipalities move beyond

municipal operations to support transformational change in the whole local

energy system by holding all issues that come to council for approval to the

CEP principles. The amount of regulation versus outreach and partnership

building that a municipality uses to expand energy management into the

community will depend on the amount of control that a municipality has. Not all

municipalities can regulate development with their own building code, for

example. Nonetheless, all municipalities can influence the energy system of the

broader community through outreach programs and strategic partnerships, such

as acting as the anchor tenant for a private district heating development that will

then attract commercial customers. Finally, land use planning that incorporates

CEP principles will also be a crucial element of long term transformative change

to the local energy system and will determine if the CEP shapes the way that

the city grows and functions in the long-term.

6.5 Concluding Remarks

Community energy planning has not seen full expression in Canadian cities and

will continue to evolve. In particular, most of the cities were largely working on

incremental shaving of their greenhouse gas emissions rather re-thinking their

energy system in ways that would result in transformative change. However, the

case study cities did demonstrate the appetite for improved local energy

management among municipalities in Canada. The early adopters of community

energy planning principles in Canada have achieved some success in energy

management in municipal operations despite barriers in jurisdiction, perception

of cost, and capacity, but energy management in the community has not been

comprehensively pursued or fully implemented due to barriers in jurisdiction,

75

behavioural change and lack of direct control. Energy management in municipal

operations often focused on activities that are cost effective in the short-term

and relatively easy to accomplish in the current market, such as conservation

and efficiency. In the community, energy management also included

transformational change involving infrastructure investments like cogeneration

and district energy systems, which will shape local energy systems for decades

into the future. In the case study cities, energy planning is generally moving

away from the identification of specific projects at the outset of plan formation

and more toward an integrated approach that recognizes unanticipated

opportunities, affected all decision-making, and made all municipal expenditures

reflective of the CEP principles. It was also found that evaluation of progress is

inconsistent and tends to evolve during the implementation process.

Further research could be pursued with a more comprehensive research design

that stretched across Canada and included municipalities of all sizes. A survey

could be used to ascertain how widespread community energy planning is in

Canada, which would allow for conclusions to be scaled up more extensively. In

addition, further research could encompass communities at different stages of

the energy planning process to discover the approaches taken in the next

generation of community energy plans developed by communities following in

the footsteps of the early adopter communities.

Some cities in Canada have demonstrated their concern over looming climate

change and energy threats and are working to harness their position as the

closet government to the community and arbiter of multi-sectoral and

jurisdictional partnerships in order to meet those challenges. The case study

cities encountered barriers that limited and shaped the work that they were able

to accomplish, but each of the cities found ways to circumvent some

obstructions, often with the help of strong political leadership. The cities found

ways to integrate community energy planning principles into decision-making so

76

that implementation actions were flexible and took advantage of opportunities,

and they reached beyond their current capacity to expand their knowledge and

impact. The case study cities thought creatively about their ability to influence

their energy system and in some ways broke new ground. However, community

energy planning will not be effective in Canada if municipalities continue to

focus on municipal operations and quick payback actions. While some

municipalities made commendable strides in reducing greenhouse gas

emissions from municipal operations, most did not significantly reduce

greenhouse gas emissions for the whole community. Furthermore, the targets

set by the case study cities did not reflect the deep cuts to greenhouse gas

emissions that the scientific research recommends. If community energy

planning is to have a significant effect on greenhouse gas emissions and energy

use, it will be essential that municipalities transition to a community wide focus

where implemented energy management activities build toward transformational

change to local energy systems.

77

APPENDIX A: ETHICS APPROVAL

78

APPENDIX B: RECRUITMENT EMAIL Dear (name), My name is Laura Tozer and I am a Masters student at the University of Toronto studying Geography and Environmental Studies. For my thesis research, I’m studying how different municipalities in Canada are making plans for local energy management due to climate change concerns. I’m interested in learning more about (community)’s Community Energy Plan and the work that is being done to implement it. I hope to schedule a few interviews with people that have been heavily involved in the formation or implementation of (community)’s Community Energy Plan. I’d love to hear more about your knowledge of the plan and how you’ve been involved in its implementation. I’d like to schedule a few short phone interviews between (date) and (date). Would you be available for an interview? If you are unavailable or if you think there is someone else that I should talk to, please let me know. I’m also talking to people from (list other communities) in June for a few interviews in order to get a picture of what municipalities across Canada are doing in their Community Energy Plans. I look forward to speaking with you further and please let me know if you have any questions. Best wishes, Laura -- Laura Tozer [email protected] MA Candidate Department of Geography Centre for Environment University of Toronto

