compilation 0368-3133 (semester a, 2013/14)

194
Compilation 0368-3133 (Semester A, 2013/14) Lecture 12: Abstract Interpretation Noam Rinetzky Slides credit: Roman Manevich, Mooly Sagiv and Eran Yahav 1

Upload: kovit

Post on 23-Feb-2016

46 views

Category:

Documents


0 download

DESCRIPTION

Compilation 0368-3133 (Semester A, 2013/14). Lecture 12: Abstract Interpretation Noam Rinetzky. Slides credit: Roman Manevich , Mooly Sagiv and Eran Yahav. What is a compiler?. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Compilation   0368-3133 (Semester A, 2013/14)

1

Compilation 0368-3133 (Semester A, 2013/14)

Lecture 12: Abstract Interpretation

Noam Rinetzky

Slides credit: Roman Manevich, Mooly Sagiv and Eran Yahav

Page 2: Compilation   0368-3133 (Semester A, 2013/14)

2

What is a compiler?

“A compiler is a computer program that transforms source code written in a programming language (source language) into another language (target language).

The most common reason for wanting to transform source code is to create an executable program.”

--Wikipedia

Page 3: Compilation   0368-3133 (Semester A, 2013/14)

3

AST

+ Sy

m. T

ab.

Stages of compilationSource code

(program)

LexicalAnalysis

Syntax Analysis

Parsing

Context Analysis

Portable/Retargetable

code generation

Target code

(executable)

Asse

mbl

y

IRText

Toke

n st

ream

AST

CodeGeneration

Page 4: Compilation   0368-3133 (Semester A, 2013/14)

4

Inst

ructi

on se

lecti

on

AST

+ Sy

m. T

ab.

Stages of CompilationSource code

(program)

LexicalAnalysis

Syntax Analysis

Parsing

Context Analysis

Portable/Retargetable

code generation

Target code

(executable)

Asse

mbl

y

IRText

Toke

n st

ream

AST

“Nai

ve”

IRIR

Opti

miza

tion

IR (T

AC) g

ener

ation

“Ass

embl

y”

(sym

bolic

regi

ster

s)

Peep

hole

opti

miza

tion

Asse

mbl

y

CodeGeneration

regi

ster

allo

catio

n

Page 5: Compilation   0368-3133 (Semester A, 2013/14)

5

Optimization points

sourcecode

Frontend IR Code

generatortargetcode

Program AnalysisAbstract interpretation

today

Page 6: Compilation   0368-3133 (Semester A, 2013/14)

6

Program Analysis

• In order to optimize a program, the compiler has to be able to reason about the properties of that program

• An analysis is called sound if it never asserts an incorrect fact about a program

• All the analyses we will discuss in this class are sound– (Why?)

Page 7: Compilation   0368-3133 (Semester A, 2013/14)

7

Optimization path

IR Control-FlowGraph

CFGbuilder

ProgramAnalysis

AnnotatedCFG

OptimizingTransformation

TargetCode

CodeGeneration

(+optimizations)

donewith IR

optimizations

IRoptimizations

Page 8: Compilation   0368-3133 (Semester A, 2013/14)

8

Soundness

int x;int y;

if (y < 5) x = 137;else x = 42;

Print(x);

“At this point in theprogram, x holds some

integer value”

Page 9: Compilation   0368-3133 (Semester A, 2013/14)

9

Soundness

int x;int y;

if (y < 5) x = 137;else x = 42;

Print(x);

“At this point in theprogram, x is either 137 or 42”

Page 10: Compilation   0368-3133 (Semester A, 2013/14)

10

(Un) Soundness

int x;int y;

if (y < 5) x = 137;else x = 42;

Print(x);

“At this point in theprogram, x is 137”

Page 11: Compilation   0368-3133 (Semester A, 2013/14)

11

Soundness & Precision

int x;int y;

if (y < 5) x = 137;else x = 42;

Print(x);

“At this point in theprogram, x is either 137,

42, or 271”

Page 12: Compilation   0368-3133 (Semester A, 2013/14)

12

Semantics-preserving optimizations

• An optimization is semantics-preserving if it does not alter the semantics (meaning) of the original programEliminating unnecessary temporary variablesComputing values that are known statically at compile-

time instead of computing them at runtimeEvaluating iteration-independent expressions outside

of a loop instead of inside✗Replacing bubble sort with quicksort (why?)

• The optimizations we will consider in this class are all semantics-preserving

Page 13: Compilation   0368-3133 (Semester A, 2013/14)

13

Types of optimizations

• An optimization is local if it works on just a single basic block

• An optimization is global if it works on an entire control-flow graph

Page 14: Compilation   0368-3133 (Semester A, 2013/14)

14

Local optimizations

_t0 = 137;y = _t0;IfZ x Goto _L0;

start

_t1 = y;z = _t1;

_t2 = y;x = _t2;

start

int main() {int x;int y;int z;

y = 137;if (x == 0)

z = y;else

x = y;}

Page 15: Compilation   0368-3133 (Semester A, 2013/14)

15

Local optimizations

y = 137;IfZ x Goto _L0;

start

z = y; x = y;

End

int main() {int x;int y;int z;

y = 137;if (x == 0)

z = y;else

x = y;}

Page 16: Compilation   0368-3133 (Semester A, 2013/14)

16

Global optimizations

y = 137;IfZ x Goto _L0;

start

z = y; x = y;

End

int main() {int x;int y;int z;

y = 137;if (x == 0)

z = y;else

x = y;}

Page 17: Compilation   0368-3133 (Semester A, 2013/14)

17

Global optimizations

y = 137;IfZ x Goto _L0;

start

z = 137; x = 137;

End

int main() {int x;int y;int z;

y = 137;if (x == 0)

z = y;else

x = y;}

Page 18: Compilation   0368-3133 (Semester A, 2013/14)

18

Global Analyses

• Common subexpression elimination• Copy propagation• Dead code elimination• Live variables

– Used for register allocation

Page 19: Compilation   0368-3133 (Semester A, 2013/14)

19

Global liveness analysis

a=b+c

s2 s3

IN[s2] IN[s3]

OUT[s]=IN[s2] IN[s3]

IN[s]=(OUT[s] – {a}) {b, c}

Page 20: Compilation   0368-3133 (Semester A, 2013/14)

20

Live variable analysis- initialization

Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{}{}

{}

{}

Page 21: Compilation   0368-3133 (Semester A, 2013/14)

21

Live variable analysis

Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{}{}

{}

{}

{a}

Page 22: Compilation   0368-3133 (Semester A, 2013/14)

22Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}

Live variable analysis

IN[s2]=(OUT[s2] – {d}) {b, c}

IN[s1]=(OUT[s1] – {a}) {a, b}

?

