commutators of fractional integral with variable kernel on ...ijmaa.in/v4n3-a/29-40.pdf · in 1991,...

12
International Journal of Mathematics And its Applications Volume 4, Issue 3–A (2016), 29–40. ISSN: 2347-1557 Available Online: http://ijmaa.in/ A p p l i c a t i o n s I S S N : 2 3 4 7 - 1 5 5 7 I n t e r n a t i o n a l J o u r n a l o f M a t h e m a t i c s A n d i t s International Journal of Mathematics And its Applications Commutators of Fractional Integral with Variable Kernel on Variable Exponent Herz and Lebesgue Spaces Research Article Afif Abdalmonem 1,2* , Omer Abdalrhman 1,3 and Shuangping Tao 1 1 College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu, P.R. China. 2 Faculty of Science, University of Dalanj, Dalanj, South kordofan, Sudan. 3 College of Education, Shendi University, Shendi, River Nile State, Sudan. Abstract: In this paper, we study the boundedness for commutators of the fractional integral with variable kernel on Lebesgue spaecs with variable exponent. Also, we study the boundedness of the fractional integral operator and their commutator generated by BMO function is obtained on those Herz spaces with two variable exponent p(·),q(·). MSC: 42B25, 42B30. Keywords: Fractional integral, variable kernel, commutator, variable exponent, BMO function, Lebesgue spaecs, Herz spaces. c JS Publication. 1. Introduction Let S n-1 (n 2) be the unit sphere in R n with normalized Lebesgue measure (x 0 ). We say a function Ω(x, z) defined on R n × R n belongs to L (R n ) × L r (S n-1 )(r 1), if (i) For any x, z R n , one has Ω(x, λz) = Ω(x, z); (ii) kΩk L (R n )×L r (S n-1 ) := sup xR n ( R s n-1 |Ω(x, z 0 )| r (z 0 )) 1 r < For 0 μ<n the fractional integral operator with variable kernel TΩis defined by TΩf (x)= Z R n Ω(x, x - y) |x - y| n-μ f (y)dy, (1) And the commutators of the fractional integral is defined by [b m ,TΩ]f (x)= Z R n Ω(x, x - y) |x - y| n-μ (b(x) - b(y)) m f (y)dy, (2) Now we need the further assumption for Ω(x, z). It satisfies Z s n-1 Ω(x, z 0 )(z 0 )=0, x R n * E-mail: [email protected]

Upload: others

Post on 07-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Commutators of Fractional Integral with Variable Kernel on ...ijmaa.in/v4n3-a/29-40.pdf · In 1991, Kov ac ik and R akosn ik [7] introduced variable exponents Lebesgue and Sobolev

International Journal of Mathematics And its Applications

Volume 4, Issue 3–A (2016), 29–40.

ISSN: 2347-1557

Available Online: http://ijmaa.in/

Applications•ISSN:234

7-15

57•In

ternationalJo

urna

l of MathematicsAnd

its

International Journal of Mathematics And its Applications

Commutators of Fractional Integral with Variable Kernel

on Variable Exponent Herz and Lebesgue Spaces

Research Article

Afif Abdalmonem1,2∗, Omer Abdalrhman1,3 and Shuangping Tao1

1 College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu, P.R. China.

2 Faculty of Science, University of Dalanj, Dalanj, South kordofan, Sudan.

3 College of Education, Shendi University, Shendi, River Nile State, Sudan.

Abstract: In this paper, we study the boundedness for commutators of the fractional integral with variable kernel on Lebesgue

spaecs with variable exponent. Also, we study the boundedness of the fractional integral operator and their commutatorgenerated by BMO function is obtained on those Herz spaces with two variable exponent p(·), q(·).

MSC: 42B25, 42B30.

Keywords: Fractional integral, variable kernel, commutator, variable exponent, BMO function, Lebesgue spaecs, Herz spaces.

c© JS Publication.

1. Introduction

Let Sn−1(n ≥ 2) be the unit sphere in Rn with normalized Lebesgue measure dσ(x′). We say a function Ω(x, z) defined on

Rn × Rn belongs to L∞(Rn)× Lr(Sn−1)(r ≥ 1), if

(i) For any x, z ∈ Rn, one has Ω(x, λz) = Ω(x, z);

(ii) ‖Ω‖L∞(Rn)×Lr(Sn−1) := supx∈Rn

(∫sn−1 |Ω(x, z′)|rdσ(z′))

1r<∞

For 0 ≤ µ < n the fractional integral operator with variable kernel TΩ,µ is defined by

TΩ,µf(x) =

∫Rn

Ω(x, x− y)

|x− y|n−µ f(y)dy, (1)

And the commutators of the fractional integral is defined by

[bm, TΩ,µ]f(x) =

∫Rn

Ω(x, x− y)

|x− y|n−µ (b(x)− b(y))mf(y)dy, (2)

Now we need the further assumption for Ω(x, z). It satisfies

∫sn−1

Ω(x, z′)dσ(z′) = 0, ∀x ∈ Rn

∗ E-mail: [email protected]

29

Page 2: Commutators of Fractional Integral with Variable Kernel on ...ijmaa.in/v4n3-a/29-40.pdf · In 1991, Kov ac ik and R akosn ik [7] introduced variable exponents Lebesgue and Sobolev

Commutators of Fractional Integral with Variable Kernel on Variable Exponent Herz and Lebesgue Spaces

For r ≥ 1, we say Kernel function Ω(x, z) satisfies the Lr- Dini condition, if Ω meets the conditions (i),(ii) and

∫ 1

0

ωr(δ)

δdδ <∞

where ωr(δ) denotes the integral modulus of continuity of order r of Ω defined by

ωr(δ) = supx∈Rn,|ρ|<δ

(

∫sn−1

|Ω(x, ρz′)− Ω(x, z′)|rdσ(z′))1r

where ρ is the a rotation in Rn

|ρ| = supz′∈Sn−1

|ρz′ − z′|

The corresponding fractional maximal operator with variable kernel is defined by

MΩ,µf(x) = supQ3x

1

|Q|1−µn

∫Q

|Ω(x, x− y)||f(y)|dy (3)

And the commutators of the fractional maximal operator with variable kernel is defined by