79

APPENDIX C: INFORMED CONSENT FORM

Department of Geography & Planning

100 St. George Street, Room 5047 Toronto, Ontario, Canada, M5S 3G3

Telephone: (416) 978-3375 Fax: (416) 946-3886

Interview Consent Form I have been introduced to the study being conducted by Laura Tozer to interview

25-30 people about Community Energy Plans in municipalities across Canada in order to find out if community energy planning is effective in reducing greenhouse gas emissions.

I am aware that my interview will range in length from 30 to 60 minutes, depending on the topics covered.

I may decline to answer questions and I have the option to withdraw from the interview at any point.

My opinions will remain anonymous in any publication of the research results and the information that I provide will be kept strictly confidential. This consent form, with my name on it, will be kept separate from the interview results, which will only be identified with a number rather than my name. Although these precautions will be taken, the small size of the sample (ie. the relatively small number of people who are known to have been involved with the Community Energy Plan) means that there is a risk that my identity could become known.

With acknowledgement of these points, I agree to participate. YES NO I agree to have my interview tape recorded. YES NO Name _________________________ Signature ________________________ Date: ________________ No signature, verbal consent given: YES NO Once the project is complete, I wish to access/receive the results of the project.

YES NO A copy of project results will be available late 2010. If you prefer internet or mail, please leave your address and results will be sent to you.

You may contact the lead researcher, Laura Tozer, by phone at (416) 727-0524, or by email at [email protected] You may contact Laura Tozer’s supervising professor at: Virginia Maclaren, (416) 978-4977, [email protected] You may contact the University of Toronto’s Ethics Review Office at [email protected] or at (416) 946-3273 if you have questions about your rights as a participant in this study.

80

APPENDIX D: INTERVIEW GUIDE Municipal Employee/Politician When did your community start the process of making a CEP? Was there a precursor plan? What conditions motivated the creation of a new plan? Did the original CEP include all of the elements that you thought that it should include? What did community participation look like during the CEP formation process? Who in your department/office was involved in the creation of the plan? How did you go from vision setting to an implementation plan? Have more detailed implementation plans been developed for internal use? Are you still using the community energy plan as a guiding structure for action? In what way has your approach changed or evolved? In what areas have you made progress toward some of the goals that were set in the CEP? Is there an emphasis on any particular aspect of the plan (local energy generation, efficiency, conservation)? What barriers have been encountered in the implementation process? How has this influenced the community's commitment to implementing the CEP? Has this influenced the type of projects or policies that have gone forward? How was the CEP integrated into governance? Is there one department that is monitoring and motivating CEP implementation? Is it integrated into a broader range of departments? What organizational structures or practices have been set in place as a result of the CEP? Have the costs of implementation been meeting expectations? Are there any evaluation criteria? Who is responsible for the evaluation process? Are there benchmarks or is it ongoing? How did you reconcile desires to incorporate systems sustainability thinking into operations with the need to work with measurable criteria? Do you think that the actions being implemented are on track to reaching the greenhouse gas emission reduction goals that were set in your plan?

81

Community Organization/Industry/Other Role When did your community start the process of making a CEP? Was there a precursor plan? What conditions motivated the creation of a new plan? What motivated your community’s involvement in the plan? Did the original CEP include all of the elements that your organization thought that it should include? What did community participation look like during the CEP formation process? Who in your organization was involved in the creation of the plan? Has community engagement continued throughout the implementation process? In what areas have the municipality or other organizations made progress toward some of the goals that were set in the CEP? Is there an emphasis on any particular aspect of the plan (local energy generation, efficiency, conservation)? Do you think this is the right emphasis for your community? What barriers have been encountered in the implementation process? How has this influenced the community's commitment to implementing the CEP? Has this influenced the type of projects or policies that have gone forward? What is your sense of the costs of implementation? Has your organization encountered any costs? Are there any evaluation criteria? Who is responsible for the evaluation process? Are there benchmarks or is it ongoing? Are community members brought into the evaluation process? Do you think that the actions being implemented are on track to reaching the greenhouse gas emission reduction goals that were set in the plan? Do you think these goals are adequate?

