computer simulations in solar system physics mats holmström swedish institute of space physics...

26
Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Upload: arline-hoover

Post on 11-Jan-2016

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Computer Simulations in Solar System Physics

Mats HolmströmSwedish Institute of Space Physics (IRF)

Forskarskolan i rymdteknikGöteborg

12 September 2005

Page 2: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Solar System Physics and Space TechnologySSPT

Scientific Goals

● How does the interplanetary medium affect and shape the bodies in the inner solar system?

● What plasma physical processes determine the structure of the interaction regions?

● How do the solar system dust population evolve and interact with planetary bodies?

Study the environment and the solar wind interaction as well asthe evolution and dynamics of solar system objects with focus on the inner planets, moons, asteroids, comets and dust. Development of scientific instrumentation for satellite-based measurements in support of space exploration.

Page 3: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Overview

● The science we do● The simulations we do. Some examples:

1. Ion precipitation at Mercury

2. Instrument design

3. Energetic neutral atom (ENA) production at Mars

4. ENA production at the Moon

5. Solar wind charge exchange X-rays at Mars

6. Magnetohydrodynamics and particle simulations

Page 4: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Solar Wind-Solar System Objects Interaction

[Kivelson and Russel]

Page 5: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Detectors of ...

● ... Ions, and● ... Energetic Neutral Atoms (ENAs)

Direction, flux, mass, energy/velocity

Page 6: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Current and Future Missions

Page 7: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Simulation Needs

1) Proposals and Mission planning

• What is the sensor environment?• What can we detect? What science can be done?• Example: Sputtered neutral atoms at Mercury

2) Instrument design

• Optimization (performance-weight-power)• Example: Neutral atom detector for Mercury and the moon

3) Data analysis

• Extract as much information as possible• Example: ENA production at Mars

Page 8: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Ion Trajectories

Example 1: Sputtered neutral atoms at Mercury

Page 9: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Ion Precipitation Map

Example 1: Sputtered neutral atoms at Mercury

Page 10: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

The three columns correspond to, from left to right, sputtering fromsolar wind protons, from magnetotail accelerated protons, and fromsodium photoions. The top row show maps of the ion precipitation on Mercury's surface[1/(cm^2 s)]. The subsolar point has zero longitude and latitude. The bottom row shows the fluxes of sputtered sodium atoms in theenergy range 10-40 eV as seen from a height of 400 km over areas of large precipitation with a 160 degree field of view. The unit is [1/(cm^2 sr s)

Example 1: Sputtered neutral atoms at Mercury

Page 11: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Simulation Details

● C++● RKSUITE for the trajectory

computationAdaptive Runge-Kutta ODE solver

● Parallelize the trajectory computations

● MPI for communication

Example 1: Sputtered neutral atoms at Mercury

Page 12: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Designing a Neutral Atom Imager

● For missions to the moon and to Mercury● Particle trajectories in the sensor by an MPI

application (A. Fedorov, CESR, France)● Optimize weight (dimensions) and mass resolution

Example 2: Neutral atom detector for Mercury and moon

Page 13: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Electric Potential

Example 2: Neutral atom detector for Mercury and moon

Page 14: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Particle Trajectories

Example 2: Neutral atom detector for Mercury and moon

Page 15: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Mass Resolution

Example 2: Neutral atom detector for Mercury and moon

Page 16: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

ENA Production at Mars

● Generated by – Solar wind-exosphere charge exchange– Atmospheric sputtering and backscatter

(of precipitating ions and ENAs)– Planetary ions-exosphere charge exchange– Solar wind-Phobos gas torus charge exchange

● Three-dimensional emissions

Example 3: ENA Production at Mars

Page 17: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

[Futaana, 2004]

ENA imager Field of View at Mars

Example 3: ENA Production at Mars

Page 18: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Different ENA production models

Empirical Hybrid MHD

Sensitive to Flow model Exosphere model

Example 3: ENA Production at MarsEffects of parameter changes

Page 19: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Interpreting ENA images at Mars

ENA flux = Line of sight integration (ion flux and neutral density)

Inverse problem(forward modeling)

Example 3: ENA Production at Mars

Page 20: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

ENA Production at the moon Generated by sputtering from

Micro meteoroid impact vaporization Photon desorption Precipitating

Magnetospheric ions Solar wind ions

Significant contribution only from precipitating solar wind ions

Two-dimensional emissions

Example 4: ENA Production at the Moon

Page 21: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

[Futaana, 2004]

Example 4: ENA Production at the Moon

Page 22: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

What can we learn from moon ENA images?

● Regolith composition● Size and location of magnetic anomalies● Space weathering effects on the regolith

Solar wind flow around an anomaly[Harnett and Winglee]

[Futaana, 2004]

Example 4: ENA Production at the Moon

Page 23: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

ENA imaging of shaded areas

● Kinetic effects => solar wind ion precipitation in shaded areas

[Clementine]

Example 4: ENA Production at the Moon

Page 24: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Solar Wind Charge Exchange X-rays

Observation Simulations

Example 5: SWCX X-rays at Mars

Page 25: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

The FLASH Code● Magnetohydrodynamic (MHD) solver that can include particles

● From University of Chicago

● General compressible flow solver

● Adaptive (Paramesh) and parallel (MPI)

● Open source, Fortran 90

● Add boundary conditions and sources for solar system objects - solar wind simulations(Mercury, Venus, earth, moon, Mars, ...)

● First investigations:

– A comet (MHD with a photoion source)

– Mars' exosphere (particles)

Example 6: Magnetohydrodynamics and particle simulations

Page 26: Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005

Simulations is an integral part of our science