computational advertising in social networks

62
Computational Advertising in Social Networks Anmol Bhasin Sr. Manager Analytics Engineering www.linkedin.com

Upload: anmolbhasin

Post on 28-Aug-2014

5.469 views

Category:

Business


1 download

DESCRIPTION

Computational Advertising Workshop @ ICML 2012

TRANSCRIPT

Page 1: Computational advertising in Social Networks

Computational  Advertising    

in    Social  Networks  

Anmol Bhasin Sr. Manager

Analytics Engineering www.linkedin.com

Page 2: Computational advertising in Social Networks

We  live  in  fascinating  times.  Two  new  nascent  technological  disciplines   are   coming   together   to   transform   how   the  marketers   go   about   their   business   of   reaching   consumers,  be  it  businesses  or  end  users.   It   is   time   for   the  practitioners   in   these  disciplines   to  push  the   envelope   by   creating   innovative   products   and  sophisticated  algorithms  to  define  what  the  future  will  hold  in  this  new  digitally  social  era.. Anmol  Bhasin

Core  Message

Page 3: Computational advertising in Social Networks

Source  :  www.140proof.com

Page 4: Computational advertising in Social Networks
Page 5: Computational advertising in Social Networks

Our Mission Connect the world’s professionals to make them

more productive and successful.

Our Vision Create economic opportunity for every

professional in the world.

Value proposition To make professionals better in the Jobs that they are already in.

Page 6: Computational advertising in Social Networks

World’s  largest  professional  network  

Over  60%  of  members  are  now  international

6

161+ M

2 4 8

17

32

55

90

2004 2005 2006 2007 2008 2009 2010 LinkedIn  Members  (Millions)  

Company Pages

>2M *

Professional searches in 2011

~4.2B

82% Fortune 100 Companies use LinkedIn to hire

*

*as of March 31, 2012

New  Members  joining

~2/sec

Page 7: Computational advertising in Social Networks
Page 8: Computational advertising in Social Networks
Page 9: Computational advertising in Social Networks

§  Information  Seeking  vs  Information  Consumption

§  Dedicated  marketing  channels  for  brand  awareness  required

§  Hypertargeting

§  Blending  organic  and  sponsored  content §  Mobile  ?

Challenges  in  Social  Network  Advertising

Page 10: Computational advertising in Social Networks

§  No  Search  Queries                Q  :  Home  Remodel  San  Francisco  Bay  Area

E(pCTR(clicka | qi,uj,C))>> E(pCTR(clicka | u j,C))

Sponsored  Search  vs  Social  Advertising

Page 11: Computational advertising in Social Networks

Sponsored  Search  vs.    Social  Network  Advertising

   Source  :    Marin  Software        www.marinsoftware.com

Page 12: Computational advertising in Social Networks

Dedicated  Marketing  Channels

Page 13: Computational advertising in Social Networks

Hypertargeting

E(max[c1,c2,c3.....c n ])> E(max[c1,c2,c3.....c n−1])

Page 14: Computational advertising in Social Networks

Blending  Organic  and  Sponsored

Page 15: Computational advertising in Social Networks
Page 16: Computational advertising in Social Networks

The  thing  called  Mobile..

§  Cannibalizing   website  page  views

§  Small  form  factor §  ~10%  views  from  Mobile  but  only  ~1%  monetizable

§  Blending  organic  and  sponsored  essential

§  Impression  &  conversion  tracking  loop  hard  to  close

Page 17: Computational advertising in Social Networks
Page 18: Computational advertising in Social Networks

The  good  news..

Hey  user..  I  know  thee

Page 19: Computational advertising in Social Networks

19

https://inmaps.linkedinlabs.com

And  your  friends..

The  good  news..

source:  h]p://inmaps.linkedinlabs.com

Page 20: Computational advertising in Social Networks

We  also  know  what  you  read  ..

And  how  much  you  liked  it..

The  good  news..

