comparing mechanistic and thermochemical modelling of reaction rate … · 2019-02-12 · practical...

23
Pertti Koukkari 20 th Annual Users’ Meeting GTT Technologies 28.6. 2018 Comparing Mechanistic and Thermochemical Modelling of Reaction Rate-Controlled Multiphase Systems Simulation of the Titanium(IV)Chloride Oxidizer

Upload: others

Post on 15-Mar-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Pertti Koukkari20th Annual Users’ Meeting

    GTT Technologies28.6. 2018

    Comparing Mechanistic and Thermochemical

    Modelling of Reaction Rate-Controlled

    Multiphase Systems

    Simulation of the Titanium(IV)Chloride Oxidizer

  • 1. Motivation to calculate rate-controlled systems

    2. Coupling of reaction matrix with stoichiometric formula matrix

    3. Case example: TiO2 nanoparticle formation by TiCl4 oxidation

    - detailed kinetic mechanism (DKM, West & al. 2007-2009)

    - constrained Gibbs energy (CFE, by Koukkari & al. 1993 ⇒)

    - comparison with experiment

    4. Application in reactor simulation

    5. Conclusions

    CONTENTS OF PRESENTATION

    PresenterPresentation NotesEnter speaker notes here.

  • Practical systems seldom reach complete equilibrium due to (slow) reaction kinetics

    The reaction rate parameters of many suggested complex mechanisms are often less well known

    mechanistic (DKM) modeling is a nearly impossible challenge for complex heterogeneous systems with many phases

    ⇒ it would be advantageous to include reaction rate restrictions to Gibbs energy minimization to allow for calculations of kinetically constrained reactors

    MOTIVATION

    PresenterPresentation NotesEnter speaker notes here.

  • 𝑑𝑑𝐧𝐧 = 𝛖𝛖𝑑𝑑𝛏𝛏 ; 𝛏𝛏 = 𝛏𝛏 (𝑡𝑡)

    MODELLING OF DYNAMIC MULTICOMPONENT SYSTEMS

    Solve time course for amount of moles vs. extents of reaction (ξ):

    In DKM, a group of ODE’s used and solved as a numerical initial value problem; parameters for all reaction rates required (e.g. CANTERA)

    when solving min(G) for global minimum, the ξ’s are independent variables, but components are conserved by mass balance constraints

    In constrained min(G) [CFE] the ξ = ξ(t) are solved from reaction rate equations to be used as additional conserved quantities

    ⇒ in CFE differential-algebraic (DA) approach is used, rate parameters applied for selected reactions only and a ‘timewise’ sequential min(G) is calculated (e.g. ChemSheet/ChemApp)

    ??

    ??

    =

    ??

    ??

    ??

    ;

    ??

    =

    ??

    (

    ??

    )

    1

    ????=?????? ; ??= ?? (??) 1

  • *) Blomberg & Koukkari, Comput. Chem. Eng. 35 (2011) 1238-1251.Pajarre & al., Chem. Eng.Sci. 146 (2016) 244-258.Koukkari & Paiva, Chem.Eng.Sci 179 (2018), 227-242.

    Constraints in the 2-component system:

    2 components (α1, α 2 ) 4 species (α1, α 2, α3, α 4) 2 reactions (r1, r 2)

    includes constraints for mass balances and reactions applies extents of reaction as additional constraints in min(G) number of constrained reactions can be chosen (0 ≤ r ≤ R)

    Example of 2 reactions:

    COUPLING OF REACTION AND CONSERVATION MATRICES

    C(υ)

    Reaction matrix Stoichiometricformula matrix

    𝐂𝐂𝐓𝐓 =

    1 0 𝛼𝛼10 1 𝛼𝛼21 2 𝛼𝛼31 3 𝛼𝛼4

    𝐂𝐂(υ)𝐓𝐓 =

    1 0 −1 0 𝛼𝛼10 1 0 0 𝛼𝛼21 2 0 0 𝛼𝛼31 3 0 1 𝛼𝛼40 0 1 0 𝑟𝑟10 0 0 1 𝑟𝑟2

    Use row permutations(* in [I, υ] to convert υas constraints in C:

    Formula matrixwith reaction constraints

    r1 r2

    ⇒⇒⇒⇒⇒

    ??

    ??

    =

    1

    0

    ??

    1

    0

    1

    ??

    2

    1

    2

    ??

    3

    1

    3

    ??

    4

    ??

    ??

    =

    10??

    1

    01??

    2

    12??

    3

    13??

    4

    ??

    (

    u

    )

    ??

    =

    1

    0

    -

    1

    0

    ??

    1

    0

    1

    0

    0

    ??

    2

    1

    2

    0

    0

    ??

    3

    1

    3

    0

    1

    ??

    4

    0

    0

    1

    0

    ??

