compressible flow: some preliminary aspects · pdf file02.06.2013 · v15$...

31
V15 Aerodynamics II 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School of Engineering (ISE) Academic year : 2014-2015 (January – May, 2015) Jeerasak Pitakarnnop , Ph.D. [email protected] [email protected]

Upload: ngoxuyen

Post on 06-Mar-2018

228 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

V15   Aerodynamics  II   1  

Compressible Flow: Some Preliminary Aspects

Aerospace Engineering, International School of Engineering (ISE) Academic year : 2014-2015 (January – May, 2015)

 Jeerasak Pitakarnnop , Ph.D.

[email protected] [email protected]

Page 2: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Content

– Introduction – Brief Reviews of Thermodynamics – Governing Equations for Inviscid,

Comprssible Flow (Integral Form) – Definition of Total (Stagnation) Conditions – Some Aspects of Supersonic Flow: Shock

Wave

V15   Aerodynamics  II   2  

Page 3: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

High-Speed Compressible Flow

•  2 important aspects – Compressible Flow à Variable Density Flow

“All real substance are compressible to some greater or lesser extent: when we squeeze or press on them,

their density will change.” – High-Speed Flow à High Energy Flow “When velocity of high-speed flow is decreased, some of Kinetic

Energy is lost and appear as an increase in internal energy, Hence, increase the temperature of gas.”

V15   Aerodynamics  II   3  

Page 4: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

THERMODYNAMICS  

V15   Aerodynamics  II   4  

Page 5: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Reviews of Thermodynamics

•  A high speed flow is high energy flow – As Kinetic Energy = (1/2)mv2

– K.E. per unit mass = (1/2)v2 “When velocity of high-speed flow is decreased, some of Kinetic

Energy is lost and appear as an increase in internal energy, Hence, increase the temperature of gas.”

•  In high-speed flow, energy transformation and temperature changes are “important”.

“Thermodynamics” (see lecture note)

V15   Aerodynamics  II   5  

Page 6: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Equa8on  of  State  and    Kine8c  Theory  of  Gases  

Assump8ons  for  enable  using  the  kine8c  theory  of  gases  are:  1.  Intermolecular  forces  between  the  molecules  is  negligibly  small.  2.  The  volume  of  molecules  that  occupy  a  space  is  negligibly  small  and  ignored.  

Equa8on  of  State  may  be  derived  from  the  kine8c  theory  of  gas:  

P = ρRTRRM

≡Where  the  gas  constant  (R)  M  is  the  molecular  weight  

8314.JR

kmol K=

Gas  is  Air  

V15   Aerodynamics  II   6  

Page 7: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Ideal  Gas  and  Perfect  Gas  

V15   Aerodynamics  II   7  

Following  dis8nc8on  can  be  made:  •  Ideal  Gas:                holds  p  =  ρRT,  and  Cp  –  Cv  =  R   without  assump8on  of  p  and  T  dependence.  •  Semi-­‐Perfect  Gas  (Thermally  Perfect  Gas):                holds  p  =  ρRT,  and  Cp  –  Cv  =  R   with  Cp    and  Cv  are  a  func8on  of  T.    •  Perfect  Gas  (Calorically  Perfect  Gas):                holds  p  =  ρRT,  and  Cp  –  Cv  =  R.   with  Cp    and  Cv  are  constant  •  Imperfect  Gas  (Real  Gas):              doesn’t  hold  p  =  ρRT,   Cv  and  Cp  are  func8ons  of  p  and  T  and  Cp  –  Cv  ≠  R.    

Page 8: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Specific  Heat  for  a  Perfect  Gas  and  Calorically  Perfect  Gas  

Specific  heats  at  constant  pressure  and  volume:  

p

v

dh C dTde C dT

≡In general

( )

( )p p

v v

C C TC C T

=

=

There  is  oYen  a  simplifying  assump8on  of  constant  specific  heats,  which  is  a  valid  approxima8on  to  gas  behavior  in  a  narrow  temperature  range  

0

0

1500

p p

v v

C ConstC Const

=

=

V15   Aerodynamics  II   8  

Page 9: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

1st  Law  of  Thermodynamics  Statement  of  conserva8on  of  energy  for  a  system  of  fixed  mass  m.  

