computer networks ppt

179
OSI MODEL OSI MODEL A model defines the stages or tasks of a protocol as it prepares to send data OSI - OPEN SYSTEM INTERCONNECTION Open meaning standards available to all. The model is divided into seven distinct layers Each subsequent layer should perform a well- defined function and the layer boundaries are designed to minimize the information flow across the interfaces.

Upload: siddhant-singhal

Post on 23-Oct-2014

196 views

Category:

Documents


1 download

TRANSCRIPT

OSI MODEL

A model defines the stages or tasks of a protocol as it prepares to send data OSI OPEN SYSTEMINTERCONNECTION

Open meaning standards available to all. The model is divided into seven distinct layers Each subsequent layer should perform a welldefined function and the layer boundaries are designed to minimize the information flow across the interfaces.

OSI model

OSI MODEL LAYERS

Application Layer Provides a user interface (examples: HTTP, SMTP) Includes file, print, database, app. Services

Presentation Layer Presents the data (example: JPEG) Includes encoding techniques,encryption, compression and translation services

Session Layer This provides a session between source & destination and decides the mode of communication(simplex, half duplex & full duplex)

Transport Layer Provides reliable delivery with alignment of packets Performs error detection Includes end to end connection

OSI MODEL LAYERS

Network Layer Provides logical addressing and identifies the network

Generates the Route to the destination

Data Link Layer Combines packets into bytes then into frames Performs error detection (not correction) Provides Media access addressing (point-to-point) and identifies the client system Media Access Control and Data Link Control

Physical Layer physical movement of bits between devices.

Tcp/Ip model

TCP/IP MODEL

TCP (Transmission Control Protocol) is the main transport protocol utilized in IP networks. The TCP protocol exists on the Transport Layer of the OSI Model.The TCP protocol is a connection-oriented protocol which provides end-toend reliability. Internet protocol is the set of techniques used by many hosts for transmitting data over the Internet. The TCP/IP model is a description framework for computer network protocols and it is evolved from ARPANET which was the world's first wide area network and a predecessor of the Internet. This model sometimes called internet model .

There are four layers in this model.

Application layer: Defines how TCP/IP application protocols and how host programs interface with transport layer services to use the network. protocols regarding this layer are FTP,HTTP,SMTP,TELNET,SNMP.

Transport layer: Provides communication session management between host computers. Defines the level of service and status of the connection used when transporting data. Protocols involved in this layer are TCP,UDP.

Internet layer: Packages data into IP datagram's, which contain source and destination address information that is used to forward the datagram's between hosts and across networks. Performs routing of IP datagram's. Internet layer is also having some protocols ARP, RARP, IGMP, ICMP.

Physical layer: The physical movement of bits from source to destination.

Multiple Access Protocols

If multiple nodes tries to access the single channel for data transmission,

CHANNEL

ALOHA

Here every node is allowed to transmit its data packets in the same channel Then, when one node is transmitting data, then if some other node also transmits then it leads to COLLISIONS

In this ALOHA, lot of chances to have more collisionscollision probability increases: frame sent at t0 collides with other frames sent in [t0-1,t0+1]

PURE ALOHA EFFICIENCY

P(success by given node) = P(node transmits) . P(no other node transmits in [t0-1,t0] . P(no other node transmits in [t0,t0+1] = p . (1-p)N-1 . (1-p)N-1 = p . (1-p)2(N-1)

choosing optimum p and then letting n -> Efficiency = 1/(2e) = .18

SLOTTED ALOHA

Here every node is given an equal amount of time slot. when its turn comes, the node will transmit its data packets in that time slot . Here less chances to have collisions.

SLOTTED ALOHA EFFICIENCY

Efficiency is the long-run fraction of successful slots when there are many nodes, each with many frames to send Suppose N nodes with many frames to send, each transmits in slot with probability p prob that node 1 has success in a slot = p(1-p)N-1 prob that any node has a success = Np(1-p)N-1

CARRIER SENSE MULTIPLE ACCESS(CSMA)

Here the node listens to the channel before transmission If channel is idle: transmit entire frame If channel is busy, defer transmission Human analogy: dont interrupt

CSMA/CD (COLLISION DETECTION)

If two nodes simultaneously sense the channel and if the channel is idle and both will attempt to transmit, which leads to collisions. if any two or more nodes senses the channel and gets the Idle status, then this protocol will take care by Blocking the nodes and minimise collisions.

COLLISION FREE PROTOCOLS

Bit-Map Method:

In this method, there will be N time slots. If node0 has a frame to send, it sets the bit 1 during the first slot and transmit the frame in first slot. No other node is allowed to transmit during this slot. This is done for all the nodes. In general node j may declare the fact that it has a frame to send by inserting 1 into slot j. The basic problem with this protocol is its inefficiency during low load. If a node has to transmit and no other node needs to do so, even then it has to wait for the bitmap to finish.

Bit-Map Method

Binary Countdown

In this protocol, a node which wants to signal that it has a frame to send does so by writing its address into the header as a binary number. The arbitration is such that as soon as a node sees that a higher bit position that is 0 in its address has been overwritten with a 1, it gives up. The final result is the address of the node which is allowed to send. After the node has transmitted the whole process is repeated all over again. Given below is an example situation. Nodes Addresses A 0010 , B 0101 , C 1010 , D 1001 ---- Node C 1010 having higher priority gets to transmit.

The problem with this protocol is that the nodes with higher address always wins. Hence this creates a priority which is highly unfair and hence undesirable

Binary Countdown

LAN

Local area network - A group of computers that share a common connection and are usually in a small area or even in the same building. For example an office or home network. They are usually connected by Ethernet cables and have high speed connections. If it was a wireless setup it would be called a WLAN, which would have a lower connection speed

LAN

MAN

Metropolitan area network - This is a larger network that connects computer users in a particular geographic area or region. For example a large university may have a network so large that it may be classified as a MAN. The MAN network usually exist to provide connectivity to local ISPs, cable TV, or large corporations. It is far larger than a LAN and smaller than a WAN. Also large cities like London and Sydney, Australia have metropolitan area networks.

MAN

WAN

Wide area network - This is the largest network and can interconnect networks throughout the world and is not restricted to a geographical location. The Internet is an example of a worldwide public WAN. Most WANs exist to connect LANs that are not in the same geographical area.