    1

    0

    0

    0

    1

    ??

    2

    ??()

    ??

    =

    10-10??

    1

    0100??

    2

    1200??

    3

    1301??

    4

    0010??

    1

    0001??

    2

  • Superheated O2

    TiCl4 -gasCooling water

    ConeReactor & Coolingsections

    TiO2 is formed as a nanoparticle suspension – used as the white pigment (> 5 Mt/yr) exothermic main reaction compensated by endothermic side reactions

    (chlorine dissociation, TixOyClz formation) and efficient reactor cooling

    Key reactions ∆H(1000 C)kJ/mol

    TiCl4(g) + O2(g) ↔ TiO2 ↓ + 2Cl2(g) -175Cl2(g) ↔ 2Cl(g) +250

    1600 C

    500 C

    900 ⇒ 1500 C

    EXAMPLE: FLAME REACTOR FOR TiCl4 OXIDATION

  • .

    .

    . 51…67 reactions2007

    OO2O3Cl Cl2ClO ClOO Cl2OTi TiClTiCl2TiCl3TiCl4TiOCl2 TiOCl3TiO2Cl2

    TiO2Cl3 TiCl2OClTi2O2Cl3Ti2O2Cl4Ti2O2Cl5Ti2O2Cl6Ti2O3Cl2Ti2O3Cl3 Ti3O4Cl4TiO2Cl5TiO2Cl6.TiO2(s)

    Gas

    Solid

    SYSTEM FOR DKM CALCULATIONS (TiCl4 OXIDATION)WEST 2007

    TiCl4

    TiCl3

    TiO2Cl3

    TiO2Cl2 TiOCl3

    TiOCl2

    Ti2O2Cl3Ti2O2Cl4

    Ti3O4Cl4

    System Overall reaction

    Reaction mechanism

    Richard H. West

  • Mechanistic (DKM) model:

    *West &al., Ind. Eng. Chem. Res.46, (2007) 6147.Karlemo & al., Plasma Chem .& Plasma Proc. 16, (1996) 59.

    6 thermal decomposition reactions, ∆H > 0 12 abstractions and disproportionations, ∆H < 0 18 oxidation reactions, ∆H < 0 8 Cl/O-chemistry reactions, ∆H >

  • West & al.2007

    1.E-07

    1.E-06

    1.E-05

    1.E-04

    1.E-03

    1.E-02

    1.E-01

    1.E+00

    400 900 1400 1900 2400 2900

    Mol

    e fr

    actio

    n

    Temperature (K)

    Monomers

    Chlorides

    Dimers

    Ti3O4Cl4(g)

    Ti5O6Cl8(g)

    1.00E-07

    1.00E-06

    1.00E-05

    1.00E-04

    1.00E-03

    1.00E-02

    1.00E-01

    1.00E+00

    400 800 1200 1600 2000 2400 2800

    mol

    e fr

    actio

    n

    Temperature [K]

    Cl(g) Cl2(g) Cl2O(g) ClO(g) ClO2(g) O(g) O2(g) O3(g) Ti(g) TiCl(g) TiCl2(g) TiCl3(g) TiCl4(g) Ti2Cl6(g) TiO2(g) TiOCl(g) TiOCl2(g) TiO2Cl2(g) TiO2Cl3(g) TiOCl3(g) Ti2O2Cl3(g) Ti2O2Cl4(g) Ti2O2Cl5(g) Ti2O2Cl6(g) Ti2O3Cl2(g) Ti2O3Cl3(g) Ti3O4Cl4(g) Ti5O6Cl8(g)

    P. Koukkari &EduardoPaiva 2017

  • DKM West &al., 2007

    O2

    TiCl4

    Cl2

    Ti2O2Cl2

    ClTiOCl2

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    0 5 10

    mol

    e fr

    actio

    n

    time [ms]

    CFE Koukkari &Paiva 2016

    [ ] [ ]

    1410268

    071

    −⋅=

    −=

    −=

    s.A

    RTmol/kJ.expAk

    ;TiClkdt

    TiCld4

    4

    TiCl4 conversionconstraint:

    Data from Koukkari & LiukkonenInd.Eng.Chem.Res.,41 (2002) 2931.