δq = de +δw!" #$ δ = “path dependent” 2

1 212

2 11

rev

q q

de e e

w pdv

δ

δ

=

= −

=

Flow   work   on   fluid  created  by   the  pressure  forces  at  reversible  

V15   Aerodynamics  II   9  

de = δq − −δw( )

Work  done  by  the  surrounding  on  C.V.  (-­‐)  

Work  done  by  the  C.V.  on  surrounding  (+)  

Page 10: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

2nd  Law  of  Thermodynamics    and  Entropy  

d s ≥ δqT+d sgen

V15   Aerodynamics  II   10  

«  A  condiAon  that  tells  us  which  direc&on    a  process  will  take  place.  »  

The   dissipa8ve   phenomena   always  increase  the  entropy:  

d sgen ≥ 0>  0  :  Irreversible  Process  =  0  :  Reversible  Process  <  0  :  Impossible  

δq = 0If,  

Then,  

d s ≥ 0

AdiabaAc  Process  

Page 11: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

1st  and  2nd  Law  combina8on:    Gibbs  Equa8on  

The  pressure  forces  within  the  fluid  perform  reversible  work,  and    the  viscous  stresses  account  for  dissipated  energy  of  the  system  (into  heat).  

Tds de pdv= + It   looks   as   if   we   have  s u b s 8 t u t e d   t h e  reversible  forms  of  heat  and   work   into   the   first  law   to  obtain   the  Gibbs  equa8on

Enthalpy:  combina8on  2  forms  of  fluid  energy;  internal  energy  (thermal  energy)  and  flow  work  (pressure  energy)  

h e pvdh de pdv vdp≡ +

= + +

Tds dh vdp= −

V15   Aerodynamics  II   11  

δq = de +δw!" #$

Page 12: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

2nd  Law  of  Thermodynamics:  Entropy  Change  in  Process

Tds dh vdp= −

From  Gibbs  Equa8on:

p vdh C dT de RdT C dT RdT≡ = + = +where

22

2 111

ln

p p

p

dT v dT dPds C dP C RT T T P

PdTs s s C RT P

= − = −

− ≡ Δ = −∫

2 22 1

1 1

ln lnT Ps s Cp RT P

− = −

22

2 111

ln TCpT

φ φ≡ −∫ Tabulated  thermodynamic  func8on  φ

V15   Aerodynamics  II   12  

Constant   specific   heats,   which   is   a  valid  approxima8on  to  gas  behavior  in  a  narrow  temperature  range  

p p

v v

C ConstC Const

=

=

Calorically  Perfect  Gas  

Page 13: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Specific  Heat  and  The  Ra8o

Think  about   p vdh C dT de RdT C dT RdT≡ = + = +

1

1, ,1 1

p v

p v

p vp v

v v

C C RC CR RC C R C R C RC C

γγ

γ γ

= +

= +

+≡ = = =

− −

One  can  obtain  

The  ra8o  of  specific  heats  is  related  to  the  degrees  of  freedom  of  the  gas  molecules,  n,  via:  

2nn

γ+

= Diatomic gas at ‘normal’ temperature

5 2 1.45

γ+

= =

Diatomic  gas    •  at  normal  Temp.,                                      

5  degrees  of  freedom:    •  3  transla8onal  mo8on    •  2  rota8onal  mo8on  

•  600 K <  Temp.  <  2000  K,  vibra8on  mode  ac8vated:        n  =  6,  γ = 1.33

•  > 2000K, n = 7, γ = 9/7 = 1.29  

0

0

1500

?hotγ =?coldγ =

V15   Aerodynamics  II   13  

Page 14: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Specific  Heat  and  The  Ra8o  

Specific  Heat  at  Constant  Pressure  (Cp)  in  kJ/kg.K  and  Specific  Heat  RaAo  γ

V15   Aerodynamics  II   14  

Page 15: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

 To  analyze  the  performance  

of  Ideal  Engine    one   can   assume   every  components   are   working  under   the   isentropic   process  EXCEPT  ‘Combustor’

Isentropic  Process  Isentropic  Flow  for  a  Calorically  Perfect  

ds =C pdTT

− R dPP

, Isentropic Process: ds = 0

From  Gibbs  Equa8on:

Using  the  Perfect  Gas  Law:

P2P1=

ρ2ρ1

!

"##

$

%&&

γ

=T2T1

!