[bm,MΩ,µ]f(x) = supQ3x

1

|Q|1−µn

∫Q

|Ω(y)||f(x, x− y)[b(x)− b(y)]m|dy (4)

Many results about the fractional integral operator with variable kernel have been achieved [1–5]. In 1971, Muckenhoupt and

Wheeden [6] had proved the operator TΩ,µ was bounded from Lp to Lq. In 1991, Kovacik and Rakosnik [7] introduced variable

exponents Lebesgue and Sobolev spaces as a new method for dealing with nonlinear Dirichet boundary value problem. In

2004, Zhang Pu and Zhao Kai [8] introduced the Commutators of fractional integral operators with variable kernel on Hardy

spaces. In the last twenty years, more and more researchers have been interested in the theory of the variable exponent

function space and its applications [9–15]. In 2012, Wu Huiling and Lan Jiacheng [16] studied the bonudedness property

of TΩ,µ with a rough kernel on variable exponents Lebesgue spaces. In 2010, M .Izuki [3] discussed the Commutators of

fractional integrals on Lebesgue and Herz spaces. Recently, L.Wang and S.Tao [17] introduced the class of Herz spaces with

two variable exponents. Throughout this paper |E| denotes the Lebesgue measure, χE means he characteristic function of

a measurable set S ⊂ Rn. C always means a positive constant independent of the main parameters and may change from

one occurrence to another.

2. Definition of Function Spaces with Variable Exponent

In this section we define the Lebesgue spaces with variable exponent and Herz spaces with two variable exponent, and also

define the mixed Lebesgue sequence spaces. Let E be a measurable set in Rn with |E| > 0. We first define the Lebesgue

spaces with variable exponent.

Definition 2.1 ([1]). Let p(·) : E → [1,∞) be a measurable function. The Lebesgue space with variable exponent Lp(·)(E)

is defined by Lp(·)(E) = f is measurable :∫E

( |f(x)|η

)p(x)dx <∞ for some constant η > 0. The space Lp(·)loc (E) is defined by

Lp(·)loc (E) = f is measurable : f ∈ Lp(·)(K) for all compact K ⊂ E. The Lebesgue spaces Lp(·)(E) is a Banach spaces with

the norm defined by

‖f‖Lp(·)(E) = infη > 0 :

∫E

(|f(x)|η

)p(x)dx ≤ 1

We denote p− = essinf p(x) : x ∈ E, p+ = esssupp(x) : x ∈ E. Then P(E) consists of all p(·) satisfying p− > 1 and

p+ < ∞. Let M be the Hardy - Littlewood maximal operator. We denote B(E) to be the set of all function p(·) ∈ P(E)

satisfying the M is bounded on Lp(·)(E).

30

Page 3: Commutators of Fractional Integral with Variable Kernel on ...ijmaa.in/v4n3-a/29-40.pdf · In 1991, Kov ac ik and R akosn ik [7] introduced variable exponents Lebesgue and Sobolev

Afif Abdalmonem, Omer Abdalrhman and Shuangping Tao

Definition 2.2 ([18]). Let p(·), q(·) ∈ P(E). The mixed Lebesgue sequence space with variable exponent lq(·)(Lp(·)) is the

collection of all sequences fj∞j=0 of the measurable functions on Rn such that

∥∥fj∞j=0

∥∥lq(·)(Lp(·))

= inf

η > 0 : Qlq(·)(Lp(·))

( fjµ

∞j=0

)≤ 1

<∞

Qlq(·)(Lp(·))(fj∞j=0) =

∞∑j=0

inf

µj ;∫Rn

|fj(x)|

µ1

q(x)

j

p(x)

dx ≤ 1

Noticing q+ <∞, we see that

Qlq(·)(L

p(·))(fj∞j=0) =

∞∑j=0

∥∥∥|fj |q(·)∥∥∥L

p(·)q(·)

Let Bk = x ∈ Rn : |x| ≤ 2k, Ck = Bk\Bk−1, χk = χCk , k ∈ Z.

Definition 2.3 ([17]). Let α ∈ R, q(·), p(·) ∈ P(Rn). The homogeneous Herz space with two variable exponent Kα,q(·)p(·) (Rn)

is defined by

Kα,q(·)p(·) (Rn) = f ∈ Lp(·)Loc(R

n\0) : ‖f‖Kα,q(·)p(·) (Rn)

<∞

Where

‖f‖Kα,q(·)p(·) (Rn)

=∥∥∥2kα|fχk|∞k=0

∥∥∥lq(·)(Lp(·))

= inf

η > 0 :

∞∑k=−∞

∥∥∥∥∥(

2kα|fχk|η

)q(·)∥∥∥∥∥L

p(·)q(·)

≤ 1

.

Remark 2.4 ([17]).

(1) If q1(·), q2(·) ∈ P(Rn) satisfying (q1)+ ≤ (q2)+, then Kα,q1(·)p(·) (Rn) ⊂ Kα,q2(·)

p(·) (Rn).

(2) If q1(·), q2(·) ∈ P(Rn) and (q1)+ ≤ (q2)+, then q2(·)q1(·) ∈ P(Rn) and q2(·)

q1(·) ≥ 1. Thus, by Lemma 3.7 and Remark 2.2, for

any f ∈ Kα,q(·)p(·) (Rn), we have

∞∑k=−∞

∥∥∥∥∥(

2kα|fχk|η

)q2(·)∥∥∥∥∥L

p(·)q2(·)

≤∞∑

k=−∞

∥∥∥∥∥(

2kα|fχk|η

)q1(·)∥∥∥∥∥ph

L

p(·)q1(·)

∞∑

k=−∞

∥∥∥∥∥(

2kα|fχk|η

)q1(·)∥∥∥∥∥ph

L

p(·)q1(·)

p∗≤ 1

Where

ph =

( q2(·)q1(·) )−,

2kα|fχk|η

≤ 1

( q2(·)q1(·) )+,

2kα|fχk|η

> 1

p∗ =

minh∈N

ph,∞∑h=0

ah ≤ 1

maxh∈N

ph,∞∑h=0

ah > 1

This implies that Kα,q1(·)p(·) (Rn) ⊂ Kα,q2(·)

p(·) (Rn).