Page 21: Computational advertising in Social Networks
Page 22: Computational advertising in Social Networks

Advertising  @  LinkedIn

LinkedIn  Marketing  Solutions

Performance  Marketing (LinkedIn  Ads)

Organic   Marketing

(Company  Pages)

Brand Marketing (Display  Ads)

Page 23: Computational advertising in Social Networks

Higher  Educa-on    

Internet  Services    

Tech  B2B    

MBA  Programs    |    Masters  &  Graduate  Programs  Online  Degrees    |  Execu-ve  Leadership    

 

CRM    |    SoGware/Biz  Hardware  |    ERP    |    Sales  Tools  Marke-ng  Automa-on    |    SaaS    

 

Website  Hos-ng  |    Video  Conferencing  Prin-ng    |    Phone  Systems      

 

Staffing  Agencies    |    Recrui-ng  SoGware  Corporate  Recrui-ng    |  Job  Boards      

 

Staffing  &  Hiring    

Advertiser  spectrum

Page 24: Computational advertising in Social Networks

Campaign  creation

Page 25: Computational advertising in Social Networks

The  basics  -­‐‑  Ad  Ranking §  Given

§  Objective

§  Goal: §  Increase revenue §  Respect daily budgets of Advertisers §  Good user experience

Uj,{(c0,b0 ), (c1,b1), (c2,b2 ), (c3,b3)..(cn,bn )},H

argmaxi∈C

(pCTRi*bidi )

Page 26: Computational advertising in Social Networks

Virtual  Profiling

Title  :  Eng  Mgr Company  :  LinkedIn Location  :  CA,USA   Skills  :    ML,  RecSys

Title  :  Sr.  SE Company  :  Google Location  :  PA,  USA Skills  :    ML,  DM

Title  :  Eng  Dir Company  :  Linkedin Location  :  PA,  USA Skills  :    ML,  Stats,  DM

Title  :   Sr.  SE<1>,  Eng  Mgr<1>,  

Eng  Dir<1> Company  :  

LinkedIn<2>,  Google<1>,

Location  :            CA,USA  <2>,  PA,  USA<1>   Skills  :  

 ML<2>,  RecSys<1>,    Stats<1>,  DM<1>

Page 27: Computational advertising in Social Networks

Virtual  Profiling

Title  :  Eng  Mgr Company  :  LinkedIn Location  :  CA,USA   Skills  :    ML,  RecSys

Title  :  Vice  President Company  :  Twi]er Location  :  CA,USA   Skills  :    DM,  ML,  RecSys                    ……………….

Page 28: Computational advertising in Social Networks

Virtual  Profiling

Information  Gain

§  Pick  Top  K  overrepresented  features  from  the   clicker  distribution  vs  the  target  segment

A  representative  projection  of  the  item  in  the   member  feature  space

Page 29: Computational advertising in Social Networks

CTR  Prediction  –  CF  Similarity

Ranker MEMBER  FEATURES

Score  to  pCTR  correction pCTRi

§  L2  regularized  Logistic  Regression  (Liblinear,  VW,  Mahout,  ADMM) §  Frequency  or  conditional  smoothed  oCTR  as  feature  values  from  

activated  features  in  the  Virtual  Profile §  For  new  ad  creatives  back-­‐‑off  to  the  advertiser  /  ad  category  nodes  till  

they  reach  critical  impression/click  volume  (explore/exploit)

AD  CREATIVE  VIRTUAL  PROFILE

Creative  features

Page 30: Computational advertising in Social Networks

What  about  Hypertargeting  ?

