compactsupersymmetry++ - susy2013.ictp.itsusy2013.ictp.it/lecturenotes/02_tuesday/precision... ·...

34
1 Compact Supersymmetry++ Kohsaku Tobioka Kavli IPMU, Univ. of Tokyo SUSY2013@ICTP, Trieste, Italy (2013 August 27) Murayama, Nomura, Shirai, KT (arXiv:1206.4993) Murayama, Nojiri, KT (arXiv:1107.3369)

Upload: nguyennga

Post on 17-Jul-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

1  

Compact  Supersymmetry++

Kohsaku  Tobioka  Kavli  IPMU,  Univ.  of    Tokyo  

SUSY2013@ICTP,  Trieste,  Italy  (2013  August  27)

Murayama,  Nomura,  Shirai,  KT  (arXiv:1206.4993)  Murayama,  Nojiri,  KT  (arXiv:1107.3369)  

2  

Discovery  of  125GeV  Higgs    and  ETmiss  exclusion  of  MSSM  @LHC

ATLAS-CONF-2013-047 arXiv:1207.7235 (CMS)

m g ≥1.2TeV

m q ≥ 2TeV

Simplified modelm g = 0.96m q ≥1.7TeV

3  

Implica[ons  for  MSSM

2.  ETmiss  Search  excludes  squark/gluino  mass  up  to  TeV  

Heavy  Spar[cles  

Large  At  term:  Stop  L-­‐R  mixing

1.Higgs  mass  is  rela[vely  heavy  compared  with  mZ        =>Radia[ve  correc[ons  

Compressed  spectrum  

RPV

Beyond  MSSM:  Change  Higgs  mass  

and/or  LHC  limit

Exist  in  TeV  range  

4  

Implica[ons  for  MSSM

2.  ETmiss  Search  excludes  squark/gluino  mass  up  to  TeV  

Heavy  Spar[cles  

Large  At  term:  Stop  L-­‐R  mixing

1.Higgs  mass  is  rela[vely  heavy  compared  with  mZ        =>Radia[ve  correc[ons  

Compressed  spectrum  

RPV

Beyond  MSSM:  Change  Higgs  mass  

and/or  LHC  limit

Exist  in  TeV  range  

This  talk

5  

Compressed  spectrum  leads  very  different  limit

Δm~500GeV

Simplified modelm g = 0.96m q

ATLAS-CONF-2013-047

• Beyond  mLSP~700GeV,  gluino/squark  mass  is  not  constrained,  because  missing  energy  is  much  smaller  due  to  the  compression  • Increasing  data  (by  factor  of  4)  doesn’t  improve  the  limit  

6  

Compressed  spectrum  leads  very  different  limit

Δm~500GeV

Simplified modelm g = 0.96m q

• Beyond  mLSP~700GeV,  gluino/squark  mass  is  not  constrained,  because  missing  energy  is  much  smaller  due  to  the  compression  • Increasing  data  (by  factor  of  4)  doesn’t  improve  the  limit  

5i-­‐1(8TeV) 20i-­‐1(8TeV)

ATLAS-CONF-2013-047

7  

• Compressed  Spectrum  

Mostly  based  on  Phenomenological  studies  [arXiv:1105.4304,  1206.6767,  1207.1613,  1207.6289,  1208.0949, 1308.1526..]    

Is  there  any  theore[cal  mo[va[on?  …

8  

• Compressed  Spectrum  •   Large  A  term    

Higgs  mass  is  enhanced  when  |At|~√6*mstop  But  too  much  A  term,  |At|>3mstop,  leads  instability  

Not  easy  from  model  building  point  of  view,    e.g.  GMSB…  

[arXiv:1302.2642,1206.4086,  1107.3006,  1112.3068..]  

9  

SUSY  breaking  from  Extra  Dimension    “Scherk-­‐Schwarz  mechanism”  

=Radion  Media[on  

• Compressed  Spectrum  •   Large  A  term    

10   10  

[Scherk  and  Schwarz  (1979)]

  5D  Minimal  SUSY    (corresponding  to  N =2  in  4D)     Geometry:  S1/Z2    (chiral  for  zero  mode,  N =1  in  4D)  

   Non-­‐trivial  boundary  condi[on  on  SU(2)R  space  breaks  supersymmetry    =Scherk-­‐Schwarz  mechanism  • Non-­‐trivial  B.C.