Page 23: Compilation   0368-3133 (Semester A, 2013/14)

23Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}

{a, b, c}

Live variable analysis

Page 24: Compilation   0368-3133 (Semester A, 2013/14)

24Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}

CFGs with loops - iteration

Page 25: Compilation   0368-3133 (Semester A, 2013/14)

25Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}

{b, c}

CFGs with loops - iteration

Page 26: Compilation   0368-3133 (Semester A, 2013/14)

26Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}

CFGs with loops - iteration

Page 27: Compilation   0368-3133 (Semester A, 2013/14)

27Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}

Live variable analysis

Page 28: Compilation   0368-3133 (Semester A, 2013/14)

28Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}

Live variable analysis

Page 29: Compilation   0368-3133 (Semester A, 2013/14)

29Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

Live variable analysis

Page 30: Compilation   0368-3133 (Semester A, 2013/14)

30Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

Live variable analysis

Page 31: Compilation   0368-3133 (Semester A, 2013/14)

31Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

Live variable analysis

Page 32: Compilation   0368-3133 (Semester A, 2013/14)

32Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

Live variable analysis

Page 33: Compilation   0368-3133 (Semester A, 2013/14)

33Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}

Live variable analysis

Page 34: Compilation   0368-3133 (Semester A, 2013/14)

34Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}

Live variable analysis

Page 35: Compilation   0368-3133 (Semester A, 2013/14)

35

Live variable analysis

Exit

a = a + b;d = b + c;

c = a + b;a = b + c;d = a + c;

b = c + d;c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}

Page 36: Compilation   0368-3133 (Semester A, 2013/14)

36

Kill Gen

Global liveness analysis: Kill/Gen

a=b+c

s2 s3

IN[s2] IN[s3]

OUT[s]=IN[s2] IN[s3]

IN[s]=(OUT[s] – {a}) {b, c}

Page 37: Compilation   0368-3133 (Semester A, 2013/14)

37

Formalizing data-flow analyses• Define an analysis of a basic block as a

quadruple (D, V, , F, I) where– D is a direction (forwards or backwards)– V is a set of values the program can have at any

point– merging (joining) information – F is a family of transfer functions defining the

meaning of any expression as a function f : V V– I is the initial information at the top (or bottom)

of a basic block

Page 38: Compilation   0368-3133 (Semester A, 2013/14)

38

Liveness Analysis• Direction: Backward• Values: Sets of variables• Transfer functions: Given a set of variable assignments V

and statement a = b + c:• Remove a from V (any previous value of a is now dead.)• Add b and c to V (any previous value of b or c is now live.)• Formally: Vin = (Vout \ {a}) {b,c}• Initial value: Depends on semantics of language

– E.g., function arguments and return values (pushes)– Result of local analysis of other blocks as part of a

global analysis• Merge: =

Page 39: Compilation   0368-3133 (Semester A, 2013/14)

39

Available Expressions• Direction: Forward• Values: Sets of expressions assigned to variables• Transfer functions: Given a set of variable assignments V

and statement a = b + c:– Remove from V any expression containing a as a subexpression– Add to V the expression a = b + c– Formally: Vout = (Vin \ {e | e contains a}) {a = b + c}

• Initial value: Empty set of expressions• Merge: = ?

Page 40: Compilation   0368-3133 (Semester A, 2013/14)

40

Why does this work? (Live Var.)• To show correctness, we need to show that

– The algorithm eventually terminates, and– When it terminates, it has a sound answer

• Termination argument:– Once a variable is discovered to be live during some point of the analysis, it

always stays live– Only finitely many variables and finitely many places where a variable can

become live• Soundness argument (sketch):

– Each individual rule, applied to some set, correctly updates liveness in that set

– When computing the union of the set of live variables, a variable is only live if it was live on some path leaving the statement

Page 41: Compilation   0368-3133 (Semester A, 2013/14)

41

Abstract Interpretation

• Theoretical foundations of program analysis

• Cousot and Cousot 1977

• Abstract meaning of programs– “Executed” at compile time

• Execution = Analysis

Page 42: Compilation   0368-3133 (Semester A, 2013/14)

42

Another view of program analysis

• We want to reason about some property of the runtime behavior of the program

• Could we run the program and just watch what happens?

• Idea: Redefine the semantics of our programming language to give us information about our analysis

Page 43: Compilation   0368-3133 (Semester A, 2013/14)

43

Another view of program analysis

• We want to reason about some property of the runtime behavior of the program

• Could we run the program and just watch what happens?

Page 44: Compilation   0368-3133 (Semester A, 2013/14)

44

Another view of program analysis

• The only way to find out exactly what a program will actually do is to run it

• Problems:– The program might not terminate– The program might have some behavior we

didn't see when we ran it on a particular input

Page 45: Compilation   0368-3133 (Semester A, 2013/14)

45

Another view of program analysis

• The only way to find out exactly what a program will actually do is to run it

• Problems:– The program might not terminate– The program might have some behavior we

didn't see when we ran it on a particular input• Inside a basic block, it is simpler

– Basic blocks contain no loops– There is only one path through the basic block

Page 46: Compilation   0368-3133 (Semester A, 2013/14)

46

Another view of program analysis

• The only way to find out exactly what a program will actually do is to run it

• Problems:– The program might not terminate– The program might have some behavior we didn't

see when we ran it on a particular input• Inside a basic block, it is simpler

– Basic blocks contain no loops– There is only one path through the basic block– But still …

Page 47: Compilation   0368-3133 (Semester A, 2013/14)

47

Assigning new semantics (Local)

• Example: Available Expressions• Redefine the statement a = b + c to mean

“a now holds the value of b + c, and any variable holding the value a is now invalid”