Done  via §  Transitions  probability §  Profile  collocation  analysis §  Co-­‐‑Targeted  segments §  Virtual  Profile  Similarity §  A/B  tested  for  most  effective  

solutions

Page 31: Computational advertising in Social Networks
Page 32: Computational advertising in Social Networks

RecLS

Recommendations:  What  are  they  worth?  Think  50%

32

§  > 50% of connections are from recommendations (PYMK)

§  > 50% of job applications are from recommendations (JYMBII)

§  > 50% of group joins are from recommendations (GYML)

Page 33: Computational advertising in Social Networks

Hiring  Solutions  –  Self  Serve  Jobs  Postings

Page 34: Computational advertising in Social Networks

Sponsored  Recommendations

Page 35: Computational advertising in Social Networks

 Talent  Match

Page 36: Computational advertising in Social Networks

Corpus  Stats

Job

User  Base

Filtered

title geo company

industry description functional area

Candidate

General expertise specialties education headline geo experience

Current Position title summary tenure length industry functional area …

Similarity   (candidate  expertise,  job  description)

0.56 Similarity  

(candidate  specialties,  job  description)

0.2 Transition  probability

(candidate  industry,  job  industry)

0.43

Title  Similarity

0.8

Similarity  (headline,  title)

0.7 . . .

derived

Matching Binary        Exact  matches:        geo,  industry,        … Soft          transition          probabilities,          similarity,          …   Text

Recommendation  Algorithm

Transition  probabilities Connectivity yrs  of  experience  to  reach  title   education  needed  for  this  title …

Page 37: Computational advertising in Social Networks

37

Feature  Engineering  –  Entity  Resolution

§   Companies

•   Huge  impact  on  the    business  and  UE

•   Ad  targeting •   TalentMatch •   Referrals

‘IBM’ has 8000+ variations -  ibm – ireland -  ibm research -  T J Watson Labs -  International Bus. Machines -  Deep Blue

K-Ambiguous

Page 38: Computational advertising in Social Networks

38

§   Binary  classifier  (LR),  not  ranker §   P({position,  company  entity}  is  

a  match) §   Features:  

§   Content  –  name  similarity  features,  industry  match,  location  match,  email  domain  match,  company  size

§   Social  Graph  -­‐‑  #  connections  at  company  entity

§   Behavior  -­‐‑  #  of  invitations  received  from  company  entity  members

§  Company  candidate  set  leveraged  from  Social  graph  and  cosine  similarity

97%  Precision   at  50%  Coverage

Asonam’11, KDD’11

Feature  Engineering  –  Entity  Resolution

Page 39: Computational advertising in Social Networks

§   Zip  code  mapped  to  Regions §   How  sticky  are  those  locations? §   Huge  impact  on  the  business  and  UE

• Job  Seeker,  Recruiter

Feature  Engineering  –  Sticky  locations

Page 40: Computational advertising in Social Networks

§   Open  to  relocation  ? §   Region  similarity  based  on  profiles  or  network §   Region  transition  probability

§  predict  individuals  propensity  to  migrate  and  most  likely  migration  target  

§  Impact  on  job  recommendations §  20%  lift  in  views/viewers/applications/applicants

Feature  Engineering  –  Sticky  locations

Page 41: Computational advertising in Social Networks

41

The  Network  effect

Page 42: Computational advertising in Social Networks

What  should  you  transition  to  &  when  ?

42

Page 43: Computational advertising in Social Networks

Multiple  Objective  Optimization

Applicable  in  multiple  contexts §  Online  Dating

§  Click  Shaping

§  Revenue  vs  CTR  optimization  tradeoff §  Talent  Match  

Luiz  Pizzato,  Tomek  Rej,  Thomas  Chung,  Irena  Koprinska,  Kalina  Yacef,  and  Judy  Kay.  2010.  Reciprocal  recommender  system  for  online  dating.  In  Proceedings  of  the  fourth  ACM  conference  on  Recommender  systems  (RecSys  'ʹ10).  ACM,  New  York,  NY,  USA,  353-­‐‑354.  

