computed tomography - pusan national...

54
Computed Tomography Ho Kyung Kim [email protected] Pusan National University Introduction to Medical Engineering

Upload: others

Post on 08-May-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Computed Tomography

Ho Kyung [email protected]

Pusan National University

Introduction to Medical Engineering

Page 2: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Outline

• Computed tomography is different from– Laminography– Digital tomosynthesis

• Slip‐ring technology

• Bow‐tie filter

• CT number

• Helical CT

• Multislice CT (MSCT) or multidetector CT (MDCT)

2

Page 3: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Computed tomography (CT)

3

• An imaging modality that produces "cross‐sectional" images representing the x‐ray “attenuation properties” of the body– Tomo + graphy =  (slice) +  (to write)

x

y

z

x

z

y

Page 4: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Projection vs. tomograph

4

Radiograph, 𝑝 𝑢, 𝑣 Tomograph, 𝑓 𝑥, 𝑦 𝜇 𝑥, 𝑦

Page 5: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Taken from W. A. Kalender's Text Material (2000)5

63 3563 35 2⁄ 100% 57%

1738 17341738 1734 2⁄ 100% 0.23%

Contrast

Page 6: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Classical tomography

6

• Selecting a plane of interest by relative motion of source & detector while blurring undesired planes

• Known as many different names; planigraphy, stratigraphy, & laminography• Not true tomography

Linear tomography Axial transverse tomographyOnly line P1‐P2 stays in focuswhereas all others appear blurred

In principle, it simulates the  backprojectionprocedure used in current times

Page 7: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

• Shift and add

7

Digital tomosynthesis

Page 8: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

8

• A compromise b/w radiography and CT– Requiring a low number (typically tens) of 

projection images to compute 3D images with limited depth information

– Reconstructed by simple backprojection (or shift‐and‐add), FBP, or iterative method

– Available for chest imaging (commercially in 2004) and mammography (research prototype in 1999)

DBT prototype at the Univ. of Michigan

Page 9: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Park et al., Radiographics (2007)Dobbins & McAdams, EJR (2009) 9

Page 10: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

10Taken from WA Kalender's Text Material (2000)

CT scanner generations

1st‐generationrotate‐translate type5 min/slice

2nd‐generationmultiple detector elements20 s/slice

3rd‐generationfan‐beam geometry0.5 s/slicemost popular

4th‐generationexpensivedifficult to scatt'd radiation

Page 11: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Brief history

11

• Discovered x‐ray by Wilhelm Konrad Röntgen in 1985• Awarded the first Nobel prize to Röntgen in Physics in 1901• Formulated the reconstruction of a function from its projections by Johann Radon in 1917• Mathematical and experimental CT methods by A. M. Cormack in 1960s• Developed the first CT scanner (EMI) by Godfrey N. Hounsfield in 1972• Shared the Nobel prize in medicine and physiology by Hounsfield and Cormack in 1979• Developed the first whole‐body CT scanner (ACTA) by Robert S. Ledley in 1974• Developed the helical CT in 1989• Developed the multislice CT in 1998

Page 12: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

• Even though radiation risks, CT utilization is still increasing because:– excellent image quality & rapid acquisition time 

12

Single‐slice Multi‐slice or multi‐detector

Page 13: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Overview

13

X

Y

Z

X‐ray source

Detector array

Isocenter

Image reconstruction

Sinogram

Reconstructed images

Page 14: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

System

14

• Collimator– limiting the transmitted x rays to the 

selected slice– preventing useless irradiation to the patient

• Post‐patient collimator or antiscatter grid– limiting the detected scattered radiation– usually, solid‐state detectors employs 

external in‐plane septa

• Slip rings– to transmit power thru a brush slip ring– to transmit data via an RF or optical slip ring– sliding contacts that eliminate the 

mechanical problems

• Gantry– containing the rotating parts– can be tilted over a limited angle for 

imaging oblique slices

Page 15: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

15

Page 16: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Slip ring

• Allowing the rotating gantry to have electrical connections to the stationary components• Concentric metal bands that are connected to a series of gliding contacts• Having enabled helical (spiral) CT scanning modes, & led to major reductions in CT scan 

times

16

Page 17: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

17

Page 18: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Gantry & table

• Gantry is comprised of imaging hardware

18

Page 19: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Bow‐tie filters

• Beam shaping filter designed to attenuate more toward the periphery of the field• Making signal levels at the detector more homogeneous• Reduce dose to the patient with no loss of image quality