WAN

ETHERNET

Dominant wired LAN technology cheap $20 for 100Mbs! first widely used LAN technology Simpler, cheaper than token LANs and ATM Kept up with speed race: 10 Mbps 10 Gbps

Ethernet sketch

ETHERNET TOPOLOGIES

Bus Topology: Shared All nodes connected to a wire

Star Topology: All nodes connected to a central repeater

Network Topologies

ETHERNET CONNECTIVITY10Base5 ThickNet < 500m

Controller Vampire Tap Bus Topology Transceiver

ETHERNET CONNECTIVITY

10Base2 ThinNet < 200m

Controller Transceiver BNC T-Junction Bus Topology

ETHERNET CONNECTIVITY

10BaseT

< 100m

Controller

Star Topology

ETHERNET FRAME STRUCTURE

Sending adapter encapsulates IP datagram (or other protocol packet) in Ethernet frame

network layer

Preamble:

7 bytes with pattern 10101010 followed by one byte with pattern 10101011 Used to synchronize receiver, sender clock rates (Manchester encoding)

ETHERNET FRAME STRUCTURE

Addresses: 6 bytes if adapter receives frame with matching destination address, or with broadcast address (eg ARP packet), it passes data in frame to net-layer protocol otherwise, adapter discards frame

Type: multiple network layer protocols may be in use at the same time on the same machine, when ethernet frame arrives, kernel has to know it . CRC: checked at receiver, if error is detected, the frame is simply dropped

ETHERNET SPECIFICATIONS

Coaxial Cable Up to 500m Taps > 2.5m apart Transceiver Idle detection Sends/Receives signal Repeater Joins multiple Ethernet segments < 5 repeaters between any two hosts < 1024 hosts

ETHERNET MAC ALGORITHM

Sender/Transmitter If line is idle (carrier sensed) Send immediately Send maximum of 1500B data (1527B total) Wait 9.6 s before sending again If line is busy (no carrier sense) Wait until line becomes idle Send immediately If collision detected Stop sending and jam signal Try again later

ETHERNET MAC ALGORITHM

Node AAt time almost T, node As message has almost arrived

Node B

Node A starts transmission at time 0 Node B starts transmission at time THow can we ensure that A knows about the collision?

MANCHESTER ENCODING

1 1

0

0

0

0

1

0

1

1

1

This is a return to zero (RTZ) signal. Each bit period is divided into two equal intervals. Binary 1 -> High Voltage level in the first half and Low Voltage level in the second half. Binary 0 -> Just opposite of the above.

DIFFERENTIAL MANCHESTER ENCODING

1 1

0

0

0

0

1

0

1

1

1

In each bit interval there is a transition of the level in the middle. If the bit value is 0 then there is a presence of a transition at the start of interval. If the bit value is 1, then there is absence of a transition at the start of interval.

One of the properties of this signal is that is self clocking.

SWITCHED ETHERNET

A simple example of switched Ethernet.

Switched Ethernet

An Ethernet LAN that uses switches to connect individual hosts or segments. This type of network is sometimes called a desktop switched Ethernet. In the case of individual hosts, the switch replaces the repeater and effectively gives the device full 10 Mbps bandwidth (or 100 Mbps for Fast Ethernet) to the rest of the network. In the case of segments, the hub is replaced with a switching hub. Switched Ethernets are becoming very popular because they are an effective and convenient way to extend the bandwidth of existing Ethernets.

FAST ETHERNET (100BASE-T)How to achieve 100 Mbps capacity?

LLC MAC

Data Link Layer

Convergence Sublayer

MII

Media Independent Interface Media Dependent Sublayer

Physical Layer

Media Independent Interface provides three choices.

FAST ETHERNET [IEEE 802.3U]

Fast ethernet uses fiber distributed data interface(FDDI)FDDI CHARACTERISTICS:

100 Mbps data rate Distances of up to 200 km Up to 1000 hosts attached Based on fiber optic cabling

GIGABIT ETHERNET (1000 BASE X)

Provides speeds of 1000 Mbps (i.e., one billion bits per second capacity) for half-duplex and full-duplex operation. Uses Ethernet frame format and MAC technology CSMA/CD access method with support for one repeater per collision domain.

Backward compatible with 10 BASE-T and 100 BASE-T.

Uses 802.3 full-duplex Ethernet technology. Uses 802.3x flow control. All Gigabit Ethernet configurations are point-to-point!

GIGABIT ETHERNET TECHNOLOGY

Gigabit Ethernet cabling.1000 BASE SX 1000 BASE LX 1000 BASE CX 1000 BASE T fiber - short wavelength fiber - long wavelength copper - shielded twisted pair copper - unshielded twisted pair

GIGABIT ETHERNET (1000 BASE-T)

LLCMAC

Data Link Layer

GMII

Gigabit Media Independent Interface Physical Layer Media Dependent Interface Medium

GIGABIT ETHERNET

(a) A two-station Ethernet. (b) A multistation Ethernet.

WIRELESS LAN

A wireless LAN (or WLAN, for wireless local area network, sometimes referred to as LAWN, for local area wireless network) is one in which a mobile user can connect to a local area network (LAN) through a wireless(radio) connection. The IEEE 802.11 group of standards specify the technologies for wireless LANs. 802.11 standards use the Ethernet protocol and CSMA/CA (carrier sense multiple access with collision avoidance) for path sharing and include an encryption method

WIRELESS LANS

The 802.11 Protocol Stack The 802.11 Physical Layer The 802.11 MAC Sub layer Protocol The 802.11 Frame Structure Services

THE 802.11 PROTOCOL STACK

Part of the 802.11 protocol stack.

Wireless LAN uses different parts of the spectrum. They are

Infrared - speed upto 1 mbps - signal which is used in TV remote control. FHSS(frequency hopping spread spectrum) & DSSS(direct sequence spread spectrum) - speed upto 1-2 mbps signal which is used in cordless telephones which does not require licensing. OFDM(orthogonal frequency division multiplexing) - speed upto 54 mbps. HRDSSS(high rate DSSS) - speed upto 11 mbps OFDM(orthogonal frequency division multiplexing) - another version of OFDM speed upto 54 mbps at a different frequency band.

THE 802.11 MAC SUBLAYER PROTOCOL

(a) The hidden station problem. (b) The exposed station problem.

THE 802.11 MAC SUBLAYER PROTOCOL

The hidden station problem In fig(a), station C is transmitting to station B.If A senses the channel, it will not hear anything and falsely conclude that it may now start transmitting to B. The exposed station problem In fig(b), B wants to send to C so it listens to the channel. When it hears a transmission, it falsely concludes that it may not send to C, even though A may be transmitting to D(not shown).

The MAC sub layer is responsible for the channel allocation procedures, protocol data unit(PDU) addressing, frame formatting, error checking and fragmentation and reassembly The transmission mode can operate in the contention mode exclusively, requiring all stations to contend for the channel for each packet transmitted. IEEE 802.11 three different types of frames: management ,control and data The management frames is used for station association and disassociation with the AP, timing and synchronization, and authentication and deauthentication. Control frames is used for handshaking during the CP, for positive acknowledgments during the CP, and to end the CFP. Data frames are used for the transmission of data during the CP and CFP, and can be combined with polling and acknowledgments during the CFP.