Deepak  Agarwal,  Bee-­‐‑Chung  Chen,  Pradheep  Elango,  and  Xuanhui  Wang.  2011.  Click  shaping  to  optimize  multiple  objectives.  In  Proceedings  of  the  17th  ACM  SIGKDD  international  conference  on  Knowledge  discovery  and  data  mining  (KDD  'ʹ11).  ACM,  New  York,  NY,  USA,  132-­‐‑140

Mario  Rodriguez,  Christian  Posse,  Ethan  Zhang.2012.  Multiple  Objective  Optimization  in  Recommender  Systems.  To  appear  in  Proceedings  of  the  Sixth  ACM  conference  on  Recommender  systems  (RecSys  'ʹ12)

Page 44: Computational advertising in Social Networks

Multiple  Objective  Optimization

Formalism 1.  Rank  Top  K’  >  K  semantically  relevant  results

2.  Perturb  the  Top  K’  ranking  with  the  parameterized  ranking

3.  Measure  the  perturbation  via  a  quality  tradeoff

4.   

job

TalentMatch Member  Z,  0.89,  Active

JobSeeker  Intent

MOO

Member  X,  0.98,  0.98,  NonSeeker Member  Y,  0.91,  0.91,  NonSeeker

+40%  InMail  Response  Rate

Page 45: Computational advertising in Social Networks

Multiple  Objective  Optimization §  TalentMatch

§  Logistic  Regression  model

§  JobSeeker  Intent §  Ordered  Logistic  Regression  model §  Active/Passive/NonSeekers §  Outputs  propensity  score

§  MOO  (Multiple  Objective  Optimization) §  Grid  Search  on  Objective  function §  sMOOth  for  large  parameter  spaces

Page 46: Computational advertising in Social Networks

Multiple  Objective  Optimization Formalism 1.  Rank  top  K’  >  K  semantically  rank  results

2.  Perturb  the  ranking  with  a  parametric  function  parameterized  by  α  ,  β  which  leads  to  inclusion  of  the  secondary  objective

3.  Measure  the  perturbation  using  a  delta  function  wrt  to  the  primary  objective

4.  Create  a  framework  to  quantify  the  tradeoff  between  the  two  objectives

Page 47: Computational advertising in Social Networks

Multiple  Objective  Optimization

Page 48: Computational advertising in Social Networks

Multiple  Objective  Optimization

Page 49: Computational advertising in Social Networks

Social  Referral

Page 50: Computational advertising in Social Networks

Social  Referral §  Order  recommendations  by

§  Connection  Strength  between  two  users  => §  Recommendation  Strength  for  the  target  user  => §  Combination  thereof

σ (ui,uj )R(uj,gk )

Mohammad  Amin,  Baoshi  Yan,  Sripad  Sriram,  Anmol  Bhasin,  Christian  Posse.  2012.  Social  Referral  :  Using  network  connections  to  deliver  recommendations.  To  appear  in  Proceedings  of  the  Sixth  ACM  conference  on  Recommender  systems  (RecSys  'ʹ12)

>  2X  Conversion

Linkedin  Group:  Text  Analytics

I  found  this  group  interesting,  and  I  think  you  will  too Deepak

Linkedin  Group:  Text  Analytics

From:  Deepak  Agarwal  –  Engineering  Director,  LinkedIn

2X  conversion

Page 51: Computational advertising in Social Networks

Follow  Ecosystem

Page 52: Computational advertising in Social Networks

Recommended  Followers  Targeting Task  :  To  identify  a  set  (usually  Millions)  of  users  likely  to  follow  the  given  company

Scorer MEMBER  PROFILE  FEATURES

p( follow | ci,uj )

COMPANY  FOLLOWER  VIRTUAL  PROFILE

Global  Company    popularity

Other  rankings  – 1.  User’s  login  probability  in  next  X  days 2.  User’s  PVs  in  the  next  X  days 3.  User’s  propensity  to  follow  any  company

Weighted  Borda  count  to  for  Information  Fusion  &  A/B  Test  combinations h]p://www.colorado.edu/education/DMP/voting_b.html  -­‐‑  loss  of  information  in  plurality  votes