82

REFERENCES Allman, L., Fleming, P., and Wallace, A. (2004) The progress of English and Welsh local authorities in addressing climate change. Local environment, 9(3): 271-283. Barber, B.R. (1984) Strong democracy: Participatory politics for a new age. Berkeley: University of California Press. Barry, J., Ellis, G., and Robinson, C. (2008) Cool rationalities and hot air: a rhetorical approach to understanding debates on renewable energy. Global Environmental Politics, 8(2): 67-98. Bell, D., Gray, T., and Haggett, C. (2005) The ‘social gap’ in wind farm siting decisions: explanations and policy responses. Environmental Politics, 14(4): 460-477. Betsill, M. (2001) Mitigating climate change in US cities: opportunities and obstacles. Local Environment, 6(4): 393-406. Bramley, M., Sadik, P., and Marshall, D. (2009) Climate leadership, economic prosperity: final report on an economic study of greenhouse gas targets and policies for Canada. The Pembina Institute and the David Suzuki Foundation. Available at: http://pubs.pembina.org/reports/climate-leadership-report-en.pdf. Bulkeley, H., and Betsill, M.M. (2005) Rethinking sustainable cities: multilevel governance and the ‘urban’ politics of climate change. Environmental politics, 14(1): 42-63. Burch, S. (2009) Local responses to climate change: an exploration of the relationship between capacity and action. PhD Thesis, UBC. Burda, C. and Peters, R. (2008) Plugging Ontario into a green future: a renewable is doable action plan. The Pembina Institute, available at: http://pubs.pembina.org/reports/plugging-in-ontario-report.pdf. Calgary. (2006) Climate change action plan target 50. City of Calgary, July 2006. Calgary. (2009a) Charting Calgary’s Low Carbon Future. City of Calgary Official website. Available at: http://www.calgary.ca/portal/server.pt/gateway/PTARGS_0_0_780_237_0_43/http%3B/content.calgary.ca/CCA/City+Hall/Business+Units/Environmental+Mana

83

gement/Reducing+Calgarys+Ecological+Footprint/LowCarbon/Charting+Calgarys+Low+Carbon+Future.htm Calgary. (2009b) Charting Calgary’s Low Carbon Future Outcomes. The City of Calgary. Available at: http://www.calgary.ca/docgallery/bu/environmental_management/ecological_footprint/low_carbon_future/charting_calgarys_low_carbon_future_summit.pdf Calgary. (2010) City of Calgary Official Website. Available at: http://www.calgary.ca. Caroll, L. (1865) Alice in Wonderland. UK: Macmillion and Co. City of Calgary. (2009) Facts about Calgary. Official website of the city of Calgary www.calgary.ca. Updated June 12, 2009. City of Calgary. (2010) The city’s greenhouse gas emission: 2008 profile. Available at: http://www.calgary.ca/portal/server.pt/gateway/PTARGS_0_2_773540_0_0_18/The+Citys+Greenhouse+Gas+Emissions.htm City of Pickering. (2010) Measuring Sustainability Report: Establishing a baseline for key indicators of sustainability in Pickering. Available at: http://sustainablepickering.com/photos/custom/PDF/MeasuringSustainability2010.pdf. City of Vancouver. (2008a) EcoDensity: How density, design and land use will contribute to environmental sustainability, affordability, and liveability. City of Vancouver. Available at: http://www.vancouver-ecodensity.ca/webupload/File/EcoDensity%20Summary%20Report%20_web%281%29.pdf. City of Vancouver. (2008b) Greenhouse gas emissions inventory: Summary and methodologies. Available at: http://vancouver.ca/sustainability/documents/2008GHGInventoryMethodologiesDocument20091210.pdf. Clark II, W.W. and Eisenberg, L. (2008) Agile, sustainable communities: on-site renewable energy generation. Utilities Policy, 16: 262-274. Community Energy Association. (2008) Community energy & emissions planning: a guide for B.C. local governments. Vancouver, B.C.