    O2 Cl2

    TiCl4

    Ti2O2Cl4

    TiOCl2Cl

    COMPARISON OF DKM AND CFE KINETIC CALCULATIONMAJOR SPECIES

  • With only gas phase included, the two models appear in close agreement

    Kinetics of major gaseous species generally used for aerosol nanoparticlemodelling (studies on nucleation and population balance)

    O2

    Cl2

    TiCl4

    Ti2O2Cl4

    TiOCl2 Cl

    COMPARISON OF DKM AND CFE KINETIC CALCULATIONMAJOR SPECIES

    mol

    e fr

    actio

    n

    time [ms]

  • Ti3O4Cl4

    Ti2O3Cl3

    TiO2Cl2x104

    0

    0.0005

    0.001

    0.0015

    0.002

    0.0025

    0 1 2 3 4 5

    mol

    e fr

    actio

    n

    Time [ms]

    DKM results CFE results

    minor species monotonically ascending in CFE (unless additional constraints areapplied)

    (no experimental data for detailed kinetics exist)

    COMPARISON OF DKM AND CFE KINETIC CALCULATIONMINOR SPECIES (SELECTION)

  • DKM and CFE give congruent results for the (gas phase) kinetics

    How about model vs. experiments ?

    TiOCl(2) ClOCl(2)

    Karlemo & al., Plasma Chem .& Plasma Proc. 16, (1996) 59.

    PresenterPresentation NotesEnter speaker notes here.

  • Plug flow reactor measurements of TiCl4 consumption with various residence times (700-900 C)

    ⇒ effective rate constant 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐴𝐴⋅ 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝐸𝐸𝑎𝑎/𝑅𝑅𝑇𝑇)

    EXPERIMENTAL ARRHENIUS PLOT FOR TiCl4 CONSUMPTION

    Pratsinis, J.Am.Ceram.Soc. 1990, 73, 7, 2158-62

    −�𝑙𝑙𝑙𝑙 �𝑐𝑐𝑜𝑜𝑐𝑐𝑇𝑇

    �𝑡𝑡� � = 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

    [TiCl4] data as co; ci = ci(t)

    keff = f(T) ;independent of residence time

    ??

    ??????

    =

    ??

    ×

    ??????

    (

    -

    ??

    ??

    /

    ????

    )

    1

    ??

    ??????

    = ?? ?????? (-??

    ??

    /????) 1

    -

    ?

    ????

    ?

    ??

    ??

    ??

    ??

    ?

    ??

    ?

    ?

    =

    ??

    ??????

    1

    -

    ????

    ??

    ??

    ??

    ??

    ??

    = ??

    ??????

    1

  • Plug flow reactor measurements of TiCl4 consumption with various residence times (700-900 C)

    ⇒ effective rate constant 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐴𝐴⋅ 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝐸𝐸𝑎𝑎/𝑅𝑅𝑇𝑇)

    GAS PHASE MODELS CHECKED WITH EXPERIMENTARRHENIUS PLOT*

    *Pratsinis, J.Am.Ceram.Soc. 1990, 73, 7, 2158-62

    Increasing deviationwith increase of residence time (tr)

    lines not coinciding[keff(t) not constant] ??

    Gas phase CFE calculations cross-checked with experiment

    −�𝑙𝑙𝑙𝑙 �𝑐𝑐𝑜𝑜𝑐𝑐𝑇𝑇

    �𝑡𝑡� � = 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

    [TiCl4] data as co; ci = ci(t)

    DKM West &al., 2008

    DKM with TiO2(s)deposition rate

    DKM gasreactions withoutTiO2(s)deposition

    Experiments(Pratsinis & al. 1990)

    ??

    ??????

    =

    ??

    ×

    ??????

    (

    -

    ??

    ??

    /

    ????

    )

    1

    ??

    ??????

    = ?? ?????? (-??

    ??

    /????) 1

    -

    ?

    ????

    ?

    ??

    ??

    ??

    ??

    ?

    ??

    ?

    ?

    =

    ??

    ??????

    1

    -

    ????

    ??

    ??

    ??

    ??

    ??

    = ??

    ??????

    1

  • CFE Koukkari & Paiva 2017

    CFE RESULTS WITH TiO2(s) FORMATION

    (all residence times)

    CFE _ DKM comparison

    (all residence times)

    TiO2(s) entered, 3 lines coinciding

    TiO2(s) dormant

    Experiments only followed TiCl4 concentrations in gas phase

    ⇒ TiO2(s) ’entered’ seems to be the necessary & sufficient condition for agreement withobservation

  • Use in reactor engineering & scale-up

    PresenterPresentation NotesInterleaf option 1: Use interleaf if you want to separate sections in your presentationYou can use interleaf with one or two photos or without photos

  • Superheated O2

    TiCl4 -gasCooling water

    Cone

    Flame reactor scale-up with the rate-constrained model

    Reactor & Cooling sections

    TiO2 is formed as a nanoparticle suspension – used as the white pigment (> 3 Mt/yr) exothermic main reaction compensated by endothermic side reactions

    (chlorine dissociation, TixOyClz formation) and efficient reactor cooling

    Reactor chemistry ∆H(1000 C)kJ/mol

    TiCl4(g) + O2(g) ↔ TiO2 ↓ + 2Cl2(g) -175Cl2(g) ↔ 2Cl(g) +250

    Objective: Perform reactor scale-up with good coupling ofthermochemistry and reaction kinetics and validate the model