Remark 2.5. Let h ∈ N, ah ≥ 0, 1 ≤ ph <∞. Then

∞∑h=0

ah ≤

(∞∑h=0

ah

)p∗

Where

p∗ =

minh∈N

ph,∞∑h=0

ah ≤ 1

maxh∈N

ph,∞∑h=0

ah > 1

31

Page 4: Commutators of Fractional Integral with Variable Kernel on ...ijmaa.in/v4n3-a/29-40.pdf · In 1991, Kov ac ik and R akosn ik [7] introduced variable exponents Lebesgue and Sobolev

Commutators of Fractional Integral with Variable Kernel on Variable Exponent Herz and Lebesgue Spaces

3. Properties of Variable Exponent

In this section we state some properties of variable exponent belonging to the class B(Rn) and Ω ∈ L∞(Rn)× Lr(Sn−1).

Proposition 3.1 ([1]). If p(·) ∈ P(Rn) satisfies

|p(x)− p(y)| ≤ −Clog(|x− y|) , |x− y| ≤ 1/2

|p(x)− p(y)| ≤ C

log(e+ |x|) , |y| ≥ |x|

then, we have p(·) ∈ B(Rn).

Proposition 3.2 ([3]). Suppose that p1(·) ∈ B(Rn), 0 < µ ≤ n(p1)+

. And define the variable exponent p2(·) by : 1p1(x)

−1

p2(x)= µ

n. Then we have that

‖[b, Iµ]f‖Lp2(·)(Rn) ≤ C‖b‖BMO‖f‖Lp1(·)(Rn)

For all f ∈ Lp1(·)(Rn) and b ∈ BMO.

Now, we need recall some lemmas.

Lemma 3.3 ([1]).

(1). Given p(·) : Rn → [1,∞) have that for all function f and g,

∫Rn|f(x)g(x)|dx ≤ C‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn)

(2). If p(·), q(·), r(·) ∈ Rn, define p(·) by : 1p(·) = 1

q(·) + 1r(·) . Then there exists a constant C such that for all f ∈ Lq(·)(Rn), g ∈

Lr(·)(Rn), we have

‖fg‖Lp(·) ≤ C‖f‖Lq(·)(Rn)‖g‖Lr(·)(Rn)

Lemma 3.4. Suppose that 0 < µ < n , 1 < s′ < nµ

, Ω ∈ L∞(Rn) × Lr(Sn−1) is homogeneous of degree zero on Rn. Then

we have

|MΩ,µ,bf(x)| ≤ C‖Ω‖L∞(Rn)×Lr(Sn−1)

(Mµs′,b(|f |s

′)(x)

) 1s′.

Proof. Applying Holder’s inequality, we get that

|MΩ,µ,bf(x)| = supQ3x

1

|Q|1−µn

∫Q

|Ω(y)||f(x, x− y)b(x)− b(y)|dy

≤ supQ3x

1

|Q|1−µn

(∫Q

|Ω(y)|sdy) 1s (|f(x, x− y)b(x)− b(y)|s

′dy) 1s′

≤ C‖Ω‖L∞(Rn)×Lr(Sn−1) supQ3x

1

|Q|1−µs′n

×(|f(x, x− y)b(x)− b(y)|s

′dy) 1s′

≤ C‖Ω‖L∞(Rn)×Lr(Sn−1)

(Mµs′,b(|f |s

′)(x)

) 1s′

The proof of Lemma 3.2 is finished.

Lemma 3.5 ([19]). Suppose that x ∈ Rn, the variable function q(x) is defined by 1p(x)

= 1q

+ 1q(x)

, then for all measurable

function f and g, we have

‖f(x)g(x)‖Lp(·)(Rn) ≤ C‖g(x)‖Lq(Rn)‖f(x)‖Lq(·)(Rn).

32

Page 5: Commutators of Fractional Integral with Variable Kernel on ...ijmaa.in/v4n3-a/29-40.pdf · In 1991, Kov ac ik and R akosn ik [7] introduced variable exponents Lebesgue and Sobolev

Afif Abdalmonem, Omer Abdalrhman and Shuangping Tao

Lemma 3.6 ([20]). Suppose that p(·) ∈ B(Rn) and 0 < p− ≤ p+ <∞.

(1). For any cube and |Q| ≤ 2n, all the χ ∈ Q, then : ‖χQ‖Lp(·) ≈ |Q|1/p(x)

(2). For any cube and |Q| ≥ 1, then ‖χQ‖Lp(·) ≈ |Q|1/p∞ where p∞ = limx→∞ p(x).

Lemma 3.7 ([21]). If p(·) ∈ B(Rn), then there exist constants δ1, δ2, C > 0 such that for all balls B in Rn and all measurable

subset S ⊂ R‖χB‖Lp(·)(Rn)

‖χS‖Lp(·)(Rn)

≤ C |B||S| ,‖χS‖

Lp′1(·)

(Rn)

‖χB‖Lp′1(·)

(Rn)

≤ C(|S||B|

)δ1,‖χS‖Lp1(·)(Rn)

‖χB‖Lp1(·)(Rn)

≤ C(|S||B|

)δ2.

Lemma 3.8 ([14]). If p(·) ∈ B(Rn), there exist a constant C > 0 such that for any balls B in Rn. We have

1

|B| ‖χB‖Lp(·)(Rn)‖χB‖Lp′(·)(Rn)≤ C.

Lemma 3.9 ([17]). Let p(·), q(·) ∈ P(Rn).If f ∈ Lp(·)q(·), then

min(‖f‖q+Lp(·)q(·) , ‖f‖

q−Lp(·)q(·)) ≤ ‖|f |

q(·)‖Lp(·) ≤ max(‖f‖q+Lp(·)q(·) , ‖f‖

q−Lp(·)q(·)).

Lemma 3.10 ([9]). Let ∈ BMO, n is a positive integer, and there constants C > 0, such that for any l, j ∈ Z with l > j

(1). C−1‖b‖n∗ ≤ supB

1‖χB‖Lp(·)(Rn)

‖(b− bB)nχB‖Lp(·)(Rn) ≤ C‖b‖n∗

(2). ‖(b− bBj )nχBk‖Lp(·)(Rn) ≤ C(l − j)n‖b‖n∗‖χBk‖Lp(·)(Rn).