• “Run” the program assuming these new semantics

Page 48: Compilation   0368-3133 (Semester A, 2013/14)

48

Assigning new semantics (Global)

• Example: Available Expressions• Redefine the statement a = b + c to mean

“a now holds the value of b + c, and any variable holding the value a is now invalid”

• “Run” the program assuming these new semantics

• Merge information from different paths

Page 49: Compilation   0368-3133 (Semester A, 2013/14)

49

Abstract Interpretation

• Example: Available Expressions• Redefine the statement a = b + c to mean “a

now holds the value of b + c, and any variable holding the value a is now invalid”

• “Run” the program assuming these new semantics

• Merge information from different paths• Treat the optimizer as an interpreter for these

new semantics

Page 50: Compilation   0368-3133 (Semester A, 2013/14)

50

Theory of Program Analysis• Building up all of the machinery to design this analysis was

tricky• The key ideas, however, are mostly independent of the

analysis:– We need to be able to compute functions describing the

behavior of each statement– We need to be able to merge several subcomputations together– We need an initial value for all of the basic blocks

• There is a beautiful formalism that captures many of these properties

Page 51: Compilation   0368-3133 (Semester A, 2013/14)

51

Join semilattices• A join semilattice is a ordering defined on a set of

elements– 0 ≤ 1 ≤ 2 ≤ …– {} ≤ {0} ≤ {0,1} , {1,2} ≤ {0,1,2} ≤ {1,2,3,4}

• Any two elements have some join that is the smallest element larger than both elements

• There is a unique bottom element, which is smaller than all other elements– The join of two elements represents combining

(merging) information from two elements by an overapproximation

• The bottom element represents “no information yet” or “the least conservative possible answer”

/

Page 52: Compilation   0368-3133 (Semester A, 2013/14)

52

Join semilattice for liveness

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom element

Page 53: Compilation   0368-3133 (Semester A, 2013/14)

53

What is the join of {b} and {c}?

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Page 54: Compilation   0368-3133 (Semester A, 2013/14)

54

What is the join of {b} and {c}?

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Page 55: Compilation   0368-3133 (Semester A, 2013/14)

55

What is the join of {b} and {a,c}?

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Page 56: Compilation   0368-3133 (Semester A, 2013/14)

56

What is the join of {b} and {a,c}?

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Page 57: Compilation   0368-3133 (Semester A, 2013/14)

57

What is the join of {a} and {a,b}?

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Page 58: Compilation   0368-3133 (Semester A, 2013/14)

58

What is the join of {a} and {a,b}?

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Page 59: Compilation   0368-3133 (Semester A, 2013/14)

59

Formal definitions• A join semilattice is a pair (V, ), where• V is a domain of elements• is a join operator that is

– commutative: x y = y x– associative: (x y) z = x (y z)– idempotent: x x = x

• If x y = z, we say that z is the joinor (least upper bound) of x and y

• Every join semilattice has a bottom element denoted such that x = x for all x

Page 60: Compilation   0368-3133 (Semester A, 2013/14)

60

Join semilattices and ordering

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}Greater

Lower

Page 61: Compilation   0368-3133 (Semester A, 2013/14)

61

Join semilattices and ordering

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}Least precise

Most precise

Page 62: Compilation   0368-3133 (Semester A, 2013/14)

62

Join semilattices and orderings

• Every join semilattice (V, ) induces an ordering relationship over its elements

• Define x y iff x y = y• Need to prove

– Reflexivity: x x– Antisymmetry: If x y and y x, then x = y– Transitivity: If x y and y z, then x z

Page 63: Compilation   0368-3133 (Semester A, 2013/14)

63

An example join semilattice• The set of natural numbers and the max function• Idempotent

– max{a, a} = a• Commutative

– max{a, b} = max{b, a}• Associative

– max{a, max{b, c}} = max{max{a, b}, c}• Bottom element is 0:

– max{0, a} = a• What is the ordering over these elements?

Page 64: Compilation   0368-3133 (Semester A, 2013/14)

64

A join semilattice for liveness• Sets of live variables and the set union operation• Idempotent:

– x x = x• Commutative:

– x y = y x• Associative:

– (x y) z = x (y z)• Bottom element:

– The empty set: Ø x = x• What is the ordering over these elements?

Page 65: Compilation   0368-3133 (Semester A, 2013/14)

65

Semilattices and program analysis

• Semilattices naturally solve many of the problems we encounter in global analysis

• How do we combine information from multiple basic blocks?

• What value do we give to basic blocks we haven't seen yet?

• How do we know that the algorithm always terminates?

Page 66: Compilation   0368-3133 (Semester A, 2013/14)

66

Semilattices and program analysis

• Semilattices naturally solve many of the problems we encounter in global analysis

• How do we combine information from multiple basic blocks?– Take the join of all information from those blocks

• What value do we give to basic blocks we haven't seen yet?– Use the bottom element

• How do we know that the algorithm always terminates?– Actually, we still don't! More on that later

Page 67: Compilation   0368-3133 (Semester A, 2013/14)

67

A general framework

• A global analysis is a tuple (D, V, , F, I), where– D is a direction (forward or backward)

• The order to visit statements within a basic block, not the order in which to visit the basic blocks

– V is a set of values– is a join operator over those values– F is a set of transfer functions f : V V– I is an initial value

• The only difference from local analysis is the introduction of the join operator

Page 68: Compilation   0368-3133 (Semester A, 2013/14)

68

Running global analyses• Assume that (D, V, , F, I) is a forward analysis• Set OUT[s] = for all statements s• Set OUT[entry] = I• Repeat until no values change:

– For each statement s with predecessorsp1, p2, … , pn:• Set IN[s] = OUT[p1] OUT[p2] … OUT[pn]• Set OUT[s] = fs (IN[s])

• The order of this iteration does not matter– This is sometimes called chaotic iteration

Page 69: Compilation   0368-3133 (Semester A, 2013/14)

69

The dataflow framework

• This form of analysis is called the dataflow framework

• Can be used to easily prove an analysis is sound

• With certain restrictions, can be used to prove that an analysis eventually terminates– Again, more on that later

Page 70: Compilation   0368-3133 (Semester A, 2013/14)

