comprehensive handbook of calorimetry and thermal analysis

7
Comprehensive Handbook of Calorimetry and Thermal Analysis Michio Sorai Editor-in-Chief The Japan Society of Calorimetry and Thermal Analysis John Wiley & Sons, Ltd

Upload: others

Post on 03-Feb-2022

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Comprehensive Handbook of Calorimetry and Thermal Analysis

Comprehensive Handbook of Calorimetry and Thermal Analysis

Michio Sorai

Editor-in-Chief

The Japan Society of Calorimetry and Thermal Analysis

John Wiley & Sons, Ltd

Page 2: Comprehensive Handbook of Calorimetry and Thermal Analysis

Contents

Preface xi

Acknowledgements xiii

List of Contributors xv

Part I PRINCIPLES OF CALORIMETRY AND THERMAL ANALYSIS 1

1.1 Calorimetry 3 1.1.1 Overview 3 1.1.2 Thermodynamic quantities characteristic of multi-component

system 8 1.1.3 Thermodynamic quantities characteristic of surface and

interface 13 1.1.4 Thermodynamic quantities in chemical reactions 18 1.1.5 Thermodynamics of non-equilibrium states 21 1.1.6 Biothermodynamics 25

1.2 Thermal Analysis 29 1.2.1 Overview 29 1.2.2 Thermal analysis for chemical reactions 33 1.2.3 Thermal analysis for mechanical properties 37 1.2.4 Dynamic viscoelastic phenomena and thermal analysis 43 1.2.5 Reaction kinetics in the solid State 50 1.2.6 Periodic heating method 54

Part II EXPERIMENTAL METHODS 57

2.1 Temperature Measurement in Thermal Study 59

2.2 Principles and Methods of Calorimetry 63 2.2.1 Classification and basic principles of calorimeters 63 2.2.2 Adiabatic heat capacity calorimetry 68 2.2.3 Heat capacity calorimetry by relaxation method 72 2.2.4 AC calorimetry 75 2.2.5 Laser-flash calorimetry 77 2.2.6 High-temperature calorimetry 80

Page 3: Comprehensive Handbook of Calorimetry and Thermal Analysis

2.2.7 Low-temperature calorimetry 83 2.2.8 Calorimetry under pressure 86 2.2.9 Calorimetry under magnetic field 89

2.2.10 Temperature jump calorimetry 92 2.2.11 Calvet calorimeter 95 2.2.12 Heat of vaporization and Sublimation 99 2.2.13 Reaction calorimetry 101 2.2.14 Heat of Solution and mixing 103 2.2.15 Heat of immersion and adsorption 106 2.2.16 Titration calorimetry 109 2.2.17 Flow calorimetry 111 2.2.18 Heat capacity spectroscopy 115 2.2.19 Calorimetry at extremely high temperatures 117 2.2.20 Adiabatic differential scanning calorimetry for

biothermodynamics 120

2.3 Principles and Methods of Thermal Analysis 123 2.3.1 Thermogravimetry (TG) and controlled-rate TG 123 2.3.2 Differential thermal analysis (DTA) and differential scanning

calorimetry (DSC) 128 2.3.3 Thermomechanical analysis (TMA) and dynamic mechanical

analysis (DMA) 135 2.3.4 Temperature-modulated DSC 140 2.3.5 Temperature wave analysis 145 2.3.6 Triple-cell DSC 148 2.3.7 Simultaneous thermal analysis 151 2.3.8 Micro thermal analysis by scanning probe microscopes 157 2.3.9 Micromechanical calorimetry 160

2.4 Other Experiments 162 2.4.1 Determination of thermal expansivity 162 2.4.2 Steady State method of determination of thermal

conductivity/diffusivity 167 2.4.3 Transient method for determination of thermal

conductivity/diffusivity 171 2.4.4 Mass spectrometry 175 2.4.5 Determination of electromotive force 179 2.4.6 Surface tension 183

Part III DATA ANALYSIS 187

3.1 Data Analysis of Calorimetry 189 3.1.1 Purity determination 189 3.1.2 Phase transition and normal heat capacity 191

Page 4: Comprehensive Handbook of Calorimetry and Thermal Analysis

Contents vn

3.1.3 Determination of partial molar quantities 195 3.1.4 Statistical thermodynamic analysis in biocalorimetry 200 3.1.5 Data analysis in titration calorimetry 208

3.2 Techniques of Thermal Analysis and the Data Analysis 213 3.2.1 Solid-state reaction kinetics by TG 213 3.2.2 Baseline and thermal anomaly in DTA and DSC 219 3.2.3 Heat capacity measurement by DSC and TM-DSC 224 3.2.4 Analysis of isothermal crystallization by DSC 228 3.2.5 Glass transition and relaxation phenomena 233 3.2.6 Determination of phase diagrams by DTA/DSC 237 3.2.7 Purity determination by DSC 241

Part IV HOW TO UTILIZE THE THERMODYNAMIC DATABASE 247

4.1 Thermodynamic and Related Database 249 4.1.1 Recent development of thermodynamic database

Systems 249 4.1.2 Phase diagram calculations 253 4.1.3 Thermophysical property database 257

4.2 Utilization of Thermodynamic Database 262 4.2.1 Calculated phase diagram vs observed phase

diagram 262 4.2.2 Application of chemical equilibrium calculations 268 4.2.3 Application of chemical potential diagram 272

4.3 Thermodynamic Database for Biomolecules 276 4.3.1 Proteins and mutants 276 4.3.2 Protein-nucleic acid interactions 280