THE 802.11 MAC SUBLAYER PROTOCOL

THE 802.11 MAC SUBLAYER PROTOCOLOnce A received CTS it A wants to transmit starts to send frame and to B starts an ACK timer B transmits ACK frame saying that frame arrived intact

C in range of A D in range of B but not A

The use of virtual channel sensing using CSMA/CA.If As ACK timer times out before receipt of ACK frame from B the whole protocol needs to be repeated

THE 802.11 FRAME STRUCTURE

The 802.11 data frame.

Protocol version: Allows 2 versions of the protocol to operate in the same cell

Frame Type: Data Control Management

Subtype: CTS, RTS etc

THE 802.11 FRAME STRUCTURE

The 802.11 data frame.

To & From DS: Indicates if the frame is going to or coming from the intercell distribution systems, I.e. Ethernet

Cell 1

Cell 3

Base stations

Cell 2

Outside world

THE 802.11 FRAME STRUCTURE

The 802.11 data frame.

MF : More Fragments of a Frame to follow

Marks the retransmission of an earlier frame

Pwr: used by base station to send station into and out of sleep state: I.e. Power management

THE 802.11 FRAME STRUCTURE

The 802.11 data frame.

Sender has more frames to follow

Specifies that frame body has been encrypted: WEP: Wired Equivalent Privacy

Indicates if frames must be processed in ORDER

THE 802.11 FRAME STRUCTURE

The 802.11 data frame.

Sequence: allows fragments to be numbered 12 bits identify frame 4 bits identify fragment How long the frame and acknowledgement will occupy the channel

Source & destination addresses + CELL source & destination addresses

THE 802.11 FRAME STRUCTURE The 802.11 data frame

Data payload: up to 2312 bytes

Checksum

802.11 SERVICES

Distribution Services

AssociationDisassociation Reassociation

Mobile stations OR base station breaks relationship Station: before shutting down or leaving

Base station: going down for maintenanceAllows mobile station to switch base stations i.e. move from one cell to another

Determines how to route frames sent to base station

Distribution Integration

i.e. from within cell from outside of cell

Handles translation from 802.11 format to format required for destination network

802.11 SERVICES

Single CellOnce accepted by Base station mobile station must authenticate itself prove it belongs to the networkBase station send a challenge frame: see if mobile station knows secret key (password) Mobile station returns the challenge frame encrypted using the key

Intracell ServicesAuthentication

Deauthentication

Privacy Data Delivery

Mobile breaks connection and will need to authenticate again if it wants back into the network

Encryption & DecryptionRC4 algorithm Higher layers must deal with detecting and correcting errors

BLUETOOTH

Bluetooth is a specification for the use of low-power radio communications to wirelessly link phones, computers and other network devices over short distances. Bluetooth technology was designed primarily to support simple wireless networking of personal consumer devices and peripherals, including cell phones, PDAs, and wireless headsets. Wireless signals transmitted with Bluetooth cover short distances, typically up to 30 feet (10 meters). Bluetooth devices generally communicate at less than 1 Mbps. Bluetooth networks feature a dynamic topology called a piconet or PAN. Piconets contain a minimum of two and a maximum of eight Bluetooth peer devices. Devices communicate using protocols that are part of the Bluetooth Specification.

BLUETOOTH ARCHITECTURETwo piconets can be connected to form a scatter net.

NETWORK TOPOLOGY

Radio Designation Connected radios can be master or slave Radios are symmetric (same radio can be master or slave) Master can connect to seven simultaneous or 200+ active slaves per piconet Each piconet has maximum capacity (1 MSPS) Unique hopping pattern/IDS M sb P P M

PiconetS P sb S S

Scatter net High capacity system Minimal impact with up to 10 piconets within range Radios can share piconets!

BLUETOOTH APPLICATIONSThe Bluetooth profiles.

THE BLUETOOTH PROTOCOL STACKThe 802.15 version of the Bluetooth protocol architecture.

In the above fig, physical radio layer deals with radio transmission and modulation. Next, baseband layer deals with time slots and how these slots are grouped into frames. Next, Link Manager handles the establishment of logical channels between devices including power management, authentication & quality of service. Next, middleware layer is designed to deal with legacy devices such as Rfcomm, telephony, service discovery. Last, is the application layer which make use of the protocols ij lower layers to get their work done.

THE BLUETOOTH FRAME STRUCTURE

A typical Bluetooth data frame.

The frame structure begins with an access code that usually identifies the master so that slaves within radio of two masters can tell which traffic is for them. The 54-bit header contains typical MAC sub layer fields

The data field which is up to 2744 bits for a single time slot, the format is the same except that data field is 240 bits.Within the header the Address field identifies which of the eight active devices the frame is intended for. Type means it tells the type of frame-ACL(asynchronous connectionless) or SCO(synchronous connection oriented) The flow bit is asserted by a slave when the buffer is full and cannot receive any more data. The acknowledgment bit is used for piggyback an ACK onto a frame

The sequence bit is used for number the frames to detect retransmissions.

Network devices

REPEATER: At the bottom,in the physical layer,we find the repeaters.These are analog devices that are connected to two table segments.A signal appearing on one of them is amplified and put out on the other.Repeaters do not understand frames,packets,or headers.They understand volts.

Hub

A HUB has number of input lines that it joins electrically.HUBs differ from repeaters in that they do not usually amplify the incoming signals and are designed to hold multiple linecards each with multiple inputs,but the differences are slight.

Bridge

We find bridges and switches in datalink layer.A bridge connects two or more LANs .When frame arrives,software in the bridge extracts the destination address from the frame header and looks it up in a table to see where to send the frame .

Switch

A network switch is a computer networking device that connects network segments.

Router

It is a device like a switch that connects more networks or computers and which has inbuilt software to find the routes & their shortest paths.

Gateway

These connect two computers that use different connection oriented transport protocols. Application gateways understand the format and contents of the data and translate messages from one format to another.

Bridge

Spanning tree Bridge

Remote Bridge

BRIDGEBridge is a network device which is used to join two small & different networks or it is used to divide a big network into two segments. It takes the request from one network/segment and passes to other network/segment and performs the data transmission. In fig 4.40, bridge acts as a mediator between two different networks 802.11 & 802.3 and performs data transmission. PORTS A E B F

BRIDGE C D G H

SELECTIVE FORWARDING

A

B BRIDGE

E

F

C

D

G

H

If A sends a frame to E - the frame must be forwarded by the bridge. If A sends a frame to B - there is no reason to forward the frame.