70

Global constant propagation

• Constant propagation is an optimization that replaces each variable that is known to be a constant value with that constant

• An elegant example of the dataflow framework

Page 71: Compilation   0368-3133 (Semester A, 2013/14)

71

Global constant propagation

exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry

Page 72: Compilation   0368-3133 (Semester A, 2013/14)

72

Global constant propagation

exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry

Page 73: Compilation   0368-3133 (Semester A, 2013/14)

73

Global constant propagation

exit x = 4;

z = x;

w = 6;

y = 6; z = y;

x = 6;entry

Page 74: Compilation   0368-3133 (Semester A, 2013/14)

74

Constant propagation analysis

• In order to do a constant propagation, we need to track what values might be assigned to a variable at each program point

• Every variable will either– Never have a value assigned to it,– Have a single constant value assigned to it,– Have two or more constant values assigned to it, or– Have a known non-constant value.– Our analysis will propagate this information throughout a

CFG to identify locations where a value is constant

Page 75: Compilation   0368-3133 (Semester A, 2013/14)

75

Properties of constant propagation

• For now, consider just some single variable x• At each point in the program, we know one of three things

about the value of x:– x is definitely not a constant, since it's been assigned two values

or assigned a value that we know isn't a constant– x is definitely a constant and has value k– We have never seen a value for x

• Note that the first and last of these are not the same!– The first one means that there may be a way for x to have

multiple values– The last one means that x never had a value at all

Page 76: Compilation   0368-3133 (Semester A, 2013/14)

76

Defining a join operator• The join of any two different constants is Not-a-Constant

– (If the variable might have two different values on entry to a statement, it cannot be a constant)

• The join of Not a Constant and any other value is Not-a-Constant– (If on some path the value is known not to be a constant, then

on entry to a statement its value can't possibly be a constant)• The join of Undefined and any other value is that other

value– (If x has no value on some path and does have a value on some

other path, we can just pretend it always had the assigned value)

Page 77: Compilation   0368-3133 (Semester A, 2013/14)

77

A semilattice for constant propagation• One possible semilattice for this analysis is

shown here (for each variable):

Undefined

0-1-2 1 2 ......

Not-a-constant

The lattice is infinitely wide

Page 78: Compilation   0368-3133 (Semester A, 2013/14)

78

A semilattice for constant propagation• One possible semilattice for this analysis is

shown here (for each variable):

Undefined

0-1-2 1 2 ......

Not-a-constant

• Note:• The join of any two different constants is Not-a-Constant• The join of Not a Constant and any other value is Not-a-Constant• The join of Undefined and any other value is that other value

Page 79: Compilation   0368-3133 (Semester A, 2013/14)

79

Global constant propagation

exit x = 4;Undefined

z = x;Undefined

w = x;Undefined

y = x;Undefined

z = y;Undefined

x = 6;Undefined

entryUndefined

x=Undefinedy=Undefinedz=Undefinedw=Undefined

Page 80: Compilation   0368-3133 (Semester A, 2013/14)

80

Global constant propagation

exit x = 4;Undefined

z = x;Undefined

w = x;Undefined

y = x;Undefined

z = y;Undefined

x = 6;Undefined

entryUndefined

Page 81: Compilation   0368-3133 (Semester A, 2013/14)

81

Global constant propagation

exit x = 4;Undefined

z = x;Undefined

w = x;Undefined

y = x;Undefined

z = y;Undefined

Undefinedx = 6;Undefined

entryUndefined

Page 82: Compilation   0368-3133 (Semester A, 2013/14)

82

Global constant propagation

exit x = 4;Undefined

z = x;Undefined

w = x;Undefined

y = x;Undefined

z = y;Undefined

Undefinedx = 6;x = 6, y=z=w=

entryUndefined

Page 83: Compilation   0368-3133 (Semester A, 2013/14)

83

Global constant propagation

exit x = 4;Undefined

z = x;Undefined

w = x;Undefined

y = x;Undefined

z = y;Undefined

Undefinedx = 6;x = 6, y=z=w=

entryUndefined

Page 84: Compilation   0368-3133 (Semester A, 2013/14)

84

Global constant propagation

exit x = 4;Undefined

z = x;Undefined

w = x;Undefined

x=6y = x;Undefined

z = y;Undefined

Undefinedx = 6;x = 6

entryUndefined

Page 85: Compilation   0368-3133 (Semester A, 2013/14)

85

Global constant propagation

exit x = 4;Undefined

z = x;Undefined

w = x;Undefined

x=6y = x;x=6,y=6

z = y;Undefined

Undefinedx = 6;x = 6

entryUndefined

Page 86: Compilation   0368-3133 (Semester A, 2013/14)

86

Global constant propagation

exit x = 4;Undefined

z = x;Undefined

w = x;Undefined

x=6y = x;x=6,y=6

z = y;Undefined

Undefinedx = 6;x = 6

entryUndefined

y=6 y=Undefined gives what?

Page 87: Compilation   0368-3133 (Semester A, 2013/14)

87

Global constant propagation

exit x = 4;Undefined

z = x;Undefined

x=6,y=6w = x;Undefined

x=6y = x;x=6,y=6

z = y;Undefined

Undefinedx = 6;x = 6

entryUndefined

Page 88: Compilation   0368-3133 (Semester A, 2013/14)

88

Global constant propagation

exit x = 4;Undefined

z = x;Undefined

x=6,y=6w = x;Undefined

x=6y = x;x=6,y=6

z = y;Undefined

Undefinedx = 6;x = 6

entryUndefined

Page 89: Compilation   0368-3133 (Semester A, 2013/14)

89

Global constant propagation

exit x = 4;Undefined

z = x;Undefined

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

z = y;Undefined

Undefinedx = 6;x = 6

entryUndefined

Page 90: Compilation   0368-3133 (Semester A, 2013/14)

90

Global constant propagation

exit x = 4;Undefined

z = x;Undefined

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

z = y;Undefined

Undefinedx = 6;x = 6

entryUndefined

Page 91: Compilation   0368-3133 (Semester A, 2013/14)