Lemma 3.11 ([10]). For any ε > 0 with 0 < µ− ε < µ+ ε, we have

|TΩ,µ,bf(x)| ≤ C[MΩ,µ+ε,bf(x)]12 [MΩ,µ−ε,bf(x)]

12 .

4. Main Theorems and Their Proof

Theorem 4.1. Suppose that b ∈ BMO, p1(·) ∈ B(Rn), Ω ∈ L∞(Rn)×Lr(Sn−1). Let 0 < β ≤ n(p1)+

and define the variable

exponent p2(·) by : 1p1(x)

− 1p2(x)

= µn

, Then we have that

‖[b, TΩ,µ]f‖Lp2(·)(Rn) ≤ C‖b‖∗‖f‖Lp1(·)(Rn)

For all f ∈ Lp1(·)(Rn).

Proof. Let 0 < ε < min(µ, n− µ), and r(·) : Rn −→ [1,+∞). And let

1

p1(·) −1

r(·)p2(·)2

=µ− ε

2

1

p1(·) −1

r′(·)p2(·)2

=µ+ ε

2

By Lemma 3.11, we have

|TΩ,µ,bf(x)| ≤ C[MΩ,µ+ε,bf(x)]12 [MΩ,µ−ε,bf(x)]

12

Applying the generalized Holder’s Inequality, we get that

‖TΩ,µ,bf(x)‖Lp2(·)(Rn) ≤ C‖(MΩ,µ+ε,bf)12 ‖Lp2(·)r′(·)‖(MΩ,µ−ε,bf)

12 ‖Lp2(·)r(·)

33

Page 6: Commutators of Fractional Integral with Variable Kernel on ...ijmaa.in/v4n3-a/29-40.pdf · In 1991, Kov ac ik and R akosn ik [7] introduced variable exponents Lebesgue and Sobolev

Commutators of Fractional Integral with Variable Kernel on Variable Exponent Herz and Lebesgue Spaces

By Lemma 3.3 and Proposition 3.2, we obtain that

‖(MΩ,µ−ε,bf)12 ‖Lp2(·)r(·) ≤ C‖M(µ−ε)s′,b(|f |s

′)‖

12

Lp2(·)r(·)

2s′≤ C‖b‖

12∗ ‖|f |s

′‖

12

Lp1(x)

2s′

≤ C‖b‖12∗ ‖f‖

12

Lp1(·)(Rn)(5)

As the same way, we can concluded that

‖(MΩ,µ+ε,bf)12 ‖Lp2(·)r′(·) ≤ C‖b‖

12∗ ‖f‖

12

Lp1(·)(Rn)(6)

Therefore by (5) and (6), we have that

‖[b, TΩ,µ]f‖Lp2(·)(Rn) ≤ C‖b‖∗‖f‖Lp1(·)(Rn).

Theorem 4.2. Let b ∈ BMO(Rn), m ∈ N. Suppose that 0 < µ < n, µ−nδ2 < α < nδ1 + nr

, Ω ∈ L∞(Rn)×Lr(Sn−1)(r >

p+2 ), q1(·), q2(·) ∈ P(Rn) with (q2)− ≥ (q1)+. If p1(·) ∈ B(Rn) satisfy 0 < µ ≤ n

(p1)+and define the variable exponent p2(x)

by 1p1(x)

− 1p2(x)

= µn

. Then the commutators [bm, TΩ,µ] is bounded from Kα,q1(·)p1(·) (Rn) to K

α,q2(·)p2(·) (Rn).

Proof. Let b ∈ BMO, f ∈ Kα,q1(·)p1(·) (Rn). We write

f(x) =

∞∑j=−∞

f(x)χk =

∞∑j=−∞

fj(x)

From definition of Kα,q(·)p(·) (Rn)

‖[bm, TΩ,µ](f)χk‖Kα,q2(·)p2(·) (Rn)

= inf

η > 0 :

∞∑k=−∞

∥∥∥∥∥(

2kα|[bm, TΩ,µ](f)χk|η

)q2(·)∥∥∥∥∥L

p2(·)q2(·)

≤ 1

Since

∥∥∥∥∥(

2kα|[bm, TΩ,µ](f)χk|η

)q2(·)∥∥∥∥∥L

p2(·)q2(·)

∥∥∥∥∥∥∥∥∥

2kα|∞∑

j=−∞[bm, TΩ,µ](f)χk|

η21 + η22 + η23

q2(·)∥∥∥∥∥∥∥∥∥

L

p2(·)q2(·)

∥∥∥∥∥∥∥∥∥∥

2kα|

k−2∑j=−∞

[bm, TΩ,µ](f)χk|

η31

q2(·)

∥∥∥∥∥∥∥∥∥∥L

p2(·)q2(·)

+

∥∥∥∥∥∥∥∥∥∥

2kα|

k+1∑j=k−1

[bm, TΩ,µ](f)χk|

η32

q2(·)

∥∥∥∥∥∥∥∥∥∥L

p2(·)q2(·)

+

∥∥∥∥∥∥∥∥∥

2kα|∞∑

j=k+2

[bm, TΩ,µ](f)χk|

η33

q2(·)∥∥∥∥∥∥∥∥∥

L

p2(·)q2(·)

Where

η21 =

∥∥∥∥∥∥

2kα|k−2∑j=−∞

[bm, TΩ,µ](f)χk|

∞k=−∞

∥∥∥∥∥∥lq2(·)(Lp2(·))

η22 =

∥∥∥∥∥∥2kα|

k+1∑j=k−1

[bm, TΩ,µ](f)χk|

k=−∞

∥∥∥∥∥∥lq2(·)(Lp2(·))

34

Page 7: Commutators of Fractional Integral with Variable Kernel on ...ijmaa.in/v4n3-a/29-40.pdf · In 1991, Kov ac ik and R akosn ik [7] introduced variable exponents Lebesgue and Sobolev

Afif Abdalmonem, Omer Abdalrhman and Shuangping Tao

η23 =

∥∥∥∥∥∥2kα|

∞∑j=k+2

[bm, TΩ,µ](f)χk|

k=−∞

∥∥∥∥∥∥lq2(·)(Lp2(·))