Con[nuous  twist  parameter,  α<<1

Scherk-­‐Schwarz  mechanism y:  5th  dimensional  coordinate  /R:  radius  of  extra  dimension    

11   11  

[Scherk  and  Schwarz  (1979)]

  5D  Minimal  SUSY    (corresponding  to  N =2  in  4D)     Geometry:  S1/Z2    (chiral  for  zero  mode,  N =1  in  4D)  

   Non-­‐trivial  boundary  condi[on  on  SU(2)R  space  breaks  supersymmetry    =Scherk-­‐Schwarz  mechanism  • Non-­‐trivial  B.C.

• Resul[ng  KK  decomposi[on

Con[nuous  twist  parameter,  α<<1

Scherk-­‐Schwarz  mechanism y:  5th  dimensional  coordinate  /R:  radius  of  extra  dimension    

12   12  

Higgs  localized  at  y=0: Fields:  

 :Vector  superfield    :  Adjoint  chiral  superfield      :  Hypermul[plet  of  mayer  fields  

13   13  

Higgs  localized  at  y=0: Fields:  

 :Vector  superfield    :  Adjoint  chiral  superfield      :  Hypermul[plet  of  mayer  fields  

Transla[on  [y  → y+2πR]  (SS  mechanism)  Inversion  [y  → -­‐y](Orbifold)

• For  SU(2)R  doublets,  common  twist  

• For  others,   same  for  gravi[nos  

Common  so|  mass

14   14  

Radion  media[on:  SUSY  breaking  by  the  Radion  superfield  VEV  

       ~Dynamical  realiza[on  of    Scherk-­‐Schwarz  mechanism          [D.Mar[  and  A.Pomarol(2001),  D.Kaplan  and  N.  Weiner(2001)  …]

Radion  Media[on  ~  SS  mechanism

15   15  

Radion  media[on:  SUSY  breaking  by  the  Radion  superfield  VEV  

       ~Dynamical  realiza[on  of    Scherk-­‐Schwarz  mechanism          [D.Mar[  and  A.Pomarol(2001),  D.Kaplan  and  N.  Weiner(2001)  …]

 Gauge  sector  

 Mayer  sector

Radion  vev:

Canonically  normalize:    

Radion  Media[on  ~  SS  mechanism

T = R + FTθ2 ⇒ R − 2αθ 2

Φ(c) → 1+ αRθ 2⎛

⎝⎜⎞⎠⎟ Φ

(c), χ → 1− αRθ 2⎛

⎝⎜⎞⎠⎟ χ

FT = −2α

16   16  

Higgs  fields  and  Yukawa  interac[ons  are  localized  on  the  brane  at  y=0    

Compact  Supersymmetry  model

Lbrane = δ (y) d 2θ (yU

i jQiU jHu + yDi jQiDjHd + yE

i jLiEjHd + µHuHd )∫

17   17  

Large  A  term  is  generated  by  the  field  redefini[on

Higgs  fields  and  Yukawa  interac[ons  are  localized  on  the  brane  at  y=0    

Compact  Supersymmetry  model

Φ(c) → 1+ αRθ 2⎛

⎝⎜⎞⎠⎟ Φ

(c)

Lbrane = δ (y) d 2θ (yU

i jQiU jHu + yDi jQiDjHd + yE

i jLiEjHd + µHuHd )∫

yUi jQiU jHu → 1+ 2α

Rθ 2⎛

⎝⎜⎞⎠⎟ yU

i jQiU jHu

A0 = − 2αR

Higgs  mass  can  be  larger!

18   18  

   Take  α<<1       KK  states(~n/R)  are  decoupled -­‐>MSSM  at  low  energy       Compact  parameter  set    rather  than  CMSSM:

At  tree  level  and  at  scale  ~1/R,

Compact  Supersymmetry  model

19   19  

   Take  α<<1       KK  states(~n/R)  are  decoupled -­‐>MSSM  at  low  energy       Compact  parameter  set    rather  than  CMSSM:

At  tree  level  and  at  scale  ~1/R,

   Radia[ve  correc[ons  from  at  and  above  1/R  are  under  control  because  of  symmetries  of  higher  dimensions     Calculated  threshold  correc[ons  to  the  Higgs  mass  parameters

Only  three  parameters!