NETWORK LAYER

Network Layer Design Issues Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation of Connection-Oriented Service Comparison of Virtual-Circuit and Datagram Subnets

Store-and-Forward Packet Switching

Switching refers to the transmission of packets from h1 to h2 passing through different network devices. A device when it gets a data packet from source, it stores and acquire the route and it forwards to the destination.

IMPLEMENTATION OF CONNECTIONLESS SERVICE

Here we will not have a dedicated channel from H1 to H2 . Data packets will be transmitted in the available & shortest routes.

IMPLEMENTATION OF CONNECTION-ORIENTED SERVICE

Here we will have a dedicated channel from H1 to H2 . Data packets will be transmitted in the same dedicated channel.

COMPARISION OF VIRTUAL-CIRCUIT & DATAGRAM SUBNETS

ROUTING ALGORITHMS

The Optimality Principle Shortest Path Routing Flooding Distance Vector Routing Link State Routing Hierarchical Routing Broadcast Routing Multicast Routing Routing for Mobile Hosts Routing in Ad Hoc Networks

THE OPTIMALITY PRINCIPLEOptimality principle: if router j is on the optimal path from router I to router k, then the optimal path from j to k also falls along the same route. F->A->B best path =>A->B best path Optimal routes from all sources to a destination form a tree rooted at the destination

a) A subnet. (b) A sink tree for router B.

SHORTEST PATH ROUTING (DJKSTRA)

Here we need to find the shortest route from A to H. Start from A and go to B as the AB is smaller than AB(2) and AG(6). From B, go to E, then to G. Here we can reach H from E through (EF, FH) or (EG,GH).But the route (EF,FH) will be taken as it is lesser(shortest path). Hence A,B,E,F,H is the shortest route.

FLOODING

Another static routing algorithm is flooding: Every incoming packet is sent out on every outgoing line except the one it arrived on. Measures for damming the flood: A hop counter is included in the header of each packet, which is decremented at each hop. A packet is discarded when the counter reaches zero. A sequence number is included in each packet. Each router maintains a list per source router telling which sequence numbers originating at that source have already been seen. A packet is discarded when it contains a sequence number which is in the list. Selective flooding: an incoming packet is sent on those lines that are going approximately in the right direction. Random walk: an incoming packet is sent on a line at random. Possible applications of flooding: In military applications, to withstand large numbers of routers crashes at any instant. As a metric (always choose the shortest path) against which other routing algorithms can be compared.

DISTANCE VECTOR ROUTING

(a) A subnet. (b) Input from A, I, H, K, and the new routing table for J.

DISTANCE VECTOR ROUTING

Used by ARPANET, Internet (RIP), DECnet, Novell (IPX), AppleTalk, and Cisco routers. Each router maintains a routing table, with one entry for each other router in the subnet. Each entry contains two parts: the preferred outgoing line for that destination, and the estimation of the delay time (or number of hops, distance, queue length, etc.) to that destination. Each router knows the distance to each of its neighbors and updates its routing table based on the routing information from its neighbors. Each router periodically exchanges explicit routing information with each of its neighbors. Example In fig(b), It shows the delay(time) vectors from station A to all other stations.i.e. from A to A - 0, A to B -12, A to C - 25 etc.

Now suppose we want to transmit packet from J to G. Then at a particular moment of time the available routes are (JA,AG),(JI,IG), (JH,HG) & (JK,KG).The delay vectors for (JA,AG - 8+18),(JI,IG 10+31), (JH,HG 12+6) & (JK,KG 6+31).From the above we can say that (JH,HG -12+6) is the shortest path where we can transmit packet with less delay .

THE COUNT-TO-INFINITY PROBLEM

A comes up: Good news spreads fast A goes down: Bad news spreads slowExample In fig(b), distance vectors from A to B,C,D,E are 1,2,3,4. suddenly if A fails, B cannot reach A directly, Then it thinks that it can reach A through C i.e. (BC+CA 1+2 = 3). Now AB is marked as the 3 which is the latest distance vector. Then now C will modify its distance vector as (CB+CA = 1+3 = 4). Lastly if C to A is 4, then B will modify it as (BC+CA = 1+4 = 5) Like this the process goes on to infinity modifying the distance vectors.

LINK STATE ROUTING

Distance vector routing was used in the ARPANET until 1979, when it was replaced by link state routing. Each router must do the following: Discover its neighbors, learn their network address. Measure the delay or cost to each of its neighbors. Construct a packet telling all it has just learned. Send this packet to all other routers. Compute the shortest path to every other router.

1. 2. 3. 4. 5.

LEARNING ABOUT THE NEIGHBOURS

When a router is booted, it sends a HELLO packet to each outgoing line and all the routers in the LAN respond back telling its system details. Like this, a Router can trace its neighbours.

(a) Nine routers and a LAN. (b) A graph model of (a).

MEASURING LINE COST

The most direct way to determine this delay is to send over the line a special echo packet that the other side is required to send back immediately. By measuring the Round-trip time and dividing by two, we can get the delay. even for better results, the test can be conducted several times and the average can be used.

A subnet in which the East and West parts are connected by two lines.

BUILDING LINK STATE PACKETS

Once the information needed for the exchange has been collected, the next step is for each router to build a packet containing all the data as below in fig(b).

(a) A subnet. (b) The link state packets for this subnet.

DSTRBUTNG THE LNK STATE PACKETS

The link state packets of previous phase will be distributed in the network. Then the routers getting the first ones will change their routes. Flooding Each router records the (source, seq. no.) Only flood and record packets from a source with higher seq.no. than previous will be recorded.

Sequence numbers or router records of them can get corrupt. Include age after seq. no. and decrement it per second. Discard packets with age zero. Lastly, Once all the process is over, Run Dijkstras algorithm to know the shortest routes to all the destinations.

HIERARCHICAL ROUTING

HIERARCHICAL ROUTING

To save the memory, CPU time, and network bandwidth, for maintaining routing tables, hierarchical routing is used when the number of routers in the network is very large. In the above fig(a), some set of routers in the network are grouped as a Region. In a region, all the routers will have the complete information about all the other routers and how to route their packets in the same region.i.e.1A,1B,1C of region1 will know about each other. But a router of region1 will not have any details about router of region2. i.e. 1A router of region1 will not know about 2A router of region2.