And η = η21 + η22 + η23, thus∞∑

k=−∞

∥∥∥∥∥(

2kα|[bm, TΩ,µ](fj)χk|η

)q2(·)∥∥∥∥∥L

p2(·)q2(·)

≤ C

That is

‖[bm, TΩ,µ](f)χk‖Kα,q2(·)p2(·) (Rn)

≤ Cη ≤ C[η21 + η22 + η23]

Hence η21, η22, η23 ≤ C‖b‖m∗ ‖f‖Kα,q1(·)p1(·) (Rn)

. Denote η1 = ‖f‖Kα,q1(·)p1(·) (Rn)

. Now we consider η22. Applying Lemma 3.9, we

get

∞∑k=−∞

∥∥∥∥∥∥∥∥∥∥

2kα|

k+1∑j=k−1

TΩ,µ(fj)χk|

η1‖b‖m∗

q2(·)

∥∥∥∥∥∥∥∥∥∥L

p2(·)q2(·)

≤ C∞∑

k=−∞

∥∥∥∥∥∥∥∥∥2kα|

k+1∑j=k−1

[bm, TΩ,µ](fj)χk|

η1‖b‖m∗

∥∥∥∥∥∥∥∥∥(q12)k

Lp2(·)

≤ C∞∑

k=−∞

k+1∑j=k−1

∥∥∥∥2kα|[bm, TΩ,µ](fj)χk|η1‖b‖m∗

∥∥∥∥Lp2(·)

(q12)k

Where

(q12)k =

(q2)− ,

∥∥∥∥∥∥∥ 2kα|

k+1∑j=k−1

[bm,TΩ,µ](fj)χk|

η1‖b‖m∗

q2(·)∥∥∥∥∥∥∥

L

p2(·)q2(·)

≤ 1

(q2)+ ,

∥∥∥∥∥∥∥ 2kα|

k+1∑j=k−1

[bm,TΩ,µ](fj)χk|

η1‖b‖m∗

q2(·)∥∥∥∥∥∥∥

L

p2(·)q2(·)

> 1

By the Theorem 4.1, we get

∞∑k=−∞

∥∥∥∥∥∥∥∥∥∥

2kα|

k+1∑j=k−1

[bm, TΩ,µ](fj)χk|

η1‖b‖m∗

q2(·)

∥∥∥∥∥∥∥∥∥∥L

p2(·)q2(·)

≤ C∞∑

k=−∞

k+1∑j=k−1

∥∥∥∥2kα|fj |η1

∥∥∥∥(q12)k

Lp1(·)

Since f ∈ Kα,q1(·)p1(·) (Rn), then we have

∥∥∥ 2jα|fχj |η1

∥∥∥Lp(·)

≤ 1, and

∞∑j=−∞

∥∥∥∥∥(

2jα|fχj |η1

)q1(·)∥∥∥∥∥L

p1(·)q1(·)

≤ 1

Again by Lemma 3.9 and Remark 2.5, we have

∞∑k=−∞

∥∥∥∥∥∥∥∥∥∥

2kα|

k+1∑j=k−1

[bm, TΩ,µ](fj)χk|

η1‖b‖m∗

q2(·)

∥∥∥∥∥∥∥∥∥∥L

p2(·)q2(·)

≤ C∞∑

k=−∞

∥∥∥∥∥(

2kα|fχk|η1

)q1(·)∥∥∥∥∥

(q12)k

(q1)+

Lp1(·)

Lq1(·)

≤ C

∞∑k=−∞

∥∥∥∥∥(

2kα|fχk|η1

)q1(·)∥∥∥∥∥Lp1(·)

Lq1(·)

q∗

≤ C

Hence (p1)+, (p2)− ≤ (q12)k, and q∗ = min

k∈N

(q12)k

(q1)+, this implies that

η22 ≤ Cη1‖b‖m∗ ≤ C‖b‖m∗ ‖f‖Kα,q1(·)p1(·) (Rn)

(7)

35

Page 8: Commutators of Fractional Integral with Variable Kernel on ...ijmaa.in/v4n3-a/29-40.pdf · In 1991, Kov ac ik and R akosn ik [7] introduced variable exponents Lebesgue and Sobolev

Commutators of Fractional Integral with Variable Kernel on Variable Exponent Herz and Lebesgue Spaces

Now, we estimate of η21. Let x ∈ Ck j ≤ k − 2, then |x− y| ∼ |x|, we show that

|[bm, TΩ,µ]fj(x)| ≤ C∫Cj

∣∣∣∣Ω(x, x− y)

|x− y|n−µ

∣∣∣∣ |(b(x)− b(y))|m|fj(y)|dy,

≤ 2−k(n−µ)

∫Cj

|Ω(x, x− y)||(b(x)− b(y))|m|fj(y)|dy

≤ C2−k(n−µ)

[|b(x)− bj |m

∫Cj

|Ω(x, x− y)||fj(y)|dy +

∫Cj

|Ω(x, x− y)||(b(x)− bj)|m|fj(y)|dy

]

Applying the generalized Holder’s Inequality, we know that

|[bm, TΩ,µ]fj(x)| ≤ C2−k(n−µ)‖fj‖Lp1(·)

[|(b(x)− bj)|m‖Ω(x, x− y)χj‖

Lp′1(·) + ‖Ω(x, x− y)(b(y)− bj)mχj‖

Lp′1(·)

](8)

Define the variable exponent 1p1(·) = 1

r+ 1

p′1(·)by Lemma 3.5, then we have

‖Ω(x, x− y)χj‖Lp′1≤ ‖Ω(x, x− y)‖Lr‖χj‖

Lp′1(·) ≤

2k∫2k−1

rn−1dr(

∫sn−1

|Ω(x, y′)|rdσ(y′)

1r

‖χj‖Lp′1(·)

According to Lemma 3.6 and the formula 1p′1(x)

= 1p′1(x)