• No  physical  phase          • Geometry  is  universal      

Compact  Supersymmetry  model

20   20  

   Take  α<<1       KK  states(~n/R)  are  decoupled -­‐>MSSM  at  low  energy       Compact  parameter  set    rather  than  CMSSM:

At  tree  level  and  at  scale  ~1/R,

   Radia[ve  correc[ons  from  at  and  above  1/R  are  under  control  because  of  symmetries  of  higher  dimensions     Calculated  threshold  correc[ons  to  the  Higgs  mass  parameters

Only  three  parameters!

• No  physical  phase          • Geometry  is  universal      

Compact  Supersymmetry  model

21   21  

   Take  α<<1       KK  states(~n/R)  are  decoupled -­‐>MSSM  at  low  energy       Compact  parameter  set    rather  than  CMSSM:

At  tree  level  and  at  scale  ~1/R,

   Radia[ve  correc[ons  from  at  and  above  1/R  are  under  control  because  of  symmetries  of  higher  dimensions     Calculated  threshold  correc[ons  to  the  Higgs  mass  parameters

Only  three  parameters!

• No  physical  phase        ✓CP  • Geometry  is  universal      ✓Flavor

Compact  Supersymmetry  model

22   22  

Spectrum

~120GeV

Higgsino  like  LSP Spectra  are  available!    hyp://www-­‐theory.lbl.gov/~shirai/compactSUSY.php  

   2  scales:  μ  and  α/R     More  compressed  as  μ→α/R,    i.e.  larger  1/R  (Q0)    

23   23  

Higgs  mass  and  tuning

600

800

1000

1200

1400

104 105 106

!/R

[GeV

]

1/R [GeV]

MH [GeV]!!1 [%]

125 123

121

119

10.5

0.25

   Theore[cal  error  of  Higgs  mass  is  not  small

• Also  devia[on  from  top  mass

   Fine  tuning  of  sub-­‐%  level  mainly  from  μ  

  beyer  than  CMSSM

24  

mgluino=1400@GeVD

1200

1000

mLSP=850@GeVD750650

600

800

1000

1200

1400

104 105 106

!/R

[GeV

]

1/R [GeV]

Stop LSP

0-lepton + multi-jets1-lepton + multi-jets

Stop LSP

Collider  limit S[ll  very  mild  

Excluded  line(puple)  corresponds  to  LSP~  650GeV  

Gluino~1200GeV  is  alive  explaining  mh=125GeV  

0-­‐lepton+mul[-­‐jets  (Preliminary) 7TeV  5i-­‐1  

• Limit  does  not  change  much    5i-­‐1(7TeV)⇒20i-­‐1(8TeV)  

• Need  improvement  

8TeV  20i-­‐1

25  

mgluino=1400@GeVD

1200

1000

mLSP=850@GeVD750650

600

800

1000

1200

1400

104 105 106

!/R

[GeV

]

1/R [GeV]

Stop LSP

0-lepton + multi-jets1-lepton + multi-jets

Stop LSP

Collider  limit S[ll  very  mild  

Excluded  line(puple)  corresponds  to  LSP~  650GeV  

Gluino~1200GeV  is  alive  explaining  mh=125GeV  

0-­‐lepton+mul[-­‐jets  (Preliminary) 7TeV  5i-­‐1  

• Limit  does  not  change  much    5i-­‐1(7TeV)⇒20i-­‐1(8TeV)  

• Need  improvement   ATLAS-CONF-2013-047

Simplified modelm g = 0.96m q

8TeV  20i-­‐1

26  

Possible  improvement  by  MT2

[GeV]T2M0 100 200 300 400 500 600 700 800

]-1

[(10

GeV

)

T2/d

M�d

-1�

-410

-310

-210

-110

1Correct two partons

Leading two partons

Leading two jets

-W+Wb b� tt

[GeV]T2M0 100 200 300 400 500 600 700 800

]-1

[(10

GeV

)T2

/dM

�d-1

-410

-310

-210

-110

1

without USRCorrect two partons

Correct two partons

Leading two partons

Leading two jets

(1)� (1)� qq� (1)q(1)q

For  BSM  scenario  with  compressed  spectra  MT2    is  useful  main  background  ybar  can  be  removed  systema[cally  while  keeping  the  signal  