91

Global constant propagation

exit x = 4;Undefined

x=y=w=6z = x;Undefined

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

z = y;Undefined

Undefinedx = 6;x = 6

entryUndefined

Page 92: Compilation   0368-3133 (Semester A, 2013/14)

92

Global constant propagation

exit x = 4;Undefined

x=y=w=6z = x;x=y=w=z=6

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

z = y;Undefined

Undefinedx = 6;x = 6

entryUndefined

Page 93: Compilation   0368-3133 (Semester A, 2013/14)

93

Global constant propagation

exit x = 4;Undefined

x=y=w=6z = x;x=y=w=z=6

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

z = y;Undefined

Undefinedx = 6;x = 6

entryUndefined

Page 94: Compilation   0368-3133 (Semester A, 2013/14)

94

Global constant propagation

exitx=y=w=z=6x = 4;Undefined

x=y=w=6z = x;x=y=w=z=6

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

z = y;Undefined

Undefinedx = 6;x = 6

entryUndefined

Page 95: Compilation   0368-3133 (Semester A, 2013/14)

95

Global constant propagation

exitx=y=w=z=6x = 4;x=4, y=w=z=6

x=y=w=6z = x;x=y=w=z=6

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

z = y;Undefined

Undefinedx = 6;x = 6

entryUndefined

Page 96: Compilation   0368-3133 (Semester A, 2013/14)

96

Global constant propagation

exitx=y=w=z=6x = 4;x=4, y=w=z=6

x=y=w=6z = x;x=y=w=z=6

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

z = y;Undefined

Undefinedx = 6;x = 6

entryUndefined

Page 97: Compilation   0368-3133 (Semester A, 2013/14)

97

Global constant propagation

exitx=y=w=z=6x = 4;x=4, y=w=z=6

x=y=w=6z = x;x=y=w=z=6

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

x = 6z = y;Undefined

Undefinedx = 6;x = 6

entryUndefined

Page 98: Compilation   0368-3133 (Semester A, 2013/14)

98

Global constant propagation

exitx=y=w=z=6x = 4;x=4, y=w=z=6

x=y=w=6z = x;x=y=w=z=6

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

x = 6z = y;Undefined

Undefinedx = 6;x = 6

entryUndefined

Page 99: Compilation   0368-3133 (Semester A, 2013/14)

99

Global constant propagation

exitx=y=w=z=6x = 4;x=4, y=w=z=6

x=y=w=6z = x;x=y=w=z=6

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

x = 6z = y;x = 6

Undefinedx = 6;x = 6

entryUndefined

Page 100: Compilation   0368-3133 (Semester A, 2013/14)

100

Global constant propagation

exitx=y=w=z=6x = 4;x=4, y=w=z=6

x=y=w=6z = x;x=y=w=z=6

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

x = 6z = y;x = 6

Undefinedx = 6;x = 6

entryUndefined

x=6 x=4 gives what?

Page 101: Compilation   0368-3133 (Semester A, 2013/14)

101

Global constant propagation

exitx=y=w=z=6x = 4;x=4, y=w=z=6

y=w=6, x=z = x;x=y=w=z=6

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

x = 6z = y;x = 6

Undefinedx = 6;x = 6

entryUndefined

Page 102: Compilation   0368-3133 (Semester A, 2013/14)

102

Global constant propagation

exitx=y=w=z=6x = 4;x=4, y=w=z=6

y=w=6,x=z = x;y=w=6,z=x=

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

x = 6z = y;x = 6

Undefinedx = 6;x = 6

entryUndefined

Page 103: Compilation   0368-3133 (Semester A, 2013/14)

103

Global constant propagation

exitx=y=w=z=6x = 4;x=4,y=w=6,z=

y=w=6,x=z = x;y=w=6,z=x=

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

x = 6z = y;x = 6

Undefinedx = 6;x = 6

entryUndefined

Page 104: Compilation   0368-3133 (Semester A, 2013/14)

104

Global constant propagation

exity=w=6,z=x= x = 4;x=4,y=w=6,z=

y=w=6,x=z = x;y=w=6

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

x = 6z = y;x = 6

Undefinedx = 6;x = 6

entryUndefined

Page 105: Compilation   0368-3133 (Semester A, 2013/14)

105

Global constant propagation

exity=w=6,z=x= x = 4;x=4,y=w=6,z=

y=w=6,x=z = x;y=w=6

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

x = 6z = y;x = 6

Undefinedx = 6;x = 6

entryUndefined

Page 106: Compilation   0368-3133 (Semester A, 2013/14)

106

Global constant propagation

exity=w=6,z=x= x = 4;x=4,y=w=6,z=

y=w=6, z=x=z = x;y=w=6, z=x=

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

x = 6z = y;x = 6

Undefinedx = 6;x = 6

entryUndefined

Page 107: Compilation   0368-3133 (Semester A, 2013/14)

107

Global constant propagation

exity=w=6,z=x= x = 4;x=4,y=w=6,z=

y=w=6, z=x=z = x;y=w=6, z=x=

x=6,y=6w = x;x=y=w=6

x=6y = x;x=6,y=6

x = 6z = y;x = 6

Undefinedx = 6;x = 6

entryUndefined

Global analysisreached fixpoint

Page 108: Compilation   0368-3133 (Semester A, 2013/14)

108

Dataflow for constant propagation

• Direction: Forward• Semilattice: Vars {Undefined, 0, 1, -1, 2, -2, …, Not-a-

Constant}– Join mapping for variables point-wise

{x1,y1,z1} {x1,y2,zNot-a-Constant} = {x1,yNot-a-Constant,zNot-a-Constant}

• Transfer functions:– fx=k(V) = V|xk (update V by mapping x to k)– fx=a+b(V) = V|x?

• Initial value: x is Undefined– (When might we use some other value?)

Page 109: Compilation   0368-3133 (Semester A, 2013/14)

109

Dataflow for constant propagation

• Direction: Forward• Semilattice: Vars {Undefined, 0, 1, -1, 2, -2, …, Not-a-

Constant}– Join mapping for variables point-wise

{x1,y1,z1} {x1,y2,zNot-a-Constant} = {x1,yNot-a-Constant,zNot-a-Constant}

• Transfer functions:– fx=k(V) = V|xk (update V by mapping x to k)– fx=a+b(V) = V|x?