BROADCAST ROUTNG

Broadcasting packets can be done in five ways Send a distinct packet to each destination

Flooding - Each node copies the packet to all outgoing lines Multidestination routing first, we know the list of destinations or by using bitmap. Then we determine the list of output lines for the destinations. Sink tree/spanning tree: Copy on all the spanning tree lines except the one packet arrived from. Reverse path forwarding: From a router,if any packet arrives, it will check whether packets are meant to be sent to the source. Then, the broadcast packet arrived on a line other than the preferred one for reaching the source, the packet is discarded as a likely duplicate.

The last three methods are BW efficient.

MULTICAST ROUTNG

This process will be done in two ways The packet can be broadcast to all the nodes in the network though it is not required to send to unintended recipients. Next, all the destinations can be formed as a group and the packet can be sent to the group which is nothing but multicasting.

ROUTING FOR MOBILE HOSTS

ROUTING FOR MOBILE HOSTS

Mobile host is a Laptop carrying by a person and if he want to read an e-mail and some Network need to identify him and help in the data transmission. Foreign agent Foreign network, Home agent Home network This will be done in a systematic process as follows(see fig above)

Basically each Foreign agent broadcasts a packet telling its existence, then mobile host can request it. Otherwise, mobile host will send a request packet for any foreign agent. Then mobile host requests foreign agent by giving its home agent details. Then foreign agent contacts home agent with the given security information by the mobile host. If home agent feels ok with the foreign agent, then it will permit foreign agent to carry on the transmission. When foreign agent gets positive acknowledgement from home agent, then it will make entry of this mobile host in its table and performs the data transmission.

ROUTING IN ADHOC NETWORKS

No fixed router (base station), router and host are on the same mobile machine and network is a set of machines that communicate with their neighbors.

-Dynamic topology, validity of paths change spontaneously.Possibilities when the routers are mobile:1.

Military vehicles on battlefield.

No infrastructure.2.

A fleet of ships at sea. All moving all the time Emergency works at earthquake .

3.

The infrastructure destroyed.4.

A gathering of people with notebook computers. In an area lacking 802.11.

ON DEMAND ROUTE DISCOVERY (AODV)Graph of nodes (router+host). Connected by a line only if two nodes communicate directly (not necessarily in each others range)

(a) Range of A's broadcast.(b) After B and D have received A's broadcast. (c) After C, F, and G have received A's broadcast. (B and D reject each others broadcast)(d) After E, H, and I have received A's broadcast. Shaded nodes are new recipients. Arrows show possible reverse routes.

ON DEMAND ROUTE DISCOVERY (AODV)

ROUTE REQUEST packet processing (broadcast): -if (Source address,Request ID) is new, record pair - else discard packet and stop -if a fresh route (assessed by Dest. Seq. #) to destination is known, send back ROUTE REPLY -else increment Hop count, broadcast ROUTE REQUEST , make an entry in reverse route table and start a timer.

ON DEMAND ROUTE DISCOVERY (AODV)

Lifetime: how long the route is valid Hop count: how far away the destination is ROUTE REPLY packet processing at each intermediate node on the way back (unicast): -make an entry into forward routing table for a route to destination, if no such route exists, route exists, but is old (Dest. Seq. #), or route exists, but new route is shorter (Hop Count) -nodes not on the reverse path erase their reverse route table entry after timer expires.

ON DEMAND ROUTE DISCOVERY (AODV)

In order to limit traffic due to many broadcasts ROUTE REQUEST is sent in areas inside of increasingly wider rings. Enabled by setting time to live to 1 at first attempt and 2,3,... at further attempts and decreasing time to live by one at each hop.

ROUTE MAINTENANCEDiscover which neighbors are no longer available by either periodically polling them or when no reply comes back for a packet sent. Purge destinations reached over that neighbor that is now unavailable Inform those active neighbors (users) that reach any such destination over that unavailable neighbor.

(a) D's routing table before G goes down. (b) The graph after G has gone down.

NODE LOOKUP IN PEER-TO-PEER NETWORKS

A set of 32 node identifiers arranged in a circle. The shaded ones correspond to actual machines. The arcs show the fingers from nodes 1, 4, and 12. The labels on the arcs are the table indices

CONGESTION

When too many packets are present in the subnet, performance degrades.This situation is called congestion. Congestion mainly occurs due to Insufficient memory, slow processors, low bandwidth lines.

CONGESTION PREVENTION POLICIES

Policies that affect congestion.

CONGESTION CONTROL IN VIRTUAL-CIRCUIT SUBNETS

In fig(a), there are two areas where congestion has taken place. In fig(b), construct a new sink tree by just avoiding the congested devices and find the new shortest routes for data transmission.

CONGESTION CONTROL IN DATAGRAM SUBNETS

Let us now turn to some approaches that can be used in datagram subnets.a) Warning Bit:The old DECNET architecture signaled the warning state by setting a special bit in the packets header.b) Choke Packets:The router sends a choke packet back to the source host,giving it the destination found in the packet. c) Hop-by-Hop Choke Packets(see fig below): Here it tells the congestion status to the previous Hop and requests to reduce or stop the transmission. d) Load Shedding: When none of the methods make the congestion disappear,routers can bring out the heavy artillery:load shedding. Load shedding is a fancy way of saying that when routers are being inundated by packets that they cannot handle,they just throw them away. e) Jitter control: For applications such as audio and video streaming,it does not matter much if the packets take 20 msec or 30 msec to be delivered ,as long as the transit time is constant.The variation in the packet arrival times is called jitter.The range chosen must be feasible ,of course.It must take into account the speed_of_light transit time and the minimum delay through the routers and perhaps leave a little stack for some inevitable delays.

HOP-BY-HOP CHOKE PACKETS

(a) A choke packet that affects only the source. (b) A choke packet that affects each hop it passes through.

IP ADDRESS(IPV4)

Here it contains five classes of addresses i.e. class A,B,C,D,E. IP address is divided into 4 segments, each 8 bit size i.e. 4 byte length The Range of values for any class are as below. Example: take class C- starts with 110. Then minimum value for that address in binary is 110 00000.00000000.00000000.00000000 Which is equivalent to 192.0.0.0 Then maximum value for the above address in binary is 110 11111.11111111.11111111.11111111 Which is equivalent to 223. 255.255.255

THE IP PROTOCOL

The IPv4 (Internet Protocol) header.

IPV6 HEADER

It is the advancement to IPV4. These are 16 byte length addresses. The Header is simplified to 7 fields.

The Header fields are optional too.It is a big advance in security. More attention is given for the quality of service.

TRANSPORT LAYER - SERVICE PRIMITIVES

To allow users to access the transport service,the transport layer must provide some operations to application programs,that is,a trasport service interface. Each transport service has its own interface.

