complex algebra review

23
Complex Algebra Review Dr. V. Këpuska

Upload: pierce

Post on 09-Jan-2016

45 views

Category:

Documents


0 download

DESCRIPTION

Complex Algebra Review. Dr. V. K ëpuska. Complex Algebra Elements. Definitions: Note: Real numbers can be thought of as complex numbers with imaginary part equal to zero. Complex Algebra Elements. Euler’s Identity. Polar Form of Complex Numbers. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Complex Algebra Review

Complex Algebra Review

Dr. V. Këpuska

Page 2: Complex Algebra Review

April 21, 2023 Veton Këpuska 2

Complex Algebra Elements Definitions:

Note: Real numbers can be thought of as complex numbers with imaginary part equal to zero.

CR

C

Ι

R

then If

NumbersComplex all ofSet :

NumbersImaginary all ofSet :

Numbers Real all ofSet :

1

numbercomplex a of

formCartezian

jyxzx,y

j

Page 3: Complex Algebra Review

April 21, 2023 Veton Këpuska 3

Complex Algebra Elements

z ofpart Imaginary

z ofpart Real

Im

Re

define then we If

0 If

0 If

zy

zx

jy xz

x zy

jy zx

R

I

Page 4: Complex Algebra Review

April 21, 2023 Veton Këpuska 4

Euler’s Identity

j

ee

ee

je

je

je

jj

jj

j

j

j

2cos

2cos

sincos

sincos

sincos

Page 5: Complex Algebra Review

April 21, 2023 Veton Këpuska 5

Polar Form of Complex Numbers

Magnitude of a complex number z is a generalization of the absolute value function/operator for real numbers. It is buy definition always non-negative.

z of argument)(or Angle z arg

z of Magnitude

radians ],-(

0r

z

rz

r rez j R

Page 6: Complex Algebra Review

April 21, 2023 Veton Këpuska 6

Polar Form of Complex Numbers

Conversion between polar and rectangular (Cartesian) forms.

For z=0+j0; called “complex zero” one can not define arg(0+j0). Why?

x

yyxr

ry

rx

jy xjrr

jy xjr

jy xrez j

1

22

tansin

cos

sincos

sincos

Page 7: Complex Algebra Review

April 21, 2023 Veton Këpuska 7

Geometric Representation of Complex Numbers.

Q1Q2

Q3 Q4

Im

Re

z

Re{z}Im

{z} |z

|

Complex or Gaussian plane

Axis of Reals

Axis of Imaginaries

Page 8: Complex Algebra Review

April 21, 2023 Veton Këpuska 8

Geometric Representation of Complex Numbers.

Q1Q2

Q3 Q4

Im

Re

z

Re{z}

Im{

z}

|z|

Complex or Gaussian plane

Axis of Reals

Axis of Imaginaries

Complex Number in Quadrant

Condition 1 Condition 2

Q1 or Q2 Arg{z} ≥ 0 Im{z} ≥ 0

Q3 or Q4 Arg{z} ≤ 0 Im{z} ≤ 0

Q1 or Q4 Re{z} ≥ 0

Q2 or Q3 Re{z} ≤ 0

Page 9: Complex Algebra Review

April 21, 2023 Veton Këpuska 9

Example

Im

Re

z1 1

-1

-1-2

z2

z3

4

32

11

202

4

32

11

3

3

3

2

22

1

1

1

z

zjz

z

zjz

z

zjz

{

{

{

Page 10: Complex Algebra Review

April 21, 2023 Veton Këpuska 10

Conjugation of Complex Numbers

Definition: If z = x+jy ∈ C then z* = x-jy is called the “Complex Conjugate” number of z.

Example: If z=ej (polar form) then what is z* also in polar form?

j

j

rejrr

jrr

jrrz

jrrrez

sincos

coscos sincos

sinsin sincos

sincos

If z=rej then z*=re-j

Page 11: Complex Algebra Review

April 21, 2023 Veton Këpuska 11

Geometric Representation of Conjugate Numbers

If z=rej then z*=re-j

Im

Re

z

r

Complex or Gaussian plane

-

r

x

y

-yz*

Page 12: Complex Algebra Review

April 21, 2023 Veton Këpuska 12

Complex Number Operations

Extension of Operations for Real Numbers

When adding/subtracting complex numbers it is most convenient to use Cartesian form.

When multiplying/dividing complex numbers it is most convenient to use Polar form.