• Initial value: x is Undefined– (When might we use some other value?)

Page 110: Compilation   0368-3133 (Semester A, 2013/14)

110

Proving termination

• Our algorithm for running these analyses continuously loops until no changes are detected

• Given this, how do we know the analyses will eventually terminate?– In general, we don‘t

Page 111: Compilation   0368-3133 (Semester A, 2013/14)

111

Terminates?

Page 112: Compilation   0368-3133 (Semester A, 2013/14)

112

Liveness Analysis

• A variable is live at a point in a program if later in the program its value will be read before it is written to again

Page 113: Compilation   0368-3133 (Semester A, 2013/14)

113

Join semilattice definition• A join semilattice is a pair (V, ), where• V is a domain of elements• is a join operator that is

– commutative: x y = y x– associative: (x y) z = x (y z)– idempotent: x x = x

• If x y = z, we say that z is the joinor (Least Upper Bound) of x and y

• Every join semilattice has a bottom element denoted such that x = x for all x

Page 114: Compilation   0368-3133 (Semester A, 2013/14)

114

Partial ordering induced by join

• Every join semilattice (V, ) induces an ordering relationship over its elements

• Define x y iff x y = y• Need to prove

– Reflexivity: x x– Antisymmetry: If x y and y x, then x = y– Transitivity: If x y and y z, then x z

Page 115: Compilation   0368-3133 (Semester A, 2013/14)

115

A join semilattice for liveness• Sets of live variables and the set union operation• Idempotent:

– x x = x• Commutative:

– x y = y x• Associative:

– (x y) z = x (y z)• Bottom element:

– The empty set: Ø x = x• Ordering over elements = subset relation

Page 116: Compilation   0368-3133 (Semester A, 2013/14)

116

Join semilattice example for liveness

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom element

Page 117: Compilation   0368-3133 (Semester A, 2013/14)

117

Dataflow framework

• A global analysis is a tuple (D, V, , F, I), where– D is a direction (forward or backward)

• The order to visit statements within a basic block,NOT the order in which to visit the basic blocks

– V is a set of values (sometimes called domain)– is a join operator over those values– F is a set of transfer functions fs : V V

(for every statement s)– I is an initial value

Page 118: Compilation   0368-3133 (Semester A, 2013/14)

118

Running global analyses• Assume that (D, V, , F, I) is a forward analysis• For every statement s maintain values before - IN[s] - and after -

OUT[s]• Set OUT[s] = for all statements s• Set OUT[entry] = I• Repeat until no values change:

– For each statement s with predecessorsPRED[s]={p1, p2, … , pn}

• Set IN[s] = OUT[p1] OUT[p2] … OUT[pn]• Set OUT[s] = fs(IN[s])

• The order of this iteration does not matter– Chaotic iteration

Page 119: Compilation   0368-3133 (Semester A, 2013/14)

119

Proving termination

• Our algorithm for running these analyses continuously loops until no changes are detected

• Problem: how do we know the analyses will eventually terminate?

Page 120: Compilation   0368-3133 (Semester A, 2013/14)

120

A non-terminating analysis

• The following analysis will loop infinitely on any CFG containing a loop:

• Direction: Forward• Domain: ℕ• Join operator: max• Transfer function: f(n) = n + 1• Initial value: 0

Page 121: Compilation   0368-3133 (Semester A, 2013/14)

121

A non-terminating analysisstart

end

x++

Page 122: Compilation   0368-3133 (Semester A, 2013/14)

122

Initializationstart

end

x++0

0

Page 123: Compilation   0368-3133 (Semester A, 2013/14)

123

Fixed-point iterationstart

end

x++0

0

Page 124: Compilation   0368-3133 (Semester A, 2013/14)

124

Choose a blockstart

end

x ++0

0

Page 125: Compilation   0368-3133 (Semester A, 2013/14)

125

Iteration 1start

end

x ++0

0

0

Page 126: Compilation   0368-3133 (Semester A, 2013/14)

126

Iteration 1start

end

x++1

0

0

Page 127: Compilation   0368-3133 (Semester A, 2013/14)

127

Choose a blockstart

end

x++1

0

0

Page 128: Compilation   0368-3133 (Semester A, 2013/14)

128

Iteration 2start

end

x ++1

0

0

Page 129: Compilation   0368-3133 (Semester A, 2013/14)

129

Iteration 2start

end

x++1

0

1

Page 130: Compilation   0368-3133 (Semester A, 2013/14)

130

Iteration 2start

end

x++2

0

1

Page 131: Compilation   0368-3133 (Semester A, 2013/14)

131

Choose a blockstart

end

x++2

0

1

Page 132: Compilation   0368-3133 (Semester A, 2013/14)

132

Iteration 3start

end

x++2

0

1

Page 133: Compilation   0368-3133 (Semester A, 2013/14)

133

Iteration 3start

end

x++2

0

2

Page 134: Compilation   0368-3133 (Semester A, 2013/14)

134

Iteration 3start

end

x++3

0

2

Page 135: Compilation   0368-3133 (Semester A, 2013/14)

135

Why doesn’t this terminate?• Values can increase without bound• Note that “increase” refers to the lattice ordering,

not the ordering on the natural numbers• The height of a semilattice is the length of the

longest increasing sequence in that semilattice• The dataflow framework is not guaranteed to

terminate for semilattices of infinite height• Note that a semilattice can be infinitely large but

have finite height– e.g. constant propagation 0

1

2

3

4

...