There are 5 trasport primitives. 1.LISTEN 2.CONNECT 3.SEND 4.RECEIVE 5.DISCONNECT

THE PRIMITIVES FOR A SIMPLE TRANSPORT SERVICE

PRIMITIVE LISTEN

PACKET SENT (NONE)

MEANING BLOCKS UNTIL SOME PROCESS TRIES TO CONNECT ACTIVELY ATTEMPT TO ESTABLISH A CONNECTION SEND INFORMATION BLOCK UNTIL A DATA PACKET ARRIVES

CONNECT

CONNECTION REQ

SEND RECEIVE

DATA (NONE)

DISCONNECT

DISCONNECTION REQ

THIS SIDE WANTS TO RELEASE THE CONNECTION

BERKELEY SOCKETSThese are another set of transport primitives.The socket primitives used in Berkeley UNIX for TCP.These primitives are widely used for internet programming. There are 8 primitives. 1.SOCKET 2.BIND 3.LISTEN 4.ACCEPT 5.CONNECT 6.SEND 7.RECEIVE 8.CLOSE

THE SOCKET PRIMITIVES FOR TCP

1.SOCKET: It creates a new end point and allocates table space for it with in the transport entity. 2.BIND: Network addresses are assigned using the BIND primitive. 3.LISTEN: It allocates space to queue incoming calls for the case that several clients try to connect at the same time. 4.ACCEPT: To block waiting for an incoming connection,the server executes an ACCEPT primitive. 5.CONNECT: This primitive blocks the caller and actively starts the connection process. 6&7.SEND &RECEIVE: Both sides can now use SEND and RECV to transmit and receive data over the full_dulpex connection. 8.CLOSE: When both sides have executed a CLOSE primitive,the connection is released.

ELEMENTS OF TRANSPORT PROTOCOLS

The transport service is implemented by a transport protocol used between the two transport entities.In some ways ,transport protocolos resemble the data link protocols. Both have to deal with error control,sequencing,flow control among other issues.To perform these operations transport layer have some elements. Those elements are the following. 1.ADDRESSING. 2.CONNECTION ESTABLISHMENT 3.CONNECTION RELEASE 4.FLOW CONTROL AND BUFFERING 5.MULTIPLEXING 6.CRASH RECOVERY

1.ADDRESSING

When an application process wishes to set up a connection to a remote application process,it must specify which one to connect to.The method normally used is to define transport addresses to which process can listen for connection requests. In the internet these end points are called PORTS.We will use the generic term TSAP(transport service access point).The analogous end points in the network layer are then called NSAPs.

TSAP, NSAP & TRANSPORT CONNECTIONS

APPLICATION TSAP1208 PROCESS TRANSPORT CONNECTION

SERVER 1

SERVER2

TSAP 1522 1836

TSAP

NSAP

NSAP

HOST 1

HOST 2

CONNECTION ESTABLISHMENT

The problem with establishing a connection occurs when the subnet can lose, store, and duplicate packets.

How to deal with the problem of delayed duplicated and establish connections in a reliable way ?Method 1: use throwaway TSAP addresses. Method 2: Each connection is assigned a connection identifier (i.e., a sequence number incremented for each connection established), chosen by the initiating party, and put in each TPDU, including the one requesting the connection. Method 3:

Let be some small multiple of the true maximum packet lifetime. is protocol-dependent. If we wait a time after a packet has been sent, we can be sure that all traces of it are gone.

CONNECTION RELEASEReleasing a connection is easier than establishing one. Asymmetric release is abrupt and may result in data loss, as shown in Fig. .Abrupt disconnection with loss of data.CR

ACK

No data Delivered After a Disconnect requestHOST 1

DATA DATA DR

HOST2

One way to avoid data loss is to use symmetric release, in which each direction is released independently of the other one. A more sophisticated release protocol is required to avoid data loss. says:``I am done. Are you done too ?'' If responds:``I am done too. Goodbye.''

FLOW CONTROL AND BUFFERING

How connections are managed while they are in use ? For flow control, a sliding window is needed on each connection to keep a fast transmitter from overrunning a slow receiver (the same as the data link layer). The sender should always buffer outgoing TPDUs until they are acknowledged. The receiver may not dedicate specific buffers to specific connections. Instead, a single buffer pool may be maintained for all connections. When a TPDU comes in, if there is a free buffer available, the TPDU is accepted, otherwise it is discarded.

However, for high-bandwidth traffic (e.g., file transfers), it is better if the receiver dedicate a full window of buffers, to allow the data to flow at maximum speed. How large the buffer size should be ?TPDU 1TPDU2

CHAINED FIXED SIZE BUFFERS

TPDU3 TPDU4 CHAINED VARIABLE SIZED BUFFERS

TPDU5

ONE LARGE SIZED CIRCULAR BUFFER

MULTIPLEXING

The reasons for multiplexing: To share the price of a virtual circuit connection: mapping multiple transport connections to a single network connection (upward multiplexing). To provide a high bandwidth: mapping a single transport connection to multiple network connections (downward multiplexing).

TRANSPOR ADDRESSL A Y E R S 4

3

2ROUTER LINES

NETWORK ADDRESS

1

UPWARD MULTIPLEXING

DOWNWARD MULTIPLEXING

CRASH RECOVERY

In case of a router crash, the two transport entities must exchange information after the crash to determine which TPDUs were received and which were not. The crash can be recovered by retransmitting the lost ones. It is very difficulty to recover from a host crash. No matter how the sender and receiver are programmed, there are always situations where the protocol fails to recover properly.

STRATEGY BY SENDING HOSTALWAYS RETRANSMIT NEVER RETRANSMIT RETRANSMIT IN S0 RETRANSMIT IN S1

FIRST ACK,THEN WRITE AC(W) AWC C(AW)OK LOST OK LOST DUP OK DUP OK OK LOST LOST OK

FIRST WRITE,THEN ACK C(WA) WAC WC(A) OK DUP DUPLOS T LOS T OK OK DUP OK OK OK DUP

STRATEGY USED BY RECEIVING HOST OK=protocol functions currectly

DUP=protocol generates a duplicate message LOST=protocol losses a messageDIFFERENT COMBINATIONS OF CLIENT AND SERVER STRATEGY

TRANSMISSION CONTROL PROTOCOL(TCP)

TCP is a connection oriented transport protocol designed to work in conjunction with IP. TCP provides its user (application layer) with the ability to transmit reliably a byte stream to a destination and allows for multiplexing multiple TCP connections within a transmitting or receiving host computer. TCP was specifically designed to provide a reliable endto-end byte stream over an unreliable internet work.