  • Build-up of the industrial TiCl4-oxidiser model

    Gibbs energy (’HSC’) data available for all species

    Cooling media flow G = G (T, P,ni)

    T=T(x), P=P(x)

    v=v(x)x

    Q=Q(x) ξr

    TiCl4(g), T1

    O2(g), T2

    TQ

    Sand(to removedeposits from reactor walls)

    ( )

    oi

    o

    w

    o

    ii

    o

    gao

    hddd

    dhd

    TThdQ

    1ln2

    +⋅

    +⋅

    −⋅⋅⋅=

    λ

    πTiCl4(g) + O2(g) → TiO2 ↓ + Cl2(g) (I)

    Cl2(g) ↔ 2Cl(g) (II)

    Reaction ∆HkJ.mol-1

    ∆GkJ.mol-1

    Reaction rate equation * EakJ.mol-1

    As-1

    A’(dm3.mol-1)½.s-1

    (I) -175.4 -104.1 [ ] [ ]( )[ ]424 TiClO'dTiCld kk

    t+−= ~ 71 8.26⋅104 1.4⋅105

    (II) 250.3 98.2 assumed equilibrium - - -

    *TiCl4 consumption rate measured by Pratsinis & al., 1990

  • Choice of independent measurables for model validation:

    VALIDATION OF NON-ISOTHERMAL SCALE-UP CALCULATIONS

    direct temperature measurement(2 plug flow reactors)

    00.10.20.30.40.50.60.70.80.9

    1

    CONE RT1 RT2 CT1 CT2-3 CT4-5 CT6-7 CT8

    Q /

    Qm

    ax

    Model Meas. heat transfer measurement from

    the tubular reactor

    Koukkari P., Penttilä K. and Keegel, M.: Coupled Thermodynamic and Kinetic Models for High-Temperature Processes, 10th International IUPAC Conference on High Temperature Materials Chemistry, Part I , Forscungszentrum Julich, 2000, 253-256.

    CFE scale-up performed for 2 industrial pigment producers(US & NL)

    plant historical trends fordirect & indirect checks

    1 Feed inlet pressure2 Sand separator pressure3 Reactor tube heat rmvd4 Cooling tube heat rmvd

    1

    23

    4

  • Immaterial constraints can be introduced to Gibbs energy minimization to allow the calculation of kinetically controlled systems

    reaction matrix serves as basis for new constraints for reaction extents

    stoichiometric matrix includes all reactions

    ⇒ CFE provides a viable and robust alternative for mechanistic kinetic studies in complex multi-component – multi-phase systems; has also small number of kinetic parameters

    Assuming local chemical equilibrium (LCE) with TiO2(s) formation agrees with plug flow experiments – encourages more research on CFE/LCE method of multiphase systems

    CONCLUSIONS

    PresenterPresentation NotesEnter speaker notes here.

  • Published applications of the G(ξ) [Ratemix*] method

    Methanation Extent of methanation reactions TiO2 production Oxidation of TiCl4 in furnace Combustion In-line PCC production

    Post-flame NOX generation Precipitation of CaCO3

    Clinker formation in cement kilns Phase equilibria during steel solidification

    Formation of C2,3S-phases & free lime (cement making) Paraequilibrium phase diagrams

    *Ratemix is a trademark of VTT

    Methanation

    Extent of methanation reactions

    TiO2 production

    Oxidation of TiCl4 in furnace

    Combustion

    In-line PCC production

    Post-flame NOX generation

    Precipitation of CaCO3

    Clinker formation in cement kilns

    Phase equilibria during steel solidification

    Formation of C2,3S-phases & free lime (cement making)

    Paraequilibrium phase diagrams

    Methanation

    Exten

    t

    of methanation reactions

    TiO

    2

    production

    Oxidation of TiCl

    4

    in furnace

    Combustion

    In

    -

    line PCC production

    Post

    -

    flame NO

    X

    generation

    Precipitation of CaCO

    3

    Clinker formation in cement kilns

    Phase equilibria during steel

    solidification

    Formation of C

    2,3

    S

    -

    phases & free lime

    (cement making)

    Paraequilibrium phase diagrams

    Methanation Extent of methanation reactions

    TiO

    2

    production Oxidation of TiCl

    4

    in furnace

    Combustion

    In-line PCC production

    Post-flame NO

    X

    generation

    Precipitation of CaCO

    3

    Clinker formation in cement kilns

    Phase equilibria during steel

    solidification

    Formation of C

    2,3

    S-phases & free lime (cement making)

    Paraequilibrium phase diagrams

  • Thank you for your attention !

    PresenterPresentation NotesInterleaf option 1: Use interleaf if you want to separate sections in your presentationYou can use interleaf with one or two photos or without photos

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23