Page 13: Complex Algebra Review

April 21, 2023 Veton Këpuska 13

Addition/Subtraction of Complex Numbers

2121

2121

212121

222111

III

ReReRe

:Thus

then

& ,

Let

zmzmzzm

zzzz

yyjxxzz

jyxzjyxz

Page 14: Complex Algebra Review

April 21, 2023 Veton Këpuska 14

Multiplication/Division of Complex Numbers

2121

2121

2121

212121

2211

:Therefore

then

&

Let

21

2121

21

zzzz

zzzz

errzz

eerrererzz

erzerz

j

jjjj

jj

212

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

:Therefore

Olso

21

21

2

1

zzz

z

z

z

z

z

er

r

z

z

eer

r

er

er

z

z

j

jjj

j

Page 15: Complex Algebra Review

April 21, 2023 Veton Këpuska 15

Useful Identities

z ∈ C, ∈ R & n ∈ Z (integer set)

nn

nn

zz

znnzzz

zzzzz

zzzz

zzzzz

zzzz

z

z

z

zzzzz

zzzz

zzzz

)16

)15)14

0 if

0 if 0)13)12

ImIm)11ReRe)10

)9)8

)7

)6)5

ImIm)4ReRe)3

)2)1

22121

2

1

2

12121

Page 16: Complex Algebra Review

April 21, 2023 Veton Këpuska 16

Useful Identities

Example: z = +j0 =2 then arg(2)=0 =-2 then arg(-2)=

Im

Re

j

-1-2

z

210

Page 17: Complex Algebra Review

April 21, 2023 Veton Këpuska 17

Silly Examples and Tricks

1012sin2cos

102

3sin

2

3cos

101sincos

102

sin2

cos

1010sin0cos

2

2

3

2

0

jje

jjje

jje

jjje

jje

j

j

j

j

j

Im

Re

j

-1 10

-j

/2

3/2

jjjjjjjj

jjjj

jjjjjjjj

jjjj

151173

141062

13951

12840

1111

1111

1

0

222

2

jjj

j

eeejjj

ejjj

Page 18: Complex Algebra Review

April 21, 2023 Veton Këpuska 18

Division Example

Division of two complex numbers in rectangular form.

2

1

22

2

1

22

22

22

Im

222112

Re

222121

2

1

2221122121

22

22

22

11

22

11

2

1

112111 ,

z

z

z

z

zz

yx

yxyxj

yx

yyxx

z

z

yx

yxyxjyyxx

jyx

jyx

jyx

jyx

jyx

jyx

z

z

jyxzjyxz

Page 19: Complex Algebra Review

April 21, 2023 Veton Këpuska 19

Roots of Unity

Regard the equation:zN-1=0, where z ∈ C & N ∈ Z+ (i.e. N>0)

The fundamental theorem of algebra (Gauss) states that an Nth degree algebraic equation has N roots (not necessarily distinct).

Example: N=3; z3-1=0 z3=1 ⇒

)root 3(?

)root 2(?

)root 1(11

rd3

nd2

st1

3

z

z

zz

Page 20: Complex Algebra Review

April 21, 2023 Veton Këpuska 20

Roots of Unity

zN-1=0 has roots , k=0,1,..,N-1, where

The roots ofare called Nth roots of unity.

Nj

e2

1,...,1,0,2

Nke N

kj

k

k

Page 21: Complex Algebra Review

April 21, 2023 Veton Këpuska 21

Roots of Unity

Verification:

1,...,1,0for trueis wich

02sin

12cos

012sin2cos

012sin2cos

2sin2cos

Identity Eulers Applying

0101

2

22

Nkk

k

jkjk

kjk

kjke

ee

kj

kj

N

N

kj

Page 22: Complex Algebra Review

April 21, 2023 Veton Këpuska 22

J1

Geometric Representation

2

1

01

3

3

4

3

222

3

2

3

121

3

020

kee

kee

ke

N

jj

jj

j

Im

Re1

-j1

-1

J2

0

j1

2/3

4/

3 J0

2/

3

2/3

Page 23: Complex Algebra Review

April 21, 2023 Veton Këpuska 23

Important Observations1. Magnitude of each root are equal to 1. Thus, the Nth roots of unity are

located on the unit circle. (Unit circle is a circle on the complex plane with radius of 1).

2. The difference in angle between two consecutive roots is 2/N.

3. The roots, if complex, appear in complex-conjugate pairs. For example for N=3, (J1)*=J2. In general the following property holds: JN-k=(Jk)*

ke N

kj

,1||2

DEQN

e Nj

k

kkk ..

221

11

*2*1213

*

**222

2222

1&3For

1

kN

eeeeeee

kkN

kN

kj

N

kj

N

kj

jN

kj

N

Nj

N

kNj

kN