TCP SERVICE MODEL

TCP service is obtained by creating end points called SOCKETS. Each socket consists of a socket number and port number. A single daemon (called the inetd in Unix) waits on multiple ports for an incoming connection. Port numbers below 1024 are called well_known ports and are reserved for standard services.

SOME ASSIGNED PORTS

PORT 21 23 25 69 79 80 110 119

PROTOCOL FTP TELNET SMTP TFTP FINGER HTTP POP-3 NNTP

USE FILE TRANSFER REMOTE LOGIN E-MAIL TRIVIAL FILE TRANSFER PROTOCOL LOOK UP INFORMATION ABOUT A USER WORLD WIDE WEB REMOTE E-MAIL ACCESS USE NET NEWS

TCP SEGMENT HEADER

Sequence number is used to mark the first byte. acknowledgement number is the next byte that is expected. Note that each byte is marked with sequence number. Header Length tells how many 32-bit words are in the header. Following the Header Length is an unused 6 bit field URG is the urgent pointer (set to 1 if used). Indicates a byte offset from the current sequence number at which urgent data are to be found. Typically not used. ACK bit is set to1 to indicate that the acknowledgment number is valid. The value 0 means dont use the acknowledgement number. PSH indicates PUSHed data; i.e. a request to the receiver to deliver the received data to the application and not buffer it. RST is used to reset the connection. SYN is used to establish connections. A connection request will typically have SYN=1 and ACK=0. connection reply carries SYN=1 and ACK=1

FIN is used to teardown a connection.The window size tells how many bytes may be sent starting at the byte acknowledged. Primarily this is used for flow control. Recall that TCP uses sliding window protocol. Checksum is used for error detection. The options are typically used for some other information not included in the standard header fields. Such as options may include information on how much TCP payload a host is willing to receive and how much to back track during retransmissions.

TCP CONNECTION ESTABLISHMENT

Connections are established in TCP by means of the three-way handshake Three-way handshake synchronies both ends of a connection by enabling both sides to agree upon initial sequence numbers. Example-Host A starts a connection to host B. A sends a packet with a random initial sequence number and SYN bit set. Host B receives the packet, creates its own packet with SN bit on, a random sequence number and the ACK value set Host A sends a reply packet in a similar fashion as B, without the SYN bit..

TCP CONNECTION ESTABLISHMENT -NORMAL CASE

SYN(SEQ=X)

T I M E

SYN(SEQ=Y,ACK=X+1 )

(SEQ=X+1,ACK=Y+1 )

HOST A

HOST B

TCP CONNECTION RELEASE

Although TCP connections are fullduplex,to understand how connections are released it is best to think of them as a pair of simplex connections. Each simplex connection is released independently of its sibling,To release a connection,either party can send a TCP segment as no more data to transmit. When the FIN is acknowledged,that direction is shut down for new data.When both directions have been shutdown,the connection is released.

TCP CONNECTION MANAGEMENT MODELING

The steps required to establish and release connections can be represented using 11 states. In each state certain events are legal.When a legal event happens,some action may be taken.If some other event happens,an error is reported. Each connection starts in the CLOSED state.It leaves that state when it does either a passive open or an active open. A connection is established and the state becomes ESTABLISHED.Connection release can be initiated by either side.When it is complete the state returns to CLOSED.

THE STATES USED IN TCPSTATES CLOSED LISTEN SYN RCVD SYN SENT DESCRIPTION NO CONNECTION IS ACTIVE OR PENDING THE SERVER IS WAITING FOR AN INCOMING CALL A CONNECTION REQUEST HAS ARRIVED,WAIT FOR ACK THE APPLICATION HAS STARTED TO OPEN CONNECTION

ESTABLISHE DFIN WAIT 1 FIN WAIT 2 TIMED WAIT CLOSING CLOSE WAIT LAST ACK

THE NORMAL DATA TRANSFER STATETHE APPLICATION HAS SAID IT IS FINISHED THE OTHER SIDE HAS AGREED TO RELEASE WAIT FOR ALL PACKETS TO DIE OFF BOTH SIDES HAVE TRIES TO CLOSE SIMULTANIOUSLY THE OTHER SIDE HAS INITIATED A RELEASE WAIT FOR ALL PACKETS TO DIE OFF

TCP TIMER MANAGEMENT

TCP uses multiple timers to do its work.The most imporant of these is the retransmission timer. Problem: how long should be the timeout interval of the retransmission timer? Solution: dynamically adjust the timeout interval based on continuous measurements of network performance. Estimating round trip time (RTT): Record time from segment sent to ACK receipt, denoted by M RTT = a*RTT + (1-a)*M, typically a = 7/8.

TIMER MANAGMENT

TCP CONGESTION CONTROL

When the load offered to any network is more than it can handle,congestion builds up.The internet is no exception.Now let us look at the Internet congestion control algorithm. It uses a third parameter,the threshold,initially 64 KB,in addition to the receiver and congestion windows.When a timeout occurs,the threshold is set to half of the current congestion window ,and the congestion window is reset to one maximum segment.

TCP CONGESTION CONTROL20 Congestion avoidanceCongestion occurs 15 Congestion window 10 Slow start Fast recovery would cause a change here.

Threshold

5

0 Round-trip times

150

WIRELESS TCP

TCP congestion control algorithm leads to poor performance on a wireless network. When a packet is lost on a wired network, the sender should slow down. When a packet is lost on a wireless network, the sender should speed up. How to make the correct decision on a timeout when the path from sender to receiver is heterogeneous?

WIRELESS TCP

USER DATAGRAM PROTOCOLIt is also fast compared to the use of TCP, since there is no connection establishment phase. Moreover, UDP is important since RTP (Real time Transport Protocol) is supported over UDP.

UDP (User Datagram Protocol) is a simple OSI transport layer protocol for client/server network applications based on Internet Protocol (IP). UDP is the main alternative to TCP and one of the oldest network protocols in existence, introduced in 1980. UDP is often used in videoconferencing applications or computer games specially tuned for real-time performance. To achieve higher performance, the protocol allows individual packets to be dropped (with no retries) and UDP packets to be received in a different order than they were sent as dictated by the application.

UDP PACKET FORMAT

Figure 20: UDP Packet Format

UDP port numbers allow different applications to maintain their own channels for data similar to TCP. UDP port headers are two bytes long; therefore, valid UDP port numbers range from 0 to 65535. The UDP datagram size is a count of the total number of bytes contained in header and data sections. As the header length is a fixed size, this field effectively tracks the length of the variablesized data portion (sometimes called payload). The size of datagrams varies depending on the operating environment but has a maximum of 65535 bytes. UDP checksums protect message data from tampering. The checksum value represents an encoding of the datagram data calculated first by the sender and later by the receiver. Should an individual datagram be tampered with or get corrupted during transmission, the UDP protocol detects a checksum calculation mismatch. In UDP, checksumming is optional as opposed to TCP where checksums are mandatory.