Page 136: Compilation   0368-3133 (Semester A, 2013/14)

136

Height of a lattice• An increasing chain is a sequence of elements a1 a2 … ak

– The length of such a chain is k• The height of a lattice is the length of the maximal increasing

chain• For liveness with n program variables:

– {} {v1} {v1,v2} … {v1,…,vn}• For available expressions it is the number of expressions of the

form a=b op c– For n program variables and m operator types: mn3

Page 137: Compilation   0368-3133 (Semester A, 2013/14)

137

Another non-terminating analysis

• This analysis works on a finite-height semilattice, but will not terminate on certain CFGs:

• Direction: Forward• Domain: Boolean values true and false• Join operator: Logical OR• Transfer function: Logical NOT• Initial value: false

Page 138: Compilation   0368-3133 (Semester A, 2013/14)

138

A non-terminating analysis

start

end

x=!x

Page 139: Compilation   0368-3133 (Semester A, 2013/14)

139

Initializationstart

end

x=!xfalse

false

Page 140: Compilation   0368-3133 (Semester A, 2013/14)

140

Fixed-point iterationstart

end

x=!xfalse

false

Page 141: Compilation   0368-3133 (Semester A, 2013/14)

141

Choose a blockstart

end

x=!xfalse

false

Page 142: Compilation   0368-3133 (Semester A, 2013/14)

142

Iteration 1start

end

x=!xfalse

false

false

Page 143: Compilation   0368-3133 (Semester A, 2013/14)

143

Iteration 1start

end

x=!xtrue

false

false

Page 144: Compilation   0368-3133 (Semester A, 2013/14)

144

Iteration 2start

end

x=!xtrue

false

true

Page 145: Compilation   0368-3133 (Semester A, 2013/14)

145

Iteration 2start

end

x=!xfalse

false

true

Page 146: Compilation   0368-3133 (Semester A, 2013/14)

146

Iteration 3start

end

x=!xfalse

false

false

Page 147: Compilation   0368-3133 (Semester A, 2013/14)

147

Iteration 3start

end

x=!xtrue

false

false

Page 148: Compilation   0368-3133 (Semester A, 2013/14)

148

Why doesn’t it terminate?• Values can loop indefinitely• Intuitively, the join operator keeps pulling

values up• If the transfer function can keep pushing

values back down again, then the values might cycle forever

false

true

false

true

false

...

Page 149: Compilation   0368-3133 (Semester A, 2013/14)

149

Why doesn’t it terminate?• Values can loop indefinitely• Intuitively, the join operator keeps pulling

values up• If the transfer function can keep pushing

values back down again, then the values might cycle forever

• How can we fix this?

false

true

false

true

false

...

Page 150: Compilation   0368-3133 (Semester A, 2013/14)

150

Monotone transfer functions

• A transfer function f is monotone iff if x y, then f(x) f(y)

• Intuitively, if you know less information about a program point, you can't “gain back” more information about that program point

• Many transfer functions are monotone, including those for liveness and constant propagation

• Note: Monotonicity does not mean that x f(x)– (This is a different property called extensivity)

Page 151: Compilation   0368-3133 (Semester A, 2013/14)

151

Liveness and monotonicity

• A transfer function f is monotone iff if x y, then f(x) f(y)

• Recall our transfer function for a = b + c is– fa = b + c(V) = (V – {a}) {b, c}

• Recall that our join operator is set union and induces an ordering relationship X Y iff X Y

• Is this monotone?

Page 152: Compilation   0368-3133 (Semester A, 2013/14)

152

Is constant propagation monotone?• A transfer function f is monotone iff

if x y, then f(x) f(y)• Recall our transfer functions

– fx=k(V) = V|xk (update V by mapping x to k)– fx=a+b(V) = V|xNot-a-Constant (assign Not-a-Constant)

• Is this monotone?

Undefined

0-1-2 1 2 ......

Not-a-constant

Page 153: Compilation   0368-3133 (Semester A, 2013/14)

153

The grand result

• Theorem: A dataflow analysis with a finite-height semilattice and family of monotone transfer functions always terminates

• Proof sketch:– The join operator can only bring values up– Transfer functions can never lower values back

down below where they were in the past (monotonicity)

– Values cannot increase indefinitely (finite height)

Page 154: Compilation   0368-3133 (Semester A, 2013/14)

154

An “optimality” result

• A transfer function f is distributive if f(a b) = f(a) f(b)for every domain elements a and b

• If all transfer functions are distributive then the fixed-point solution is the solution that would be computed by joining results from all (potentially infinite) control-flow paths– Join over all paths

• Optimal if we ignore program conditions

Page 155: Compilation   0368-3133 (Semester A, 2013/14)

155

An “optimality” result

If(*) Aelse B;

If(*) Celse D;

A B

*

*

C D

exit

A A

*

exit

B B

C D C D

fC(fA()fB()) fD(fA()fB())

fC(fA()) fD(fA()) fC(fB())fD(fB())

?=

Page 156: Compilation   0368-3133 (Semester A, 2013/14)

156

An “optimality” result• A transfer function f is distributive if

f(a b) = f(a) f(b)for every domain elements a and b

• If all transfer functions are distributive then the fixed-point solution is equal to the solution computed by joining results from all (potentially infinite) control-flow paths– Join over all paths

• Optimal if we pretend all control-flow paths can be executed by the program

• Which analyses use distributive functions?

Page 157: Compilation   0368-3133 (Semester A, 2013/14)

157

Loop optimizations• Most of a program’s computations are done inside loops

– Focus optimizations effort on loops• The optimizations we’ve seen so far are independent of the

control structure• Some optimizations are specialized to loops

– Loop-invariant code motion– (Strength reduction via induction variables)

• Require another type of analysis to find out where expressions get their values from– Reaching definitions

• (Also useful for improving register allocation)

Page 158: Compilation   0368-3133 (Semester A, 2013/14)

158

Loop invariant computation

y = t * 4x < y + z

endx = x + 1

start

y = …t = …z = …

Page 159: Compilation   0368-3133 (Semester A, 2013/14)

159

Loop invariant computation

y = t * 4x < y + z

endx = x + 1

start

y = …t = …z = …

t*4 and y+zhave same value on each iteration

Page 160: Compilation   0368-3133 (Semester A, 2013/14)

160

Code hoisting

x < w

endx = x + 1

start

y = …t = …z = …y = t * 4w = y + z

Page 161: Compilation   0368-3133 (Semester A, 2013/14)

161

What reasoning did we use?

y = t * 4x < y + z

endx = x + 1

start

y = …t = …z = …

y is defined inside loop but it is loop invariant since t*4 is loop-invariant

Both t and z are defined only outside of loop

constants are trivially loop-invariant

Page 162: Compilation   0368-3133 (Semester A, 2013/14)

162

What about now?