− 1r, then we get

‖Ω(x, x− y)χj‖Lp′1≤ 2

knr ‖Ω‖L∞(Rn)×Lr(Sn−1)‖χj‖

Lp′1(·) ≤ C2

knr 2−jnr ‖χBj‖Lp′1(·) ≤ C2(k−j)n

r ‖χBj‖Lp′1(·) (9)

Similarly, by Lemma 3.10, we have

‖Ω(x, x− y)(b(y)− bj)mχj‖Lp′1(·) ≤ ‖Ω(x, x− y)‖Lr‖(b(y)− bj)mχj‖

Lp′1(·)

≤ C2knr (k − j)m‖b‖m∗ ‖χj‖

Lp′1(·) ≤ C2(k−j)n

r (k − j)m‖b‖m∗ ‖χBj‖Lp′1(·) (10)

By (9), (10), and Lemma 3.8, we get

‖[bm, TΩ,µ]fj , χk‖Lp2(·) ≤ C2−k(n−µ)2(k−j)nr ‖fj‖Lp1(·)

[‖(b(x)− bj)mχk‖Lp2(·)‖χBj‖Lp′1(·)

+(k − j)m‖b‖m∗ ‖χBj‖Lp′1(·)‖χBk‖Lp2(·)

]≤ C2−k(n−µ)2(k−j)n

r (k − j)m‖b‖m∗ ‖fj‖Lp1(·)‖χBj‖Lp′1(·)‖χBk‖Lp2(·) (11)

By (11), and using Lemmas 3.7-3.9, and ∥∥∥∥∥(

2jα|fχj |η1

)q1(·)∥∥∥∥∥L

p1(·)q1(·)

≤ 1.

Note that ‖χBk‖Lp2(·) ≤ C2−kµ‖χBk‖Lp1(·) , then (see [22])

∞∑k=−∞

∥∥∥∥∥∥∥∥∥∥

2kα|

k−2∑j=−∞

[bm, TΩ,µ](fj)χk|

η1‖b‖m∗

q2(·)

∥∥∥∥∥∥∥∥∥∥L

p2(·)q2(·)

≤ C∞∑

k=−∞

∥∥∥∥∥∥∥∥∥∥

2kα|

k−2∑j=−∞

[bm, TΩ,µ](fj)χk|

η1‖b‖m∗

q2(·)

∥∥∥∥∥∥∥∥∥∥Lp2(·)

36

Page 9: Commutators of Fractional Integral with Variable Kernel on ...ijmaa.in/v4n3-a/29-40.pdf · In 1991, Kov ac ik and R akosn ik [7] introduced variable exponents Lebesgue and Sobolev

Afif Abdalmonem, Omer Abdalrhman and Shuangping Tao

≤ C∞∑

k=−∞

[2kα

k−2∑j=−∞

2−k(n−µ)2(k−j)nr (k − j)m

∥∥∥∥ fjη1

∥∥∥∥Lp1(·)(Rn)

‖χBj‖Lp′1(·)‖χBk‖Lp2(·)

](q22)k

≤ C∞∑

k=−∞

[2kα

k−2∑j=−∞

(k − j)m2(k−j)nr

∥∥∥∥ fjη1

∥∥∥∥Lp1(·)(Rn)

‖χBj‖Lp′1(·)

‖χBk‖Lp′1(·)

](q22)k

≤ C∞∑

k=−∞

[2kα

k−2∑j=−∞

(k − j)m2(j−k)(nδ1−nr )

∥∥∥∥ fjη1

∥∥∥∥Lp1(·)(Rn)

](q22)k

≤ C∞∑

k=−∞

k−2∑j=−∞

(k − j)m2(j−k)(nδ1−nr −α)

∥∥∥∥∥(|2αjfjχk|

η1

)q1(·)∥∥∥∥∥

1(q1)+

Lp1(·)q1(·)(Rn)

(q22)k

Where

(q22)k =

(q2)−,

∥∥∥∥∥∥∥ 2kα|

k−2∑j=−∞

[bm,TΩ,µ](fj)χk|

η1‖b‖m∗

q2(·)∥∥∥∥∥∥∥

L

p2(·)q2(·)

≤ 1

(q2)+,

∥∥∥∥∥∥∥ 2kα|

k−2∑j=−∞

[bm,TΩ,µ](fj)χk|

η1‖b‖m∗

q2(·)∥∥∥∥∥∥∥

L

p2(·)q2(·)

> 1

Since f ∈ Kα,q1(·)p1(·) (Rn), then we have

∥∥∥ 2jα|fχj |η1

∥∥∥Lp(·)

≤ 1, and

∞∑j=−∞

∥∥∥∥∥(

2jα|fχj |η1

)q1(·)∥∥∥∥∥L

p1(·)q1(·)

≤ 1

Now if (q1)+ < 1, and α < nδ1 + nr

, then we have∞∑

k=−∞

∥∥∥∥∥∥∥ 2kα|

k−2∑j=−∞

[bm,TΩ,µ](fj)χk|

η1

q2(·)∥∥∥∥∥∥∥

L

p2(·)q2(·)

≤ C∞∑

k=−∞

k−2∑j=−∞

(k − j)m2(j−k)(nδ1−nr −α)

∥∥∥∥∥(|2αjfjχk|

η1

)q1(·)∥∥∥∥∥Lp1(·)q1(·)(Rn)

(q22)k

(q1)+

≤ C

∞∑j=−∞

∥∥∥∥∥(|2αjfjχk|

η1

)q1(·)∥∥∥∥∥Lp1(·)q1(·)(Rn)

∞∑k=j+2

(k − j)m2(j−k)(nδ1−nr −α)

q∗ ≤ C

Where q∗ = mink∈N

(q22)k

(q1)+. If (q1)+ ≥ 1, and α < nδ1 + n

r, then we have

∞∑k=−∞

∥∥∥∥∥∥∥ 2kα|

k−2∑j=−∞

[bm,TΩ,µ](fj)χk|

η1

q2(·)∥∥∥∥∥∥∥

L

p2(·)q2(·)

≤ C∞∑

k=−∞

k−2∑j=−∞

(k − j)m2(j−k)(nδ1−nr −α)(q2)+

2

∥∥∥∥∥(|2αjfjχk|

η1

)q1(·)∥∥∥∥∥Lp1(·)q1(·)(Rn)