"##

$

%&&

γγ−1

0

0

1500

V15   Aerodynamics  II   15  

P2P1=T2T1

!

"##

$

%&&

CPR=T2T1

!

"##

$

%&&

γγ−1

Page 16: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Exercise1:  Isentropic  Flow  for  a  Calorically  Perfect  

2 2

1 1

PP

γρρ

⎛ ⎞= ⎜ ⎟⎝ ⎠

From  the  Isentropic  Flow  for  Perfect  Gas:

Show that dp Pd

γρ ρ=

V15   Aerodynamics  II   16  

Page 17: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Stagna8on  State  We  define  the  stagna8on  state  of  a  gas  as  the  state  reached  in  decelera8ng  a  flow  to  rest  reversibly  and  adiabaAcally  and  without  any  external  work  

h0 = ht ≡ h +V 2

2(The  total  energy  of  the  gas  does  not  change  in  the  decelera8on  process)  

Calorically  Perfect  Gas  

ht ≡ h +V 2

2⇒ Tt =T +

V 2

2CP

2th

3th

1th

V15   Aerodynamics  II   17  

Steady,  Adiaba8c,  Inviscid  flow:  ht  =  const.  

ht 1 = ht 2 , h1 +V1

2

2= h2 +

V22

2

Page 18: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Stagna8on  State  and  Local  Mach  Number  of  a  Calorically  Perfect  Gas  

1.  Based  on  the  stagna8on  enthalpy,  proof  that  the  total  to  stagna8on  temperature  ra8o  can  be  derived  as:  

2112

tT MT

γ −⎛ ⎞= + ⎜ ⎟⎝ ⎠

2.  What  is  the  assump8on  to  have  the  rela8on  of  the  total  to  stagna8on  pressure  ra8o  as:  

1211

2tP MP

γγγ −⎡ ⎤−⎛ ⎞= + ⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦

3.  Show  that  the  density  ra8o  of  a  calorically  perfect  gas  in  isentropic  process  is:  

11

2112

t Mγρ γ

ρ

−⎡ ⎤−⎛ ⎞= + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ 2tT

3tT1tT

V15   Aerodynamics  II   18  

Page 19: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Definition of Total (Stagnation) Conditions

•  Static Pressure (P): Pressure you feel when you ride along with the gas at the local flow velocity.

•  Stagnation Pressure (P0): Pressure existing at a point in the flow where V = 0.

•  The value temp. of the fluid element after it has been brought to rest is T0, for calorically perfect gas h0 = cpT0.

V15   Aerodynamics  II   19  

Page 20: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Definition of Total (Stagnation) Conditions

•  For inviscid, steady, adiabatic flow: h + V 2/2 = const.

•  Definition of total enthalpy (at a pt. if the fluid were brought to rest adiabatically) h0 = h + V 2/2

•  Adiabatic flow h0 = const.

•  Calorically perfect gas T0 = const.

V15   Aerodynamics  II   20  

Page 21: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

CONSERVATION  PRINCIPLES  

V15   Aerodynamics  II   21  

Page 22: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

V15 Aerodynamics II 22

Gas Flow Regimes: Molecular to Continuum Flow

Kn = 10 Kn = 0.1 Kn = 0.01 Kn 0

Analytical Methods Variational Methods

Discrete Velocity Methods

Integro-moment MethodDSMC

Analytical MethodsTypical CFD schemesTest Particle Monte Carlo

Boltzman Equation without collisions Boltzman Equation Navier-Stokes

+ slip BC. Navier-Stokes Euler

Free molecular regime

Transition regime Slip-flow regimeViscous Inviscid

Continuum regime

[1] Dimitris Valougeorgis (2007), Solution of vacuum flows via kinetic theory, 51st IUVSTA Workshop on Modern Problems and Capability of Vacuum Gas Dynamics.

Page 23: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

V15 Aerodynamics II 23

Governing Equations

MicroscopicTheory

MesoscopicTheory

Macroscopic (Continuum)Theory

BurnettNavier-StokesEuler Super-

BurnettGrad’s 13 moments

Grad’s 26 moments

Molecular Dynamics

Boltzmann Equation

Grad’s moments methodKinetic Theory: Hilbert et Chapman-Enskog analysis

Direct Simulation Boltzmann

Turbulence Modeling

QHD & QGD0th

Ord

er

1st O

rder

2nd O

rder

Hig

her O

rder

Direct Simulation

Molecular Models Continuum Models

Kinetic Models

Page 24: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Integral Forms of the Governing Equations for Inviscid, Compressible Flow

•  Incompressible flow obeys purely mechanical laws and doesn’t require thermodynamic considerations (P and V are unknown).