84

CUI (Canadian Urban Institute). (2008) Energy Mapping Study for the City of Calgary. Available at: http://www.canurb.org/sites/default/files/reports/2009/PUB-2009-CALGARYENERGY-LOWRES.pdf. Creswell, J.W. (2003). Research design: Qualitative, quantitative, and mixed methods approaches (2nd ed.). Thousand Oaks: Sage Publications, Inc. Dierwechter, Y. (2010) Metropolitan geographies of US climate action. Journal of Environmental Policy & Planning, 12:1, 59-82. Durham Sustain Ability. (2010) Corporate and community energy consumption and greenhouse gas emission sustainability indicators. City of Pickering. Garforth International Inc. (2007) City of Guelph Community energy plan. Toledo, Ohio. Guelph (2010) Welcome. City of Guelph. Available at: www.guelph.ca. Hibbing, J. R., & Theiss-Morse, E. (2002). Stealth democracy: Americans’ beliefs about how government should work. New York: Cambridge University Press. Hoffman, S.M., and High-Pippert, A. (2005) Community energy: a social architecture for an alternative energy future. Bulletin of Science, Technology & Society, 25(5): 387-401. Holcomb, P.A. and Nightingale, D.S.. (2003) Conceptual underpinnings of implementation analysis. In M.C. Lennon and T. Corbett (eds.) Policy into Action. Washington, D.C.: The Urban Institute Press. HRM (Halifax Regional Municiaplity) (2007) Community energy plan. Halifax Regional Municipality. Available at: http://www.halifax.ca/environment/energyplan/documents/060516-PM-R-007-Task7-FinalReport.pdf HRM (2010) Halifax Regional Municipality official website. Available at: www.halifax.ca. IPCC (2007) Climate change 2007: Mitigation. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change edited by B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer.

85

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Jaccard, M., Failing, L. and Berry, T. (1997) From equipment to infrastructure: community energy management and greenhouse gas emission reduction. Energy Policy, 25(13): 1065-1074. Lennon, M.C. and Corbett, T. (2003) Implementation studies: from policy to action. In M.C. Lennon and T. Corbett (eds.) Policy into Action. Washington, D.C.: The Urban Institute Press. Lerch D. (2007) Post carbon cities: planning for energy and climate uncertainty. Sebastopol, CA: Post Carbon Institute. Lovins, A.B. (1977) Soft energy paths: toward a durable peace. New York, NY: Harper Colophon Books. Melymuk, T. (2010) Partners for climate protection program status update – DRAFT. Report to Executive Committee. Pickering, Ontario. McMullen, C.P. (ed.) (2009) Climate change compendium 2009. United Nations Environment Programme. Available at: http://www.unep.org/pdf/ccScienceCompendium2009/cc_ScienceCompendium2009_full_en.pdf. MCW Associates. (2010) Developing a downtown district energy system for the City of Guelph using a CHP facility. For Guelph Hydro and Union Gas Ltd. March, 2010. Mendonça, M., Jacobs, D., and Sovacool, B. (2010) Powering the green economy: the feed-in tariff handbook. UK and USA: Earthscan. NRCan (Natural Resources Canada). (2007) Canada community energy planning guide. Available at: http://canmetenergy-canmetenergie.nrcan-rncan.gc.ca/fichier.php/codectec/En/2008_sbc_05/CommunityEnergyPlanningGuide_en.pdf Pickering (2006) City of Pickering PCP local action plan. Pickering, ON. Pickering (2010) City of Pickering Official website. Available at: http://www.cityofpickering.com. Robinson and Gore (2005) Barriers to Canadian municipal response to climate change, Canadian Journal of Urban Research, 14(1), Supplement, pp. 102–120.

86

St. Denis, G., and Parker, P. (2009) Community energy planning in Canada: The role of renewable energy. Renewable and Sustainable Energy Reviews, 13: 2088-2095. UNEP (United Nations Environment Programme) (2010) Representative GHG Baselines for cities and their respective countries. Available at: http://www.unep.org/urban_environment/PDFs/Representative-GHGBaselines.pdf. Vancouver. (2005) The climate-friendly city: a community climate change action plan for the city of Vancouver. City of Vancouver, BC. Vedung, E. (1997) Public policy and program evaluation. New Brunswick: Transaction Publishers. Werner, A. (2004) A Guide to Implementation Research. The Urban Institute: Washington, D.C. Wheeler, S.M. (2008) State and municipal climate change Plans: The first generation. Journal of the American Planning Association, 74(4): 481 — 496. Yin, R.K. (1985). Case study research: Design and methods. Beverly Hills: Sage Publications, Inc.