(q12)k

(q1)+

×

[k−2∑j=−∞

(k − j)m2(j−k)(nδ1−nr −α)((q1)+)′

2

] (q22)+

((q1)+)′

≤ C

∞∑j=−∞

∥∥∥∥∥(|2αjfjχk|

η1

)q1(·)∥∥∥∥∥Lp1(·)q1(·)(Rn)

∞∑k=j+2

(k − j)m2(j−k)(nδ1−nr −α)(q1 )+

2

q∗ ≤ CWhere q∗ = min

k∈N

(q22)k

(q1)+, this implies that

η21 ≤ Cη1‖b‖m∗ ≤ C‖b‖m∗ ‖f‖Kα,q1(·)p1(·) (Rn)

(12)

37

Page 10: Commutators of Fractional Integral with Variable Kernel on ...ijmaa.in/v4n3-a/29-40.pdf · In 1991, Kov ac ik and R akosn ik [7] introduced variable exponents Lebesgue and Sobolev

Commutators of Fractional Integral with Variable Kernel on Variable Exponent Herz and Lebesgue Spaces

Finally, we estimate η23. Let x ∈ Ck j ≥ k + 2, then |x− y| ∼ |y|, we get

|[bm, TΩ,µ]fj(x)| ≤ C∫Cj

∣∣∣∣Ω(x, x− y)

|x− y|n−µ

∣∣∣∣ |(b(x)− b(y))|m|fj(y)|dy,

≤ 2−j(n−µ)

∫Cj

|Ω(x, x− y)||(b(x)− b(y))|m|fj(y)|dy

≤ C2−j(n−µ)

[|b(x)− bj |m

∫Cj

|Ω(x, x− y)||fj(y)|dy +

∫Cj

|Ω(x, x− y)||(b(x)− bj)|m|fj(y)|dy

]

Applying the generalized Holder’s Inequality, we know that

|[bm, TΩ,µ]fj(x)| ≤ C2−j(n−µ)‖fj‖Lp1(·)

[|(b(x)− bj)|m‖Ω(x, x− y)χj‖

Lp′1(·) + ‖Ω(x, x− y)(b(y)− bj)mχj‖

Lp′1(·)

](13)

Define the variable exponent 1p1(·) = 1

r+ 1

p′1(·)by Lemma 3.5, then we have

‖Ω(x, x− y)χj‖Lp′1≤ ‖Ω(x, x− y)‖Lr‖χj‖

Lp′1(·) ≤

2j∫2j−2

rn−1dr

∫sn−1

|Ω(x, y′)|rdσ(y′)

1r

‖χj‖Lp′1(·)

According to Lemma 3.6 and the formula 1p′1(x)

= 1p′1(x)

− 1r, then we get

‖Ω(x, x− y)χj‖Lp′1≤ C2

jnr ‖Ω‖L∞(Rn)×Lr(Sn−1)‖χBj‖

Lp′1(·) ≤ C2

jnr 2−jnr ‖χBj‖Lp′1(·) ≤ C‖χBj‖Lp′1(·) (14)

Similarly, by Lemma 3.10, we can concluded that

‖Ω(x, x− y)(b(y)− bj)mχj‖Lp′1(·) ≤ ‖Ω(x, x− y)‖Lr‖(b(y)− bj)mχj‖

Lp′1(·)

≤ C 2jnr ‖Ω‖L∞(Rn)×Lr(Sn−1)(k − j)

m‖b‖m∗ ‖χj‖Lp′1(·) ≤ C (k − j)m‖b‖m∗ ‖χBj‖Lp′1(·)

(15)

By (14), (15) and again Lemma 3.10, then we get

‖[bm, TΩ,µ]fj , χk‖Lp2(·) ≤ C2−k(n−µ)‖fj‖Lp1(·)

[‖(b(x)− bj)mχk‖Lp2(·)‖χBj‖Lp′1(·) + (k − j)m‖b‖m∗ ‖χBj‖Lp′1(·)‖χBk‖Lp2(·)

]≤ C2−j(n−µ)(k − j)m‖b‖m∗ ‖fj‖Lp1(·)‖χBj‖Lp′1(·)‖χBk‖Lp2(·) (16)

By (16), Lemmas 3.7-3.9, and

∥∥∥∥( 2jα|fχj |η1

)q1(·)∥∥∥∥L

p1(·)q1(·)

≤ 1. Note that ‖χBk‖Lp2(·) ≤ C2−kµ‖χBk‖Lp1(·) , then (see [22])

∞∑k=−∞

∥∥∥∥∥∥∥∥∥

2kα|∞∑

j=k+2

[bm, TΩ,µ](fj)χk|

η1‖b‖m∗

q2(·)∥∥∥∥∥∥∥∥∥

L

p2(·)q2(·)

≤ C∞∑

k=−∞

∥∥∥∥∥∥∥∥∥

2kα|∞∑

j=k+2

[bm, TΩ,µ](fj)χk|

η1‖b‖m∗

q2(·)∥∥∥∥∥∥∥∥∥

Lp2(·)

≤ C∞∑

k=−∞

2kα∞∑

j=k+2

2−j(n−µ)(k − j)m∥∥∥∥ fjη1

∥∥∥∥Lp1(·)(Rn)

‖χBj‖Lp′1(·)‖χBk‖Lp2(·)

(q32)k

≤ C∞∑

k=−∞

2kα∞∑

j=k+2

2−j(n−µ)(k − j)m∥∥∥∥ fjη1

∥∥∥∥Lp1(·)(Rn)

‖χBj‖Lp′1(·)2−kµ‖χBk‖Lp1(·)

(q32)k

38

Page 11: Commutators of Fractional Integral with Variable Kernel on ...ijmaa.in/v4n3-a/29-40.pdf · In 1991, Kov ac ik and R akosn ik [7] introduced variable exponents Lebesgue and Sobolev

Afif Abdalmonem, Omer Abdalrhman and Shuangping Tao

≤ C∞∑

k=−∞

2kα∞∑

j=k+2

(k − j)m2jµ∥∥∥∥ fjη1

∥∥∥∥Lp1(·)(Rn)

2−jn‖χBj‖Lp′1(·)2−kµ‖χBk‖Lp1(·)