•  Compressible flow, ρ is variable à additional unknown. – Additional energy equation is needed. – Energy energy requires e which is related to T.

Primary Dependent Variable “P, V, ρ, e and T”

V15   24  Aerodynamics  II  

Page 25: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Mathematical Model

To determine previous values, following principles are applied: • Equation of state • Conservation of mass • Conservation of momentum • Conservation of energy

V15   Aerodynamics  II   25  

Page 26: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Governing Equation Integral & Differential Forms

•  Conservation of Mass: – Mass Can be Neither Create Nor Destroy.

Rate  of  Increase  of  mass  of  fluid  in  C.V.    

Rate  of  mass    enters  C.V.    

Rate  of  mass    leaves  C.V.    =   -­‐  

V15   26  Aerodynamics  II  

∂ρ∂t

= −∇⋅ ρu( )

∂∂t

ρ dVV∫∫∫ = − ρV

S∫∫ ⋅d S

Page 27: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Governing Equation Integral & Differential Forms

•  Conservation of Momentum: – The Time Rate of Change of Momentum of a Body

Equal to Net Force Exerted on It.

Net  force  on  gas  in  C.V.  in  direc8on  considered  

Rate  of  increase  of  momentum  indirec8on  

considered  of  fluid  in  C.V.  

Rate  momentum  leaves  C.V.  in  direc8on  considered  

=   -­‐  Rate  

momentum  enter  C.V.  in  direc8on  considered  

+  

V15   27  Aerodynamics  II  

Page 28: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Governing Equation Integral & Differential Forms

•  Conservation of Momentum:

V15   28  Aerodynamics  II  

∂∂t

ρV dVV∫∫∫ = ρf dV

V∫∫∫ − P

S∫∫ d S− ρV ⋅d S( )

S∫∫ V

∂ ρux( )∂t

+∇⋅ ρuxV( ) = −∂P∂x

+ ρ f x

∂ ρu y( )∂t

+∇⋅ ρu yV( ) = −∂P∂y

+ ρ f y

∂ ρuz( )∂t

+∇⋅ ρuzV( ) = −∂P∂z

+ ρ f z

Page 29: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Governing Equation Integral & Differential Forms

•  Conservation of Energy: – Energy Can be Neither Create Nor Destroy, It Can

Only Change in Form.

Rate  of  change  of  the  energy  of  the  fluid  as  it  flows  through  C.V.  

Rate  of  heat  added  to  the  fluid  inside  

C.V.  from  surrounding  

Rate  of  work  done  on  the  fluid  inside  

C.V.    =   +  

V15   29  Aerodynamics  II  

Page 30: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Governing Equation Integral & Differential Forms

•  Conservation of Energy:

V15   30  Aerodynamics  II  

∂∂t

ρ e +V2

2+ gz

"

#$

%

&'dV +

V∫∫∫ ρ e +V

2

2+ gz

"

#$

%

&'

S∫∫ V ⋅d S =

Q + Wshaft + Wviscous − PS∫∫ V ⋅d S+ ρ f ⋅V( )dV

V∫∫∫

∂∂t

ρ e +V2

2+ gz

"

#$

%

&'

(

)*

+

,-+∇⋅ ρ e +

V 2

2+ gz

"

#$

%

&'V

(

)*

+

,-=

Q + Wetc + ρ q −∇⋅ P V( )+ ρ f ⋅V( )

Page 31: Compressible Flow: Some Preliminary Aspects · PDF file02.06.2013 · V15$ Aerodynamics$II$ 1 Compressible Flow: Some Preliminary Aspects Aerospace Engineering, International School

Engine Thrust

•  pe < p∞ : Nozzle is overexpanded (only supersonic). •  pe = p∞ : Nozzle is perfect expanded (all subsonic). •  pe > p∞ : Nozzle is unexpanded (only sonic & supersonic).

V15   Aerodynamics  II   31  

Tuninstall = ( m∞+ m f )ve − m∞

v∞+ ( pe − p∞)Ae

Concorde’s  Variable  Exhaust  Nozzle.