19

Page 20: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

• No bow tie– Higher dose levels at the periphery for 

cylindrical objects because of higher dose at the exit point for peripheral ray (P) than central ray (C)

• Small bow tie for a larger object– Head bow tie for a body scan– Higher dose levels at the center of objects

20

Page 21: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Cone‐beam geometry

• Fan‐beam projection– Fan of data that converges on a vertex (i.e., x‐ray focal spot)

21

• Narrow cone‐beam geometry in all modern MDCT scanners

• Wide cone‐beam geometry with flat‐panel detectors– True CB scanners w/ cone half angles 

approaching 10 degrees– Image‐guided radiotherapy, dental CT, 

and other breast, extremity, & SPECT/CT systems

Page 22: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

CT image

22

• Square 512  512 image matrix• Volume field of view (FOV)

– circular FOV (50 – 70 cm in diameter) over length of patient

Page 23: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Detectors

23

• Energy integrating detectors

– Scintillation crystal with photomultiplier tube (PMT)• Scintillation crystals: NaI, CaF2, BGO …

– Converting x rays into visible light (scintillations)• PMT

– Converting light into an electric current• Pros: high quantum efficiency, fast response time• Cons: low packing density

Scintillator

Page 24: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

24

– Gas ionization chambers• Consisting of a pressurized (10 – 30 bars) gas chamber (Xenon) with electrodes• Gas ionization  drifts electron‐ion pairs along field lines  induction of electric currents• Pros: high packing density• Cons: low quantum efficiency (~ 60%), slow response time (~ 700 s)

Page 25: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

25

– Scintillation crystals with photodiode (most recent commercial CT detectors)• Scintillation crystals: CdWO4, Y2O3, CsI, Gd2O2S

– Individual scintillator pieces are assembled into a reflector matrix in order to define the detector cells

– Few mm thickness to have a very high absorption efficiency (96%)» Considering the finite thickness of the septa in the antiscatter grid, the absorption efficiency is 

limited by the area fill fraction (~80%)– Good transfer of light to the photodiode– Very fast response time (~s)

‒ Solid‐state or semiconductor detectors (photodiodes)‒ Multichannel readout electronics or data acquisition 

system (DAS)• Integrating the photocurrent from the diode and 

converting the electric charge signal to voltage using a transimpedance amplifier

• Performing the analog to digital conversion with typical sampling rates (~kHz)

‒ Susceptible to electronic noise introduced by the transimpedance amplifier

• Dominant at low signal levels, leading to noise streaks in the images

Page 26: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

26

Page 27: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

27

• Photon counting detectors– Based on direct conversion

• Detector materials: cadmium telluride (CdTe) or cadmium zinc telluride (CdZnTe or CZT)• Converting x‐ray photon into a certain electronic charge proportional to its energy

– x10 larger than that produced by the scintillator/photodiode combination– The electronic noise no longer dominates the signal from individual x‐rays

• Electronic circuits detect charge packages and count the number of photons instead of integrating their energy

– Improving the CNR by 10 to 20%• Remaining challenges include stability and the count rate limits

Image courtesy: E. Roessl et al., Philips (2009)

Page 28: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

28M. J. Willemink et al., Radiology (2018)

Page 29: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

29M. J. Willemink et al., Radiology (2018)

Page 30: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

30M. J. Willemink et al., Radiology (2018)

Page 31: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

31C. H. McCollough et al., Radiology (2015)

Page 32: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

32C. H. McCollough et al., Radiology (2015)

Page 33: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

33M. J. Willemink et al., Radiology (2018)

Page 34: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Image quality

34Taken from W. A. Kalender's Text Material (2000)