(q32)k

≤ C∞∑

k=−∞

2kα∞∑

j=k+2

(k − j)m2(j−k)µ

∥∥∥∥ fjη1

∥∥∥∥Lp1(·)(Rn)

‖χBk‖Lp1(·)

‖χBj‖Lp1(·)

(q32)k

≤ C∞∑

k=−∞

2kα∞∑

j=k+2

(k − j)m2(k−j)(nδ2−µ)

∥∥∥∥ fjη1

∥∥∥∥Lp1(·)(Rn)

(q32)k

≤ C∞∑

k=−∞

∞∑j=k+2

(k − j)m2(k−j)(nδ2−µ+α)

∥∥∥∥∥(|2αjfjχk|

η1

)q1(·)∥∥∥∥∥

1(q1)+

Lp1(·)q1(·)(Rn)

(q32)k

Where

(q32)k =

(q2)−,

∥∥∥∥∥∥∥ 2kα|

∞∑j=k+2

[bm,TΩ,µ](fj)χk|

η1‖b‖m∗

q2(·)∥∥∥∥∥∥∥L

p2(·)q2(·)

≤ 1

(q2)+,

∥∥∥∥∥∥∥ 2kα|

∞∑j=k+2

[bm,TΩ,µ](fj)χk|

η1‖b‖m∗

q2(·)∥∥∥∥∥∥∥L

p2(·)q2(·)

> 1

Furthermore, since (q2)− ≥ (q1)+ and α > µ− nδ2, as the same way to estimate η21, we get

∞∑k=−∞

∥∥∥∥∥∥∥∥∥

2kα|∞∑

j=k+2

[bm, TΩ,µ](fj)χk|

η1‖b‖m∗

q2(·)∥∥∥∥∥∥∥∥∥

L

p2(·)q2(·)

≤ C∞∑

k=−∞

∞∑j=k+2

(k − j)m2(k−j)(nδ2−µ+α)

∥∥∥∥∥(|2αjfjχk|

η1

)q1(·)∥∥∥∥∥Lp1(·)q1(·)(Rn)

q∗ ≤ C

Where q∗ = mink∈N

(q32)k

(q1)+, this implies that

η23 ≤ Cη1‖b‖m∗ ≤ C‖b‖m∗ ‖f‖Kα,q1(·)p1(·) (Rn)

(17)

By (7), (12) and (12) the proof of Theorem 2.2 is finished.

Competing interests

The authors declare that they have no competing interests.

Acknowledgments

This paper is supported by National Natural Foundation of China (Grant No. 11561062).

References

[1] D.Cruz-Uribe and A.Fiorenza, Variable Lebesgue Spaces, Foundations and Harmonic Analysis. Appl. Numer. Harmon.

Anal. Springer, New York, (2013).

[2] C.Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, Am. Math. Soc, Provi-

dence, (1994).

[3] M.Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rendiconti del Circolo

Matematico di Palermo, 59(2010), 461-472.

39

Page 12: Commutators of Fractional Integral with Variable Kernel on ...ijmaa.in/v4n3-a/29-40.pdf · In 1991, Kov ac ik and R akosn ik [7] introduced variable exponents Lebesgue and Sobolev

Commutators of Fractional Integral with Variable Kernel on Variable Exponent Herz and Lebesgue Spaces

[4] A.Calderon and A.Zygmund, On singular integral with variable kernels, Journal of Applied Analysis, 7(1978), 221-238.

[5] M.Christ, J.Duoandikoetxea and J.Rubio de Francia, Maximal operators related to the Radon transform and the

Calderoon-Zygmund method of rotations, Duke Mathematical Journal, 53(1986), 189-209.

[6] B.Muckenhoupt and R.Wheeden, Weighted norm inequalities for singular and fractional integrals, Transations of the

American Mathematical Society, 161(1971), 249-258.

[7] O.Kovacik and J.Rakosnik, On Spaces Lp(x) and W k,p(x), Czechoslovak Matematical Journal, 41(1991), 592-618.

[8] Z.Pu and Z.Kai, Commutators of fractional integral operators with variable kernel on Hardy spaces, J Chin Ann. Math.,

25(2004), 561-570.

[9] M.Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59(1999),

199-213.

[10] Y.Ding and S.Lu, Higher order commutators for a class rough operators, Ark. Mat., 37(1999), 33-44.

[11] L.Wang and S.Tao, Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with

variable exponent, J Inequalities and Applications, 227(2014), 1-17.

[12] L.Wang and S.Tao, Parameterized Littlewood-Paley operators and their commutators on Lebegue spaces with variable

exponent, Anal Theory Appl., 31(2015), 13-24.

[13] M.Izuki, Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system, East

J. Approx, 15(2009), 87-109.

[14] J.Tan and Z.Liu, Some Boundedness of Homogeneous Fractional Integrals on Variable Exponent Function Spaces, ACTA

Mathematics Science(Chinese Series), 58(2015), 310-320.

[15] A.Afif, A.Omer and S.Tao, The boundedness of fractional integral with variable kernel on variable exponent Herz- Morrey

spaces, Jouranl of Applied Mathematics and Physics, 4(2016), 187-195.

[16] H.Wu and J.Lan, The boundedness for a class of rough fractional integral operators on variable exponent Lebesgue spaces,

Analysis in Theory and Applications, 28(2012), 286-293.

[17] L.Wang and S.Tao, Parameterized Littlewood-Paley operators and their commutators on Herz spaces with variable

exponents, Turk J Math, 40(2016), 122-145.

[18] A.Almeida, J.Hasanov and S.Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian

Math J, 15(2008), 195-208.

[19] L.Diening, P.Harjulehto, P.Hasto and M.Ruziccka, Lebesgue and Sobolev Spaces with Variable exponents, Springer-Verlag

Berlin Heidelberg, (2011).

[20] Y.Ding and S.Lu, Homogeneous fractional integrals on Hardy spaces, Tohoku Mathematical Journal, 52(2000), 153-162.

[21] AY.Karlovich and AK.Lerner, Commutators of singular integral on generalized Lp spaces with variable exponent, Publ.

Math., 49(2005), 111-125.

[22] M.Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J, 40(2010), 343-355.

40