MUED  discovery  reach  is  improved  by  300~500GeV  =>Possible  to  improve  SUSY  search  as  well  

Murayama,  Nojiri,  KT    arXiv:1107.3369

RR10 20 30 40

1/R[

GeV

]

400500600700800900

10001100120013001400

limit-1LHC 1fb

14TeV-1 10fbT2M

14TeV-14lepton 10fb

14TeV-1 1fbT2M

14TeV-14lepton 1fb

7TeV-1 2fbT2M

More  compressed

Applica[on  to  MUED  (~compressed  SUSY)     [Murayama, Nojiri, KT (arXiv:1107.3369)]

Discovery  reach  at  14TeV

27   27  

Dark  Mayer  Nature

600

800

1000

1200

1400

104 105 106

!/R

[GeV

]

1/R [GeV]

!!h2

"Nucleon[pb]

0.1

0.05

0.02

5!10!8

3!10!810!8

Stop LSP

10!9

10!8

10!7

400 600 800 1000 1200!e! Nucleon[pb]

m"̃01[GeV]

1/R = 104 GeV1/R = 105 GeV

XENON100

600•

900•

1200•

1500•

1800•

•600•

•900•

1200•

1500•

   Thermal  relic  of  LSP  is  not  enough  for  observed  DM  density  unless  LSP  ≳TeV

• Relic  abundance    • Spin-­‐Indep.  cross  sec[on  with  a  nucleon   • Effec[ve  DM-­‐nucleon  cross  sec[on

   Direct  detec[on  of  DM  does  not  exclude  this  scenario,  and  the  future  update  will  be  interes[ng  

Point2 Point1

Point2

Point1

28   28  

Conclusion

   Compact  Supersymmetry:  model  with  SUSY  breaking  from  Extra  Dimension    

   Compressed  spectrum  &  large  A  term  are  realized.  Only  3  parameters  (No  Flavor  &  No  CP  problem),  sub-­‐%  tuning  

   Collider  limit  is  mild.  It  is  not  much  improved  by  increasing  data/energy.    MT2  is  useful  to  search  for  the  signal  

   Higgsino-­‐like  LSP,  sub-­‐dominant  component  of  DM.  Consistent  with  Direct  detec[on  result  

29  

Grazie!

30  

Backup

31   31  

Mu  problem  in  NMSSM  extension Work  in  progress  [Murayama,  Nomura,  Shirai,  KT]

   Again,  so|  parameters  are  automa[cally  determined  

Singlet  Hypermul[plet  in  the  bulk

• No  CP  viola[on  source    

•   Rela[vely  free      realize  Higgs  mass

• Double  well  poten[al  at  ~1/R  

V (S) = S2 κ S −α / R( )2 , S = α / Rκ

µeff = λ S = λκ

αR~O(1) α

RS = α / R

κμ  term  is  generated,  ~α/R  ,  -­‐>  compressed  

32   32  

Brane-­‐localized  kine[c  terms  and  cutoff

   Radia[ve  correc[ons  from  above  1/R  generates  boundary  kine[c  terms  from  dimensional  analysis  

Effec[ve  theory  with  tree  level  es[ma[on  of  so|  parameters  is  valid  for    

   Assume  the  tree  level  contribu[ons  are  same  size  of  radia[ve  ones  

Compact  Supersymmetry  model

33   33  

Power  of  N =2

  S1/Z2  orbifolding  makes  zero  modes  chiral,  but  higher  KK  modes  consists  N =2  mul[plets     No  wavefunc[on  renormaliza[on  of  hypermul[plet  in  N =2  SUSY  

   Even  log  divergences  are  cancelled  out  for  each  KK  mode  (n>0)     Only  MSSM(n=0)  par[cles  give  log  divergences

Compact  Supersymmetry  model

34   34  

Gravi[no  mass    Obviously  the  SU(2)R  doublets  should  have  same  so|  mass  from  their  5d  deriva[ves  

   SUSY  breaking  is  from  Radion  

• GR  ac[on • Gravi[no  mass    Radion  should  be  canonically  normalized