80  80 pixels (w/ slice 13 mm)

1024  1024 pixels

Page 35: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

CT number

35

• CT measures and computes the spatial distribution of the linear attenuation coefficient 𝜇 𝑥, 𝑦– Note that 𝜇 𝑥, 𝑦 ~𝑓 𝐸, 𝑍– Impossible in direct comparison of images obtained CT systems with different voltages and 

filtration

Instead, use CT value as a so called “CT number” in Hounsfield unit (HU)• Compute attenuation coefficient relative to the 

attenuation of water• Hounsfield units (HU) in the range of ‐1000 to 1000

‒ CT number in HU 1000

• Air = ‐1000• Water = 0• Bone = the positive side scale but no unique CT 

number ( 𝜇 ~ composition, structure, 𝐸)• Immune to different spectra

HU

-1000

waterair 0 T

CT#

Page 36: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

36Taken from W. A. Kalender's Text Material (2000)

Page 37: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

• CT number differences due to effective atomic numbers decrease for higher energies• Contrast at high energies is dominated by density differences• Negative contrast of fat is caused both by the low effective atomic number and by the low 

density

37Taken from W. A. Kalender's Text Material (2000)

Page 38: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

38

• Typically the CT image consists of 512  512 pixels representing the CT numbers• Due to the large dynamic range, window/leveling must be used to view a CT image

– Choose the center and width (C/W) of the window

Taken from W. A. Kalender's Text Material (2000)

Original

Bone window Lung window

(Bimodal histogram)

Page 39: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Axial CT acquisition

• Circular or sequential CT scanning– Step‐and‐shoot mode of CT scanners– X‐ray beam “off” while the patient is being translated b/w acquisition cycles

• e.g., 64 detector arrays with width = 0.625 mm, table is moved a distance of 64  0.625 mm (about 40 mm) b/w acquisitions

– Scan a number of consecutive slices with respect to an entire volume– Must be satisfied the Nyquist criterion in axial sampling

• At least two slices per slice thickness to minimize aliasing from axial sampling

39

Page 40: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Helical CT acquisition

40

• Nowadays widely spread and also known as spiral CT• While the x‐ray tube rotates continuously around the patient, the patient is slowly 

translated thru the gantry• The table feed (TF) = the axial distance over which the table translates during a complete 

tube rotation of 360

• Pitch = the ratio b/w the TF & slice thickness ∆𝑧 (= ∆)

• Similar to circular CT, max. sampling distance = ∆𝑧/2 ⟹ max. TF = ∆𝑧/2 (pitch = 0.5) for a slice thickness ∆𝑧

Page 41: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

41

– 𝛽 = the angular position of x‐ray tube; 𝑧 = its axial position relative to the patient

• Consider a slice reconstruction at 𝑧– Only one view at 𝛽∗ is available– Solved by interpolation from measurements at adjacent axial positions

• 2𝜋 linear interpolation• 𝜋 linear interpolation using the double axial sampling for concurrent but opposite rays (parallel‐beam)

– Sampling distance = TF/2– Max. TF = ∆𝑧 (pitch = 1.0)

• Practically, a slightly larger pitch is often used (1.0 < pitch < 2.0)– e.g., ∆𝑧 = 2 mm with TF = 3 mm (pitch = 1.5)– Fast scan time by a higher pitch ⟹ lower patient dose, less tube load, less motion artifact, but poor 

image quality

Sequential CT Helical CT(2𝜋 linear interpolation) (𝜋 linear interpolation)

Page 42: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Multi‐slice CT

• Employing multiple detector rows to measure several slices per rotation• e.g., a 64‐row systems with 0.5 mm detectors (referred to the isocenter), a pitch of 1.0 & a 

0.33 s rotation ⟹ lung scan (40 cm) in ~4 s– 192 rows & 0.25‐s rotation ⟹ scan time in ~ 1 s

• Parallel‐beam reconstruction for 4‐slice scanners• Tilted plane reconstruction for 16‐slice scanners• 3D reconstruction for 64 and higher slice scanners