UDP Datagrams UDP network traffic is organized in the form of datagrams. A datagram comprises one message unit. The first eight (8) bytes of a datagram contain header information and the remaining bytes contain message data. A UDP datagram header consists of four (4) fields of two bytes each: source port number destination port number datagram size checksum

DOMAIN NAME SERVER (DNS)

DNS allows the use of 'friendly names': names that are easier to read and memorize for humans. It is able to do mappings between these Domain names and IP-addresses. For instance: www.ietf.org => 132.151.1.19 www.ns.nl => 195.108.47.18

Many applications use DNS for user convenience (e.g. your Web-Browser). DNS uses a (world-wide) distributed database based on hierarchically structured domains. DNS is specified in RFC 1034 and RFC 1035.

DNS Resource RecordThe resource record will be in this format Domain_name time_to_live class type value Domain_name - it tells the domain name time_to_live - the existance of record for 1day/hr/min Class it is generally IN(internet information) Type it denotes a Host/name server/mail server etc..

Value it can be a number/domain name/Ascii stringEg: www.yahoo.com 86400 IN NS 130.37.16.112

www.gitam.edu

86400 IN MX 192.168.34.56

DNS

root

edu com mil

org

int

net

gov

nl be uk

mit.edu

ietf.org

nasa.gov

utwente.nl

www.ietf.org domain host

cs.utwente.nl

www.cs.utwente.nl

demeter.cs.utwente.nl

Web page RetrievalISP server

DNS server

client

server

Yahoo Web server

Web page Retrieval

In the above figure, a user (client) of a particular network makes a request for a web page.

Then for eg: user has given www.yahoo.com in the address bar of browser(internet explorer)in his client system.Then soon HTTP comes into picture, takes the request of user and pass it onto the local server, then from there the request will be passed onto the ISP(eg - BSNL) server and from there it will be passed onto the DNS server. Then DNS will search for that address, if it is found then that request will be passed onto the yahoo web server and the yahoo server will act on the request, process it, respond back with the requested web page in the same path. If address is not found in DNS then it will come back with empty response.

E-MAIL

E-mail means or system for transmitting messages electronically (as between computers on a network) messages sent and received electronically through an e-mail system. These messages usually consist of individual pieces of text which you can send to another computer user even if the other user is not logged in (i.e. using the computer) at the time you send your message. The message can then be read at a later time. This procedure is analogous to sending and receiving a letter. When mail is received on a computer system, it is usually stored in an electronic mailbox for the recipient to read later. Electronic mailboxes are usually special files on a computer which can be accessed using various commands. Each user normally has their individual mailbox.

User agent

A user agent is normally a program that accepts a variety of commands for composing, receiving, and replying to messages.Agent a.k.a. mail reader.

composing, editing, reading mail messages.e.g., Eudora, Outlook, elm,Netscape Messenger. outgoing, incoming messages stored on server.

COMMON EMAIL PROTOCOLS Sending Mail: SMTP (Simple Mail Transport Protocol)

Servers include Sendmail, Postfix, Exim, QmailReceiving Mail IMAP (Internet Message Access Protocol) POP3 (Post Office Protocol v3)

Servers Include Dovecot, Courier, Qmail

SMTP - If ever configuring a mail server, try to separate these two types of services Outgoing Mail Server Should have some kind of authentication Queue messages when receiving server is unavailable Sends bounce message to sender after retrying delivery Incoming Mail Server (or MX server) Receives incoming messages from the Internet Delivers message to a mailbox (Should never send a bounce)

POP3 - Retrieves messages from a mail server. Typically, messages are downloaded to your mail client, and deleted from the server. Designed for use with dial-up connections when people were intermittently connected. Listens on Port 110 (with Secure POP generally on port 995).

IMAP - Listens on port 143 (IMAP/SSL on port 993)Mail stays on the server. Mail Client caches information locally Extremely useful for multiple users, multiple machines, Webmail, etc Searches are done on the server

WORLD WIDE WEB

Components of world wide web HTTP HTML INTERNET BROWSER URL

COMPONENTS OF WWW

HTTP

HTTP Hyper text transfer protocol It is a software which is used across web to take the Request of a client and pass it to the web server and come back with the Response with some set of rules. HTTP is a request/response standard as is typical in client-server computing. The client is an application (e.g. web browser, spider etc) on the computer used by an end-user. The server is an application running on the computer hosting the web site. The client which submits HTTP requests is also referred to as the user agent. The responding serverwhich stores or creates resources such as HTML files and imagesmay be called the origin server.

HTML

HTML is a language for describing web pages. HTML stands for Hyper Text Markup Language HTML is not a programming language, it is a markup language A markup language is a set of markup tags HTML uses markup tags to describe web pages

INTERNETIt is a network of networks that consists of millions of private and public, academic, business, and government networks of local to global scope that are linked by a broad array of electronic and optical networking technologies. The Internet carries a vast array of information resources and services, most notably the interlinked hypertext documents of the World Wide Web (WWW) and the infrastructure to support. It is a collection of interconnected documents and other resources, linked by hyperlinks and URLs.

BROWSER

A browser is an application program that provides a way to look at and interact with all the information on the World Wide Web. A browser converts HTML source code(markup tags) to beautiful text, images, graphical motions etc. Technically, a Web browser is a client program that uses HTTP (Hypertext Transfer Protocol) to make requests of Web servers throughout the Internet on behalf of the browser user. The first Web browser with a graphical use interface was Mosaic, which appeared in 1993. Many of the user interface features in Mosaic went into Netscape Navigator. Microsoft followed with its Internet Explorer (IE).

URL

A common way to get to a Web site is to enter the URL of its home page file in your Web browser's address line. However, any file within that Web site can also be specified with a URL. The URL contains the name of the protocol to be used to access the file resource, a domain name that identifies a specific computer on the Internet, and a pathname, a hierarchical description that specifies the location of a file in that computer. A URL is a type of URI (Uniform Resource Identifier, formerly called Universal Resource Identifier.)

WEB DOCUMENTS

The documents in the WWW can be grouped into different categories: static, dynamic. The category is based on the time the contents of the document are determined. Static Documents Dynamic Documents

STATIC DOCUMENT

DYNAMIC DOCUMENT

In a dynamic web page, there will be a provision for I/O. i.e. When the web page is running, We will give some input to the web page, correspondingly there will be a change in the output of the web page.

HTTP REQUEST AND RESPONSE

REQUEST AND RESPONSE MESSAGES

METHODS

STATUS CODES