PartV ACTUAL APPLICATIONS 285

5.1 Metals and Alloys 287 5.1.1 Thermal analysis of amorphous alloys 287 5.1.2 Thermal analysis of hydrogen-absorbing alloy 291 5.1.3 Thermal analyses of heat-resistant type steels and alloys 294 5.1.4 Thermodynamic analysis of liquid alloys by temperature-jump

calorimetry 297 5.1.5 EMF method with solid electrolyte for liquid alloys 300 5.1.6 Construction of alloy phase diagrams 303 5.1.7 Electronic density of states of quasicrystals 307 5.1.8 Kinetics of oxidation in thin metal films 309 5.1.9 Lattice-defect concentration in solids from thermal expansion 312

Page 5: Comprehensive Handbook of Calorimetry and Thermal Analysis

V l l l Contents

5.2 Inorganic Materials and Ceramics 315 5.2.1 Heat capacity of U0 2 up to 8000K 315 5.2.2 Battery materials: Spineis containing Mn for lithium secondary

battery 318 5.2.3 Thermal conductivity of diamond film 321 5.2.4 Kinetic features of the thermal dehydration of inorganic

hydrates 324 5.2.5 Dehydration of inorganic salts under reduced pressure 327 5.2.6 Thermal analysis of water-containing Silicate minerals 329 5.2.7 Heat of adsorption and evaluation of active sites on the

surface 332 5.2.8 Nonstoichiometry of oxides by constant temperature TG 335 5.2.9 Heat of hydration of zeolite 338

5.2.10 Heat capacity of yttria-stabilized zirconia 342 5.2.11 Acoustic emission and thermal analysis of phase transitions 345 5.2.12 Pore-size distributions in silica gels 348 5.2.13 Calorimetry for fast ion conducting glasses 352 5.2.14 Negative thermal expansion of ZrW208 355 5.2.15 Calorimetry of high-pressure minerals 357 5.2.16 Heat capacity of diamond and graphite 360 5.2.17 Heat capacity anomaly in lead-based complex perovskite

relaxors 362

5.3 Organic Materials and Polymers 365 5.3.1 Strain and resonance energies of fullerenes 365 5.3.2 Heat capacity of molecular monolayers 367 5.3.3 Entropy of transition of mixed crystals 370 5.3.4 Glass transition and residual entropy 372 5.3.5 Heat capacity of exotic superconductors 375 5.3.6 Magnetic dimensionality and spin-wave excitation of

molecule-based magnet 379 5.3.7 Calorimetry of liquid crystals 382 5.3.8 Alkyl-chain-length dependence of entropy of transition 384 5.3.9 High-pressure DTA of liquid crystals 386

5.3.10 Crystallization of polymers 389 5.3.11 Melting of polymer crystals studied by temperature-modulated

DSC 392 5.3.12 Origin of double melting peaks of drawn nylon 6 395 5.3.13 Glass transition and relaxation in polymers 398 5.3.14 Thermal decomposition of polyurethanes containing natural

Compounds 400 5.3.15 Curing of epoxy resins containing plant components 403 5.3.16 Phase transition in spin-crossover complex 406 5.3.17 Frequency-dependent heat capacity near a glass transition 409

Page 6: Comprehensive Handbook of Calorimetry and Thermal Analysis

Contents ix

5.3.18 Heat capacity of molecular magnets under magnetic field 412 5.3.19 Micro thermal analysis of polymers by scanning probe

microscopy 415

5.4 Biomolecules 419 5.4.1 Phase transition of lipid 419 5.4.2 Thermal stability and function of Myb protein 422 5.4.3 Thermal stability of mutant lysozymes 425 5.4.4 Stepwise melting of plasmid DNA in the presence of

Mg2+ ion 428 5.4.5 Volume and compressibility of proteins 431 5.4.6 Enzyme activity 433 5.4.7 Protein-DNA interaction 436 5.4.8 Molecular recognition of antibody 438 5.4.9 Glass transition of protein 442

5.5 Medianes 445 5.5.1 Purity determination of medicines by DSC 445 5.5.2 Evaluation of Polymorphie transformation of drugs 448 5.5.3 Determination of heat of hydration and hydration kinetics of

theophylline hydrates 452 5.5.4 Inclusion Compound formation between host material and medicinal

molecules 454 5.5.5 Estimation of initial dissolution rate of drug substances by thermal

analysis 457 5.5.6 Long-term stability 460 5.5.7 Effect of drugs on microbial growth activities 463 5.5.8 Drug interaction in human blood 466

5.6 Foods and Biomaterials 469 5.6.1 Phase transition of glycolipids 469 5.6.2 Sol-gel transition in Polysaccharides 472 5.6.3 Phase transition of Polysaccharide helix 475 5.6.4 Interaction between starch and water 478 5.6.5 Novel biomaterial-water interaction produced by heat

treatment 481 5.6.6 Nonfreezing water in food 484 5.6.7 Quantitative evaluation of food putrefaction 487 5.6.8 Thermal analysis of various plant materials 490 5.6.9 Dynamic viscoelasticity of hair 494

APPENDIX 497

A.l The international temperature scale of 1990 (ITS-90) 499 A.2 Electromotive force of thermocouples 506

Page 7: Comprehensive Handbook of Calorimetry and Thermal Analysis

x Contents

A.3 Standard reference materials for thermal analysis 512 A.4 Symbols and notations for thermodynamic and related quantities

and their printing 515 A.5 Guidelines for presentation of experimental results 518

Index 523