42

Page 43: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

• Cone‐beam CT• Entire volume (of interest) in one single scan• Required a 2D array of detector elements• Tuy’s data sufficiency condition for exact reconstruction

– X‐ray source trajectory cuts every plane through the object to be reconstructed– CB scan does not satisfy the Tuy’s condition– Conventional FBP cannot be applicable

• Grangeat’s Radon inversion– Applicable to CB measurements of short objects whose projections are not truncated

• Approximate reconstructions (FDK algorithm)– Circular trajectory for CB measurements– Extended version of the 2D weighted FBP to 3D– Unavoidable cone‐beam artifacts

Volumetric CT

43

Page 44: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

• Helical cone‐beam reconstruction– Resulting in a complete data set if the pitch is not too large– Exact FBP algorithms

• Katsevich• Derivative backprojection (DBP) approach

– Nevertheless, FDK‐based approaches are popular because they are preferable in terms of noise, noise uniformity and other quality characteristics

• Iterative reconstructions– Widely used in nuclear medicine– Computationally very expensive– Maximum‐likelihood (ML)– Maximum‐a‐posteriori probability (MAP)

44

Page 45: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Cardiac CT

45

• The full heart in a few seconds by a low‐pitch helical scan or a limited number of large‐coverage circular scans (or axial scanning)

• Reconstruction of a particular cardiac phase with the ECG gating signal– Dynamic 3D imaging (often called 4D images) by subdividing the cardiac cycle into different 

phases

Page 46: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Dual‐energy CT

46

• A better tissue characterization method• Requiring two different energy spectra measurements

– Two consecutive scans at different kV– Fast kV switching b/w low and high kV while a single circular or helical 

acquisition– Dual‐source CT– Sandwich detectors– Multi‐channel photon‐counting detectors

• Basis material decomposition process– In projection domain

• Eliminating beam hardening artifacts, which causes a shift in average energy and corresponding attenuation coefficients

– In reconstructed image domain• Applications

– elimination of beam hardening artifacts– automatic segmentation– retrospective generation of monochromatic images– tissue characterization– virtual unenhanced images

Page 47: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Dedicated scanners

47

• Circular cone‐beam scanning with flat‐panel detectors• Limited FOV and not critical scan time

• Oral and maxillofacial CT

Page 48: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

48

• Interventional CT– C‐arm systems– O‐arm systems

• Brest CT

Page 49: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Electron beam tomography

49

• Called 5th‐generation CT, ultrafast CT, or cardiovascular CT• Temporal resolution = 17 fps (2 slices per frame)

Page 50: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Dynamic spatial reconstructor (DSR)

50

• 4D x‐ray CT scanner developed at the Mayo Clinic by Richard Robb et al.– 240 cross sections at 60 Hz– 14 x‐ray sources + 14 2D detectors

Page 51: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Inverse‐geometry CT

51

• Eliminating cone‐beam artifacts

Page 52: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Robotic trajectory

52Kalender & Kyriakou, EJR (2007)

A courtesy of Siemens Medical Systems

Page 53: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Future expectations

53

• CT will remain the preferred modality for the visualization of the skeleton, calcifications, the lungs, and probably the gastrointestinal tract.– patients with a metallic implant, an electrical stimulator, or an artificial respirator

• An increased use can be expected for screening (heart, chest, colon), perfusion imaging and vascular and cardiac imaging.

• From a technical point of view– toward  dose reduction, increased volume coverage, higher CNR, and improved spatial & temporal 

resolution– new reconstruction algorithms for artifact reduction and for low dose CT– multi‐energy CT with optimal dose efficiency

Page 54: Computed Tomography - Pusan National Universitybml.pusan.ac.kr/LectureFrame/Lecture/Undergraduates/... · 2020. 11. 16. · Computed tomography (CT) 3 • An imaging modality that

Wrap‐up

• Computed tomography is different from– Laminography– Digital tomosynthesis

• Slip‐ring technology

• Bow‐tie filter

• CT number

• Helical CT

• Multislice CT (MSCT) or multidetector CT (MDCT)

54