Page 53: Computational advertising in Social Networks

53 53 53

A/B  Testing Is  Option  A  Be]er  Than  Option  B?  Let’s  Test

Beware  of   §  novelty  effect §  Cannibalization §  potential  biases  (time,  targeted  population)

§  random  sampling  destroying  the  network    effect

Don’t forget to A/A test first

(“Seven  Pitfalls  to  Avoid  when  Running  Controlled  Experiments  on  the  Web”,  KDD’09 “Framework  and  Algorithms  for  Network  Bucket  Testing”  WWW’12  submission)

Enjoy testing furiously!. Hundreds of tests live on LinkedIn at all times..

0"

1,000"

2,000"

3,000"

4,000"

5,000"

6,000"

7,000"

8,000"

9,000"

0" 5" 10" 15" 20" 25"

job$views$per$5%$bucket$range$5$6/5/11$

job"views"per"5%"bucket"range"?"6/5/11"

0"

1,000"

2,000"

3,000"

4,000"

5,000"

6,000"

7,000"

0" 5" 10" 15" 20" 25"

job$views$6/19/11$

job"views"6/19/11"

A/B  allows  seemingly  subjective  questions  of  design—color,  layout,  image  selection,  text—to  become  incontrovertible  ma]ers  of  data-­‐‑driven  social  science.  -­‐‑    Dan  Siroker,  Digital  Advisor  to  Barack  Obama’s  election  campaign  -­‐‑2008

h]p://www.wired.com/business/2012/04/ff_abtesting/

Page 54: Computational advertising in Social Networks
Page 55: Computational advertising in Social Networks

Supply Demand

Newer  Ad  products  like  “fans”  &  “follows”

Social  media  frenzy

Newer  advertiser    acquisition

#  of  pages  with  ads

Page  view  growth  ,  highest  in  mobile

55

Demand  exceeds  supply

Page 56: Computational advertising in Social Networks

Real  Time  Bidding

Fun  problems §  When  not  to  bid  ? §  CTR  prediction  on  the  publisher   §  What  auction  does  the  exchange  run  ? §  Onsite  vs  Offsite  impression  tradeoff  

for  impression  capped  campaigns

Page 57: Computational advertising in Social Networks

Onsite/Offsite  tradeoff

LinkedIn Ads shown to LinkedIn Member – zillow.com

Page 58: Computational advertising in Social Networks

Other  initiatives..

§  Audience  Forecasting

§  Bid  Landscaping

§  Lookalike  Modeling

§  Publisher  DNA

§  Auto  ad  creative  generation  from  landing  pages

§  Explore  Exploit  strategies

And  more..

Page 59: Computational advertising in Social Networks

§ New  guaranteed  display  ad  product §  Impressions  guaranteed  =  1 §  eCPI    >  $[0-­‐‑9]{1}000

New  Product!

Page 60: Computational advertising in Social Networks

You

Picture yourself with this New Job:

Applied Researcher / Research Engineer

Page 61: Computational advertising in Social Networks

Credits

Engineering  :  Abhishek  Gupta,  Adam  Smyczek,  Adil  Aijaz,  Alan  Li,  Baoshi  Yan,  Bee-­‐‑Chung  Chen,  Deepak  Agarwal,  Ethan  Zhang,  Haishan  Liu,  Igor  Perisic,  Jonathan  Traupman,  Liang  Zhang,  Lokesh  Bajaj,  Mario  Rodriguez,  Mohammad  Amin,  Parul  Jain,  Sanjay  Dubey,  Tarun  Kumar,  Trevor  Walker,  Utku  Irmak Product  :  Christian  posse,  Gyanda  Sachdeva,  Mike  Grishaver,  Parker  Barrile,  Sachit  Kamat,  Andrew  Hill

Page 62: Computational advertising in Social Networks

Questions?

Contact:

[email protected]

h]p://engineering.linkedin.com/

Thank  You! 62