y = t * 4x < y + z

endx = x + 1t = t + 1

start

y = …t = …z = …

Now t is not loop-invariant and so are t*4 and y

Page 163: Compilation   0368-3133 (Semester A, 2013/14)

163

Loop-invariant code motion• d: t = a1 op a2

– d is a program location• a1 op a2 loop-invariant (for a loop L) if computes the same value

in each iteration– Hard to know in general

• Conservative approximation– Each ai is a constant, or– All definitions of ai that reach d are outside L, or– Only one definition of of ai reaches d, and is loop-invariant itself

• Transformation: hoist the loop-invariant code outside of the loop

Page 164: Compilation   0368-3133 (Semester A, 2013/14)

164

Reaching definitions analysis• A definition d: t = … reaches a program location if there is a path from the

definition to the program location, along which the defined variable is never redefined

Page 165: Compilation   0368-3133 (Semester A, 2013/14)

165

Reaching definitions analysis• A definition d: t = … reaches a program location if there is a path from

the definition to the program location, along which the defined variable is never redefined

• Direction: Forward• Domain: sets of program locations that are definitions `• Join operator: union• Transfer function:

fd: a=b op c(RD) = (RD - defs(a)) {d} fd: not-a-def(RD) = RD– Where defs(a) is the set of locations defining a (statements of the form

a=...)• Initial value: {}

Page 166: Compilation   0368-3133 (Semester A, 2013/14)

166

Reaching definitions analysis

d4: y = t * 4

d4:x < y + z

d6: x = x + 1

d1: y = …

d2: t = …

d3: z = …

start

end{}

Page 167: Compilation   0368-3133 (Semester A, 2013/14)

167

Reaching definitions analysis

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

end{}

Page 168: Compilation   0368-3133 (Semester A, 2013/14)

168

Initialization

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end{}

Page 169: Compilation   0368-3133 (Semester A, 2013/14)

169

Iteration 1

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end{}

{}

Page 170: Compilation   0368-3133 (Semester A, 2013/14)

170

Iteration 1

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end{}

{}

{}

Page 171: Compilation   0368-3133 (Semester A, 2013/14)

171

Iteration 2

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}

Page 172: Compilation   0368-3133 (Semester A, 2013/14)

172

Iteration 2

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}

Page 173: Compilation   0368-3133 (Semester A, 2013/14)

173

Iteration 2

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{}

{}

Page 174: Compilation   0368-3133 (Semester A, 2013/14)

174

Iteration 2

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}

Page 175: Compilation   0368-3133 (Semester A, 2013/14)

175

Iteration 3

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}

Page 176: Compilation   0368-3133 (Semester A, 2013/14)

176

Iteration 3

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}

Page 177: Compilation   0368-3133 (Semester A, 2013/14)

177

Iteration 4

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}

Page 178: Compilation   0368-3133 (Semester A, 2013/14)

178

Iteration 4

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}

Page 179: Compilation   0368-3133 (Semester A, 2013/14)

179

Iteration 4

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Page 180: Compilation   0368-3133 (Semester A, 2013/14)

180

Iteration 5

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1{d2, d3, d4}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Page 181: Compilation   0368-3133 (Semester A, 2013/14)

181

Iteration 6

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Page 182: Compilation   0368-3133 (Semester A, 2013/14)

182

Which expressions are loop invariant?

t is defined only in d2 – outside of loop

z is defined only in d3 – outside of loop

y is defined only in d4 – inside of loop but depends on t and 4, both loop-invariant

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end{d2, d3, d4, d5}

d5: x = x + 1{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}x is defined only in d5 – inside of loop so is not a loop-invariant

Page 183: Compilation   0368-3133 (Semester A, 2013/14)

183

Inferring loop-invariant expressions

• For a statement s of the form t = a1 op a2

• A variable ai is immediately loop-invariant if all reaching definitions IN[s]={d1,…,dk} for ai are outside of the loop

• LOOP-INV = immediately loop-invariant variables and constantsLOOP-INV = LOOP-INV {x | d: x = a1 op a2, d is in the loop, and both a1 and a2 are in LOOP-INV}– Iterate until fixed-point

• An expression is loop-invariant if all operands are loop-invariants

Page 184: Compilation   0368-3133 (Semester A, 2013/14)

184

Computing LOOP-INV

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Page 185: Compilation   0368-3133 (Semester A, 2013/14)

185

Computing LOOP-INV

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)LOOP-INV = {t}

Page 186: Compilation   0368-3133 (Semester A, 2013/14)

186

Computing LOOP-INV

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)LOOP-INV = {t, z}

Page 187: Compilation   0368-3133 (Semester A, 2013/14)

187

Computing LOOP-INV

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)LOOP-INV = {t, z}

Page 188: Compilation   0368-3133 (Semester A, 2013/14)

188

Computing LOOP-INV

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)LOOP-INV = {t, z}

Page 189: Compilation   0368-3133 (Semester A, 2013/14)

189

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4}

{d1}

{d1, d2}

{d1, d2, d3}LOOP-INV = {t, z, 4}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Computing LOOP-INV

Page 190: Compilation   0368-3133 (Semester A, 2013/14)

190

Computing LOOP-INV

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

LOOP-INV = {t, z, 4, y}

Page 191: Compilation   0368-3133 (Semester A, 2013/14)

191

Induction variables

while (i < x) { j = a + 4 * i a[j] = j i = i + 1} i is incremented by a loop-

invariant expression on each iteration – this is called an induction variable

j is a linear function of the induction variable with multiplier 4

Page 192: Compilation   0368-3133 (Semester A, 2013/14)

192

Strength-reduction

j = a + 4 * i while (i < x) { j = j + 4 a[j] = j i = i + 1}

Prepare initial value

Increment by multiplier

Page 193: Compilation   0368-3133 (Semester A, 2013/14)

193

Summary of optimizations

Enabled Optimizations AnalysisCommon-subexpression eliminationCopy Propagation

Available Expressions

Constant folding Constant PropagationDead code eliminationRegister allocation

Live Variables

Loop-invariant code motion Reaching Definitions

Page 194: Compilation   0368-3133 (Semester A, 2013/14)

194

Ad

• Advanced course on program analysis and verification

• Workshop on compile time techniques for detecting malicious JavaScripts– With Trusteer

• Now IBM